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ON THE CLASS OF CONTACT METRIC MANIFOLDS WITH A 3-1-STRUCTURE

DAVID E. BLAIR

1. INTRODUCTION

In [7] Gouli-Andreou and Xenos introduced the notion of a contact metric structure being
a 3-t-structure and developed some of its basic properties. Known examples however are
contact metric manifolds satisfying the stronger condition that their Ricci operator commute
with the fundamental collineation ¢. In this paper we show that contact metric manifolds
with a 3-t-structure indeed form a larger class and the example we give is also of interest
in terms of special directions introduced in [3] on contact metric manifolds with negative
sectional curvature for plane sections containing the characteristic vector field &.

2. CONTACT METRIC MANIFOLDS WITH A 3-1-STRUCTURE

By a real contact manifold we mean a C> manifold M=""! together with a I-form 1 such
thatn A (dn)" # 0. 1t 1s well known that given n there exists a unique vector field & such that
dn(&, X) = 0 and n(¢&) = 1 called the characteristic vector field or Reeb vector field of the
contact structure 1. A classical theorem of Darboux states that on a contact manifold there
exist local coordinates with respect to which n = dz — Z;}:! y'dx'. We denote the contact
subbundle or contact distribution defined by the subspaces {X € T,,M : n(X) = 0} by D.
Roughly speaking the meaning of the contact condition, 11 A (dn)" # 0, 1s that the contact
subbundle 1s as far from being integrable as possible. In fact for a contact manifold the
maximum dimension of an integral submanifold of D 1s only n; whereas a subbundle defined
by a I-form n 1s integrable if and only if n A dn = 0.

A Riemannian metric g 1s an associated metric for a contact form n if there exists a tensor
field ¢ of type (1.1) such

4

G- =T+ nX) =gX, L), dn(X,Y) = g(X, dY).

We refer to (1, g) or (¢, &, 1, g) as a contact metric structure. All associated metrics have the
same volume element, viz., [—}}}n A (dn)". Since dn(&,X) = 0 and n(&) = 1, computing
Lie derivatives, we have £ = 0 and L¢dn = 0. Thus the flow generated by & 1s volume
preserving with respect to any associated metric.

In the theory of contact metric manifolds there 1s another tensor field that plays a funda-
mental role, viz. h = %[)E ¢. /1 1s a symmetric operator which anti-commutes with ¢, hé = 0
and h vanishes 1t and ;:}nly if & 1s Killing. We denote by V the Levi-Civita connection of g
and by R its curvature tensor. On a contact metric manifold we have the following important

relation involving A,
Vx& = =X — PhX. (%)
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Since hp + Gh = 0, 1if A 1s an eigenvalue of i with eigenvector X, then —A is also an
eigenvalue with eigenvector ¢X. Thus, since h¢ = 0, in dimension 3 we have only one
eigenfunction A on the manifold to be concerned with.

The sectional curvature of a plane section containing & 1s called a &-sectional curvature.
In this paper, except for the result from [4] described in the next paragraph, we do not need
the notion of a Sasakian manifold, though it may be worth pointing out that the &-sectional
curvature of a Sasakian manitfold 1s +1. For a general reference to the ideas so far in this
section see [2].

In [4]it was shown that a 3-dimensional contact metric manifold M- whose Ricci operator ¢
commutes with the tensor field ¢ 1s either Sasakian, flat or locally 1sometric to a left-invariant
metric on the Lie group SU(2) or SL(2,R). In the latter cases M~ has constant &-sectional
curvature K = | — A% < | and the sectional curvature of a plane section orthogonal to &, is —k
(see also [5]), and the stucture occurs on these Lie groups with k£ > 0 for SU(2) and k& < O for
SL(2,R). It was also shown in [5] (see Lemma 3.1) that on a 3-dimensional contact metric
manifold satistying Q¢d = O, the eigenfunction A 1s a constant.

On 3-dimensional contact metric manifolds the condition Q¢ = $Q is equivalent to other
important curvature conditions (see e.g. [5]). It 1s equivalent to the contact metric manifold
being n-Einstein and it is equivalent to the characteristic vector field & belonging to the
k-nullity distribution, i.e. Ryy& = k(m(Y)X — n(X)Y).

In [7] Gouli-Andreou and Xenos introduced the notion of a 3-t-manifold, namely a 3-
dimensional contact metric manifold on which

Vgh = ().

The name comes from the equivalent condition VT = 0 where T = L¢g; in particular T
and h are related by (X, Y) = 2g(hdp X, ¥Y). Known examples, however, are contact metric
manifolds satisfying the stronger condition that their Ricci operator Q commutes with ¢ and
the two conditions are not unrelated. The following proposition is proved in [3] but for
completeness we give the proof here as well.

Proposition. A 3-dimensional contact metric manifold on which Q¢ = $Q is a 3-t-manifold.
A 3-t-manifold on which Q¢ is collinear with ¢ satisfies Q¢ = Q.

Proof. If Q¢ = ¢ O, then p& = 0 gives GQOE = 0 and hence that Q& is collinear with &. In
|8] (Proposition 3.1) Perrone proved that on a 3-dimensional contact metric manifold

(Vet)X, Y) = g(QPX, ¢Y) — g(OX,Y) + n(X)g(Q&, Y) + n(Y)g(QE, X)

—NXM(Y)g(QE, &).

Thus if Q¢ = OO, Vet = 0 giving the first statement.
If (Ve(X,Y) = 0 and Q¢ = f&, Perrone’s formula yields g(QbX, oY) — ¢(QX,Y) +
MmXmY)=0or
—pOdPX — OX + Mm(X)¢, = 0.

Applying ¢ and noting that n(Q$pX) = ¢(&, ObX) = 2(Q¢&, dX) = 0, we have O = ¢O as
desired.
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We may regard equation () as indicating how & or, by orthogonality, the contact subbundle,
rotates as one moves around on the manitold. For example when i = 0, as we move in a
direction X orthogonal to &, & 1s always “turning” or “falling” toward —dX. It hX = AX, then
Vxé& = —(1 + A)PpX and again & 1s turning toward —GX it A > —1 or toward X if A< —1.
Recall that we noted above that if A 1s an eigenvalue of & with eigenvector X, then —A 1s also
an eigenvalue with eigenvector ¢X. However one can ask if there can ever be directions, say
Y orthogonal to &, along which & “falls” forward or backward in the direction of Y itself. In
[ 3] the author proved the tollowing result.

Theorem. Let M>"*! be a contact metric manifold. If the tensor field # admits an eigenvalue

A > | at a point P, then there exists a vector ¥ orthogonal to & at P such that V¢, is collinear
" . T 7 * = . . . *

with Y. In particular if M>"*! has negative &-sectional curvature such directions Y exist.

Note that when there exists a direction Y along which V¢ 1s collinear with Y, say Vyé =
«Y, o« = —A2 — 1, and there is also a second such direction Z. For Z we have V¢ = —oZ:
thus we think of ¢ as falling backward as we move 1n the direction Y and talling forward as
we move In the direction Z. We also note that

g(Y,Z) = BS
and hence that such directions Y and Z are never orthogonal.

3. ANOSOV FLOWS

Classically an Anosov flow 1s defined as follows [1, pp. 6-7]. Let M be a compact
differentiable manifold, & a non-vanishing vector field and {\,} its I-parameter group of
diffeomorphisms. {1, } is said to be an Anosov flow (or & to be Anosov) if there exist
subbundles E°* and E" which are invariant along the flow and such that TM = E* ¢ E* & {&)
and there exists a Riemannian metric such that

P Y] <ae Y| fort > 0and Y € E;’;,

P Y] <aelY|fort <Oand Y € E)

where a and ¢ are positive constants independent of p € M and Y in £, or £} E* and E" are
called the stable and unstable subbundles or the contracting and expanding subbundles.
When M 1s compact the notion 1s independent of the Riemannian metric. If M is not
compact the notion 1s metric dependent. In our example of a contact metric manifold with a
3-1-structure below, we will give a metric on R? with respect to which the coordinate field
rea

2 = %& 1S Anosov, even though f 1s clearly not Anosov with respect to the Euclidean

=

metric on R”.

Now let M be a 3-dimensional contact metric manifold with negative &-sectional curvature.
[t was shown in [3] that if the characteristic vector field & generates an Anosov flow and
the special directions agree with the stable and unstable directions, then the contact metric
structure 18 a 3-t-structure. Moreover in the compact case one has that M satisfies Ob = $pO
and that M 1s a compact quotient of SL(2,R). This can be proved from properties of a
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3-t-structure [3] or seen from a result of E. Ghys [6] that if & 1s Anosov on a compact
3-dimensional contact manifold M and the stable and unstable directions are smooth, then M
1S a compact quotient of SL(2, R).

As an aside we note that on a compact manifold, an Anosov flow has a countable number
of periodic orbits [ 1, Theorem 2] and if the flow admits an integral invariant, in particular if
1t 1s volume preserving, then the set of periodic orbits 1s dense in M [1, Theorem 3]. This
in 1tself has some implications for contact geometry. An important conjecture of Weinstein
[9] 1s that on a simply connected compact contact manifold & must have a closed orbit, so
in particular the Weinstein conjecture holds for a compact contact manifold on which & is
Anosov. There 1s no known example of a non-simply-connected compact contact manifold
for which & does not have a closed orbit and the author has long felt that the Weinstein
conjecture 1s true without the assumption of simple connectivity. The 3-dimensional torus,
has a contact structure for which the set of periodic orbits 1s dense but no non-periodic orbit
1$ dense 1n the whole manifold, see e.g. [2, p. 8].

4. 3-T-MANIFOLDS WITH O} # $O

We now show the existence of a family of 3-t-manifolds on which Q¢ # ¢O.

Theorem. R’ with the standard Darboux contact form n = (dz — vdx) carries associated
metrics giving 3-t-structures for which Q¢ # ¢ 0.

Proof. The characteristic vector field of n = ,,(d” — vdx) 18 & = 2 . Let f be a smooth
function of x and y bounded below by a positive constant ¢. Then the metuc given by

} o -+ l‘f‘;: e —d _3 % _".,*2 & f_] _}
T4 . of
& 1 - f )
— l}- 0 l
1s an associated metric. The tensor fields ¢ and / are given by
7 e’ 0)
b = (e T2y ]
Y() ved 0
! fel 0
h = __(_}‘a.“' +{1+J;-_H —fle= ) 0
ved vfed 0

By direct computation V¢h = 0 and therefore R* with this structure is a 3-t-manifold. Also
ON? = trh? = 2(1 + f*) and hence the positive eigenfunction of his A = /1 4+ f2 > 1. As
we remarked earlier and as was shown in [5], on a 3-dimensional contact metric manifold
satisfying Q¢ = $Q, the eigenfunction A 1s a constant. Thus if f is not constant, this structure
on R’ is a 3-T-structure satisfying O # $O.

For this structure the special directions discussed in Section 2 are given by

0 0
Y =f— — — —, Z=—
fax afoa- )
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To check that & = 2---- 1S Anosov with respect to g, consider for mmphut}quat 2 1ts flow
W, maps a point Py(x, ‘1 2) to the point P(x,y, z + ). Now recalling that the lunumn f was
chosen to be bounded below by a positive constant ¢, we have for ¢ < 0,

LIJH— l)l - . (P)‘ - —f”‘ el 3y Pn)‘ < e? —(PU}‘
Similarly for ¢ > 0,
' 0 0> 9 D | —
lﬂjr»(f—x Y + ‘if )(Pn)l = (fa “ 3y JF.‘I}(E)(P)‘ =5 A
VO T Y Ny S R )
= ¢2 (fé:—a—}‘+lfah)(f3{})‘ < (}Cax a}’Jr}'fa:)[P”)l'

Thus f equivalently &, is Anosov with respect to this metric; Y determines the stable
subbundle and Z the unstable subbundie.



104 David E. Blair

REFERENCES

[1]

2]

[3]

[5]

6]

[7]

8]

9]

D. V. Anosov, Geodesic Flows on closed Riemann Manifolds with Negative Curvature,
Proc. Steklov Inst. Math., 90 (1967) (Amer. Math. Soc. translation, 1969).

D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics,
509, Springer-Verlag, Berlin, 1976.

D. E. Blair, Special directions on contact metric manifolds of negative &-sectional curvature,
to appear.

D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with
Ob = O, 11, Bull. Inst. Math. Acad. Sinica 20 (1992), 379-383.

D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact
metric manifolds with Q¢ = $Q, Kodar Math. J. 13 (1990), 391-401.

E. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Ec.
Norm. Sup. 20 (1987), 251-270.

F. Gouli-Andreou and Ph. J. Xenos, On 3-dimensional contact metric manifolds with

Vet = 0,J. of Geom., 62, (1998), 154-165.

D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodar Math. J. 13
(1990), 88-100.

A. Weinstein, On the hypothesis of Rabinowit’ periodic orbit theorem, J. Differential
Equations, 33 (1978), 353-338.

Received May 14, 1997
David E. Blair
Department of Mathematics

Michigan State University
Fast Lansing, Michigan 48824



