ON THE CLASS OF CONTACT METRIC MANIFOLDS WITH A 3-τ-STRUCTURE

DAVID E. BLAIR

1. INTRODUCTION

In [7] Gouli-Andreou and Xenos introduced the notion of a contact metric structure being a 3- τ -structure and developed some of its basic properties. Known examples however are contact metric manifolds satisfying the stronger condition that their Ricci operator commute with the fundamental collineation ϕ . In this paper we show that contact metric manifolds with a 3- τ -structure indeed form a larger class and the example we give is also of interest in terms of special directions introduced in [3] on contact metric manifolds with negative sectional curvature for plane sections containing the characteristic vector field ξ .

2. CONTACT METRIC MANIFOLDS WITH A 3-τ-STRUCTURE

By a real contact manifold we mean a C^{∞} manifold M^{2n+1} together with a 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. It is well known that given η there exists a unique vector field ξ such that $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$ called the *characteristic vector field* or *Reeb vector field* of the contact structure η . A classical theorem of Darboux states that on a contact manifold there exist local coordinates with respect to which $\eta = dz - \sum_{i=1}^n y^i dx^i$. We denote the *contact subbundle* or *contact distribution* defined by the subspaces $\{X \in T_m M : \eta(X) = 0\}$ by \mathcal{D} . Roughly speaking the meaning of the contact condition, $\eta \wedge (d\eta)^n \neq 0$, is that the contact subbundle is as far from being integrable as possible. In fact for a contact manifold the maximum dimension of an integral submanifold of \mathcal{D} is only n; whereas a subbundle defined by a 1-form η is integrable if and only if $\eta \wedge d\eta \equiv 0$.

A Riemannian metric g is an associated metric for a contact form η if there exists a tensor field φ of type (1,1) such

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \phi Y).$$

We refer to (η, g) or (ϕ, ξ, η, g) as a *contact metric structure*. All associated metrics have the same volume element, viz., $\frac{(-1)^n}{2^n n!} \eta \wedge (d\eta)^n$. Since $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$, computing Lie derivatives, we have $\mathcal{L}_{\xi} \eta = 0$ and $\mathcal{L}_{\xi} d\eta = 0$. Thus the flow generated by ξ is volume preserving with respect to any associated metric.

In the theory of contact metric manifolds there is another tensor field that plays a fundamental role, viz. $h = \frac{1}{2}\mathcal{L}_{\xi}\varphi$. h is a symmetric operator which anti-commutes with φ , $h\xi = 0$ and h vanishes if and only if ξ is Killing. We denote by ∇ the Levi-Civita connection of g and by R its curvature tensor. On a contact metric manifold we have the following important relation involving h,

$$\nabla_X \xi = -\phi X - \phi h X. \tag{*}$$

Since $h\phi + \phi h = 0$, if λ is an eigenvalue of h with eigenvector X, then $-\lambda$ is also an eigenvalue with eigenvector ϕX . Thus, since $h\xi = 0$, in dimension 3 we have only one eigenfunction λ on the manifold to be concerned with.

The sectional curvature of a plane section containing ξ is called a ξ -sectional curvature. In this paper, except for the result from [4] described in the next paragraph, we do not need the notion of a Sasakian manifold, though it may be worth pointing out that the ξ -sectional curvature of a Sasakian manifold is +1. For a general reference to the ideas so far in this section see [2].

In [4] it was shown that a 3-dimensional contact metric manifold M^3 whose Ricci operator Q commutes with the tensor field ϕ is either Sasakian, flat or locally isometric to a left-invariant metric on the Lie group SU(2) or $SL(2,\mathbb{R})$. In the latter cases M^3 has constant ξ -sectional curvature $k=1-\lambda^2<1$ and the sectional curvature of a plane section orthogonal to ξ is -k (see also [5]), and the stucture occurs on these Lie groups with k>0 for SU(2) and k<0 for $SL(2,\mathbb{R})$. It was also shown in [5] (see Lemma 3.1) that on a 3-dimensional contact metric manifold satisfying $Q\phi=\phi Q$, the eigenfunction λ is a constant.

On 3-dimensional contact metric manifolds the condition $Q\phi = \phi Q$ is equivalent to other important curvature conditions (see e.g. [5]). It is equivalent to the contact metric manifold being η -Einstein and it is equivalent to the characteristic vector field ξ belonging to the k-nullity distribution, i.e. $R_{XY}\xi = k(\eta(Y)X - \eta(X)Y)$.

In [7] Gouli-Andreou and Xenos introduced the notion of a 3-τ-manifold, namely a 3-dimensional contact metric manifold on which

$$\nabla_{\xi} h = 0.$$

The name comes from the equivalent condition $\nabla_{\xi}\tau = 0$ where $\tau = \mathcal{L}_{\xi}g$; in particular τ and h are related by $\tau(X,Y) = 2g(h\varphi X,Y)$. Known examples, however, are contact metric manifolds satisfying the stronger condition that their Ricci operator Q commutes with φ and the two conditions are not unrelated. The following proposition is proved in [3] but for completeness we give the proof here as well.

Proposition. A 3-dimensional contact metric manifold on which $Q\phi = \phi Q$ is a 3- τ -manifold. A 3- τ -manifold on which $Q\xi$ is collinear with ξ satisfies $Q\phi = \phi Q$.

Proof. If $Q\phi = \phi Q$, then $\phi \xi = 0$ gives $\phi Q \xi = 0$ and hence that $Q \xi$ is collinear with ξ . In [8] (Proposition 3.1) Perrone proved that on a 3-dimensional contact metric manifold

$$(\nabla_{\xi}\tau)(X,Y) = g(Q\phi X, \phi Y) - g(QX,Y) + \eta(X)g(Q\xi,Y) + \eta(Y)g(Q\xi,X)$$
$$-\eta(X)\eta(Y)g(Q\xi,\xi).$$

Thus if $Q\phi = \phi Q$, $\nabla_{\xi}\tau = 0$ giving the first statement.

If $(\nabla_{\xi}\tau)(X,Y) = 0$ and $Q\xi = f\xi$, Perrone's formula yields $g(Q\varphi X, \varphi Y) - g(QX,Y) + f\eta(X)\eta(Y) = 0$ or

$$-\phi Q\phi X - QX + f\eta(X)\xi = 0.$$

Applying φ and noting that $\eta(Q\varphi X) = g(\xi, Q\varphi X) = g(Q\xi, \varphi X) = 0$, we have $Q\varphi = \varphi Q$ as desired.

We may regard equation (*) as indicating how ξ or, by orthogonality, the contact subbundle, rotates as one moves around on the manifold. For example when h = 0, as we move in a direction X orthogonal to ξ , ξ is always "turning" or "falling" toward $-\varphi X$. If $hX = \lambda X$, then $\nabla_X \xi = -(1+\lambda)\varphi X$ and again ξ is turning toward $-\varphi X$ if $\lambda > -1$ or toward φX if $\lambda < -1$. Recall that we noted above that if λ is an eigenvalue of h with eigenvector X, then $-\lambda$ is also an eigenvalue with eigenvector φX . However one can ask if there can ever be directions, say Y orthogonal to ξ , along which ξ "falls" forward or backward in the direction of Y itself. In [3] the author proved the following result.

Theorem. Let M^{2n+1} be a contact metric manifold. If the tensor field h admits an eigenvalue $\lambda > 1$ at a point P, then there exists a vector Y orthogonal to ξ at P such that $\nabla_Y \xi$ is collinear with Y. In particular if M^{2n+1} has negative ξ -sectional curvature such directions Y exist.

Note that when there exists a direction Y along which $\nabla_Y \xi$ is collinear with Y, say $\nabla_Y \xi = \alpha Y$, $\alpha = -\sqrt{\lambda^2 - 1}$, and there is also a second such direction Z. For Z we have $\nabla_Z \xi = -\alpha Z$; thus we think of ξ as falling backward as we move in the direction Y and falling forward as we move in the direction Z. We also note that

$$g(Y,Z) = \frac{-1}{\lambda}$$

and hence that such directions Y and Z are never orthogonal.

3. ANOSOV FLOWS

Classically an Anosov flow is defined as follows [1, pp. 6-7]. Let M be a compact differentiable manifold, ξ a non-vanishing vector field and $\{\psi_t\}$ its 1-parameter group of diffeomorphisms. $\{\psi_t\}$ is said to be an *Anosov flow* (or ξ to be *Anosov*) if there exist subbundles E^s and E^u which are invariant along the flow and such that $TM = E^s \oplus E^u \oplus \{\xi\}$ and there exists a Riemannian metric such that

$$|\psi_{t*}Y| \leq ae^{-ct}|Y|$$
 for $t \geq 0$ and $Y \in E_p^s$,

$$|\psi_{t*}Y| \leq ae^{ct}|Y|$$
 for $t \leq 0$ and $Y \in E_p^u$

where a and c are positive constants independent of $p \in M$ and Y in E_p^s or E_p^u . E^s and E^u are called the *stable* and *unstable* subbundles or the *contracting* and *expanding* subbundles.

When M is compact the notion is independent of the Riemannian metric. If M is not compact the notion is metric dependent. In our example of a contact metric manifold with a 3- τ -structure below, we will give a metric on \mathbb{R}^3 with respect to which the coordinate field $\frac{\partial}{\partial z} = \frac{1}{2}\xi$ is Anosov, even though $\frac{\partial}{\partial z}$ is clearly not Anosov with respect to the Euclidean metric on \mathbb{R}^3 .

Now let M be a 3-dimensional contact metric manifold with negative ξ -sectional curvature. It was shown in [3] that if the characteristic vector field ξ generates an Anosov flow and the special directions agree with the stable and unstable directions, then the contact metric structure is a 3- τ -structure. Moreover in the compact case one has that M satisfies $Q\varphi = \varphi Q$ and that M is a compact quotient of $\widetilde{SL}(2,\mathbb{R})$. This can be proved from properties of a

3- τ -structure [3] or seen from a result of E. Ghys [6] that if ξ is Anosov on a compact 3-dimensional contact manifold M and the stable and unstable directions are smooth, then M is a compact quotient of $\widetilde{SL}(2,\mathbb{R})$.

As an aside we note that on a compact manifold, an Anosov flow has a countable number of periodic orbits [1, Theorem 2] and if the flow admits an integral invariant, in particular if it is volume preserving, then the set of periodic orbits is dense in M [1, Theorem 3]. This in itself has some implications for contact geometry. An important conjecture of Weinstein [9] is that on a simply connected compact contact manifold ξ must have a closed orbit, so in particular the Weinstein conjecture holds for a compact contact manifold on which ξ is Anosov. There is no known example of a non-simply-connected compact contact manifold for which ξ does not have a closed orbit and the author has long felt that the Weinstein conjecture is true without the assumption of simple connectivity. The 3-dimensional torus, has a contact structure for which the set of periodic orbits is dense but no non-periodic orbit is dense in the whole manifold, see e.g. [2, p. 8].

4. 3- τ -MANIFOLDS WITH $Q \phi \neq \phi Q$

We now show the existence of a family of 3- τ -manifolds on which $Q\phi \neq \phi Q$.

Theorem. \mathbb{R}^3 with the standard Darboux contact form $\eta = \frac{1}{2}(dz - ydx)$ carries associated metrics giving 3- τ -structures for which $Q\phi \neq \phi Q$.

Proof. The characteristic vector field of $\eta = \frac{1}{2}(dz - ydx)$ is $\xi = 2\frac{\partial}{\partial z}$. Let f be a smooth function of x and y bounded below by a positive constant c. Then the metric given by

$$g = \frac{1}{4} \begin{pmatrix} \frac{e^{zf} + (1+f^2)e^{-zf} - 2}{f^2} + y^2 & \frac{e^{zf} - 1}{f} & -y \\ \frac{e^{zf} - 1}{f} & e^{zf} & 0 \\ -y & 0 & 1 \end{pmatrix}$$

is an associated metric. The tensor fields ϕ and h are given by

$$\phi = \begin{pmatrix} \frac{e^{zf} - 1}{f} & e^{zf} & 0 \\ -(\frac{e^{zf} + (1+f^{2})e^{-zf} - 2}{f^{2}}) & -\frac{e^{zf} - 1}{f} & 0 \\ y(\frac{e^{zf} - 1}{f}) & ye^{zf} & 0 \end{pmatrix},$$

$$h = \begin{pmatrix} e^{zf} & fe^{zf} & 0 \\ -(\frac{fe^{zf} + (1+f^{2})(-f)e^{-zf}}{f^{2}}) & -e^{zf} & 0 \\ ye^{zf} & yfe^{zf} & 0 \end{pmatrix}.$$

By direct computation $\nabla_{\xi}h = 0$ and therefore \mathbb{R}^3 with this structure is a 3- τ -manifold. Also $2\lambda^2 = trh^2 = 2(1+f^2)$ and hence the positive eigenfunction of h is $\lambda = \sqrt{1+f^2} > 1$. As we remarked earlier and as was shown in [5], on a 3-dimensional contact metric manifold satisfying $Q\phi = \phi Q$, the eigenfunction λ is a constant. Thus if f is not constant, this structure on \mathbb{R}^3 is a 3- τ -structure satisfying $Q\phi \neq \phi Q$.

For this structure the special directions discussed in Section 2 are given by

$$Y = f \frac{\partial}{\partial x} - \frac{\partial}{\partial y} + yf \frac{\partial}{\partial z}, \quad Z = \frac{\partial}{\partial y}.$$

To check that $\xi = 2\frac{\partial}{\partial z}$ is Anosov with respect to g, consider for simplicity just $\frac{\partial}{\partial z}$; its flow ψ_t maps a point $P_0(x, y, z)$ to the point P(x, y, z + t). Now recalling that the function f was chosen to be bounded below by a positive constant c, we have for $t \le 0$,

$$\left|\psi_{t*}\frac{\partial}{\partial v}(P_0)\right| = \left|\frac{\partial}{\partial v}(P)\right| = \frac{1}{2}e^{\frac{(z+t)f}{2}} = e^{\frac{tf}{2}}\left|\frac{\partial}{\partial v}(P_0)\right| \le e^{\frac{ct}{2}}\left|\frac{\partial}{\partial v}(P_0)\right|.$$

Similarly for $t \ge 0$,

$$\left| \psi_{t*} \left(f \frac{\partial}{\partial x} - \frac{\partial}{\partial y} + y f \frac{\partial}{\partial z} \right) (P_0) \right| = \left| \left(f \frac{\partial}{\partial x} - \frac{\partial}{\partial y} + y f \frac{\partial}{\partial z} \right) (P) \right| = \frac{1}{2} \sqrt{1 + f^2} e^{\frac{-(z + t)f}{2}}$$

$$= e^{\frac{-tf}{2}} \left| \left(f \frac{\partial}{\partial x} - \frac{\partial}{\partial y} + y f \frac{\partial}{\partial z} \right) (P_0) \right| \le e^{\frac{-ct}{2}} \left| \left(f \frac{\partial}{\partial x} - \frac{\partial}{\partial y} + y f \frac{\partial}{\partial z} \right) (P_0) \right|.$$

Thus $\frac{\partial}{\partial z}$, equivalently ξ , is Anosov with respect to this metric; Y determines the stable subbundle and Z the unstable subbundle.

REFERENCES

- [1] D. V. Anosov, Geodesic Flows on closed Riemann Manifolds with Negative Curvature, Proc. Steklov Inst. Math., 90 (1967) (Amer. Math. Soc. translation, 1969).
- [2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [3] D. E. Blair, Special directions on contact metric manifolds of negative ξ-sectional curvature, to appear.
- [4] D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, II, Bull. Inst. Math. Acad. Sinica **20** (1992), 379-383.
- [5] D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, Kōdai Math. J. **13** (1990), 391-401.
- [6] E. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Éc. Norm. Sup. 20 (1987), 251-270.
- [7] F. Gouli-Andreou and Ph. J. Xenos, On 3-dimensional contact metric manifolds with $\nabla_{\xi}\tau = 0$, J. of Geom., 62, (1998), 154-165.
- [8] D. Perrone, Torsion and critical metrics on contact three-manifolds, Ködai Math. J. 13 (1990), 88-100.
- [9] A. Weinstein, On the hypothesis of Rabinowitz' periodic orbit theorem, J. Differential Equations, 33 (1978), 353-358.

Received May 14, 1997
David E. Blair
Department of Mathematics
Michigan State University
East Lansing, Michigan 48824