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SOME DUALITY RESULTS FOR THE CAPACITY THEORY RELATED TO NON SYM-
METRIC DIRICHLET FORMS

SILVIA MATALONI

Abstract. This paper deals with some dual formulations related to the capacity of a set in
the framework of coercive closed forms. Through the theory of dual variational inequalities
introduced by Mosco in [ 14] one gets some suitable relations between potential and capacitary
distribution which become equalities for Dirichlet forms.

0. INTRODUCTION

The recent development of the theory of Dirichlet forms is due to the growing interest in its
applications. In particular, the study of fractals and of Dirichlet forms progresses at the same
time, since 1t seems that the latter represent the most appropriate instrument to an adequate
variational description of sets without differentiable structure.

The success of the modern theory of Dirichlet forms is also based on the rich interplay
between its analytic and probabilistic components. The analytic part of the theory goes back
to the pioneering papers of A. Beurling and J. Deny [1] [2] [4], whereas the more recent
probabilistic part was really initiated by the fundamental work of M. Fukushima [5] [6] [7]
18] and M.L. Silverstein [15] combining symmetric Markov processes and Dirichlet forms.
The link between these two parts 1s the analytic theory of potential for the Dirichlet forms
that, for this reason, become very important. Z.M.Ma and M. Rockner, in their book [11],
extend the theory of potential to non symmetric Dirichlet forms; in particular, they give a new
definition of capacity that coincides with the classic one when the form is the energy form.

The 1dea of defining the capacitary potential as the solution of a suitable variational ine-
quality was mtroduced, 1n some celebrated papers. by Stampacchia [16] [17] etc., in the
framework of non seltadjoint uniformly elliptic operators. More precisely in the present
paper, as i [11], the capacitary potential of a compact set £ 1s defined as the solution of the
variational inequality:

ue K: Eu,v—u) >0 YvekK (0. 1)

with £(-,-) = &(-,-) + (-, -), where (-, -) is the inner product of a Hilbert space H, £(-,-) 1s a
regular coercive closed form with domain D € H and K 1s a suitable subset of the domain D.
On the other hand the capacitary copotential 1s defined as the solution of the adjoint variational
inequality:

ne K: &E(wv—i,i)>0 VveK,. (0. 1)

The aim 1s to generalize a result in [13] for second order not self-adjoint uniformly elliptic
operators, to regular coercive closed torms also 1in case Dirichlet property 1s not satisfied. In
particular the capacitary distribution will be obtained as solution of the variational inequality,
dual to (0.1). In our approach four varational inequalities appear: the basic (0.1), its adjoint
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(0.17), its dual and the adjoint dual. It is interesting to check that the relations between
the four solutions are in general expressed by inequalities that become equalities if the form
E(-,+) we consider in (0.1) is a regular Dirichlet form. However potential and copotential, in
general, coincide only in the symmetric case, see the Example in section 3.

Finally let us point out the interest of the dual formulation for capacity theory in the
framework of numerical approximations. To this purpose we refer to [9] and to [13].

1. NON SYMMETRIC DIRICHLET FORMS

We present here, for reader’s convenience, the necessary background from functional
analysis and present the analytic framework of the theory of Dirichlet forms on arbitrary
measure space.

Let H be a real Hilbert space equipped with the inner product (-, -)y, D a linear subspace
of Hand let £ : D x D — R be a bilinear map.

Definition 1.1. A pair (£, D) is called a closed form (on H) if D is a dense linear subspace
of Hand £ : D x D — R is a positive semidefinite bilinear form which is symmetric and D is

1
complete w.r.t. the norm & .

HL{”F% = E(u, u)% = (E(u, 1) + (u, H)H)%. (1.1

1

To give an analogous definition for non symmetric forms, it is necessary to define

the symmetric part of £ E(u,v) = %(5 (u,v) + E(v, 1))
the antisymmetric part of &£ E(u,v) = %(5 (u,v) — E(v, u))

Clearly (E(u,v), D) = (E(u,v) + Eu, v), D).
So we have

Definition 1.2. A pair (£, D) is called a coercive closed form (on H) if D is a dense linear
subspace of Hand € : D x D — R is a bilinear form such that the following conditions hold:
1) its symmetric part (E,D) is a closed formon H
ii) (£, D) satisfies the following "weak sector condition":
there exists a constant K > 0 (called continuity constant) such that

E(u,v)| < KE]{H,L{)%5|U-', U};i’ Yu,ve D (1.2)

oyl
Le. (&1,D) is continuous w.r.t. the norm £; on D.

We recall that a continuous bilinear form (£, D) on some Hilbert space H is called coercive
on H 1f there exists a constant ¢ > 0 such that £(u, 1) > c(u, u)y for all u € D.

Clearly, (£, D) is then a coercive closed form on H and the following condition holds:

there exists a constant K > 0 such that

1E(u,v)| < KE(u, L’)%S(L’, u)% Yu,v € D. (1.3)
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Let us recall now the following basic theorem due to G. Stampacchia ([16]). From now on

<1
(unless otherwise stated) we consider D to be equipped with the norm &; and we shall call 1t
Intrinsic norm.

Proposition 1.3. Let (£, D) be a coercive closed form on H and let C be a non-empty closed
convex subset of D. Let J be a continuous linear functional on D. Then there exists a unique
v € C such that

Eiv,w —v) > J(w —v) Yw e C. (1.4)

Proof. See, in the framework of Dirichlet forms, [11] Theorem 2.6.

Now we summarize the main definitions and properties of closed forms and coercive closed
forms which are necessary 1in the following sections.

Definition 1.4. Let (A, D(A)) be a linear operator densely defined on H. A is called a
generator if:

i) (0,50) C p(A)

i) [lodx — A <1 V>0

where, p(A) is defined to be the set of all x € R such that («—A) : D(A) — H is one-to-one
and for its inverse (x — A)~' we have

a) D(x — Ay "Y=H

b) («x — A~ is continuous on H.

Let us remark that if A 1s a selfadjoint negative semidefinite operator (i.e., A coincides with
its adjoint A on H and (Au, u) < O for all # € D(A)) hence 1), 11) hold; see e.g. [12].

Definition 1.5. A family {G,, x>0} of linear operators on H with D(G,,) = H for all
x € (0, 20) is called a strongly continuous contraction resolvent on H if:

1) xG,, is a contraction on H for all o > 0.

)G, — G = (p — x)G,Ggs forall «, [5 > 0.

(i) limy, ne XGout = u forall u € H.

For any given coercive closed form (£, D), there always exist a generator A and a strongly
continuous contraction resolvent {G,, & > 0} associated with (£, D). They are defined as
follows:

- |

; DA) = {u € D:w — E(u,w) is continuous w.r.t. (-, JH on D} (1.5)
L (—Au, vy = E(u,v) Yuc DA) Vv € D. |
L1
Moreover one has that D(A) is a dense linear subspace of D w.r.t. the norm &/ .
On the other side, for all u € H, G, u 1s the unique element in A such that
EaGau,v) = E(Guu,v) + o(Gout,V)y = (u,v)y YveD (1.6)

and one has that the range R(G, ) € D. Furthermore one can show that the generator and the
resolvent are connected by the relation:

Gout = (x —A) 'u uec DAY =H o=>0 (1.7)
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with R(G,) = D(A).

In addition, the generator and the resolvent are not self-adjoint operators. Let us call the
cogenerator and coresolvent the adjoint operators of A and G,. Moreover, 1n this case, the
generator and the resolvent satisfy the following properties respectively:

(I — A)u, v)y| < const. (I — A)u, u)i,((! — A, v)éf (1.8)

where I 1s the 1dentity operator and

]

(Gru,v)y| < const. (Gu, u);(G v, v)j,. (1.9)

For further details see [8], [11] and [12].

9 . .
From now on, we replace H by the concrete space L(X,m) with the usual inner product
(-, )72 where (X, m) 1s a measure space. As usually we set forall u,v: X — R

uVvi=sup(u,v), wuArv:=int(uv), u uV0, wu =—(uno).

As we mentioned in the Introduction we are interested in considering the dual inequality
of (0.1) which involves the inverse of the generator, i.e. 1ts resolvent, associated with the
initial form (£, D). Let us remark that in this abstract contest it 18 not quite trivial to give the
formulation of the dual problem.

We fix our attention on resolvent G and its generator A. We know that

A:D(A) — L’

so the classical approach consisting of the consideration of the Laplacian as an 1somorphism
with domain given by H} and range H~" does not correspond to this point of view.

Actually one has to take into account the three following propositions which yield some
suitable extensions of / — A and Gy

Proposition 1.6. There exist two injective continuous linear maps with dense range between
. 2 . g,
j:D—L" i:L~— D

where D' is the dual of D.

Proof. By definition, D is a dense subspace of L*, therefore the first embedding is obvious.
Now let us prove that there exists an injective continuous linear map i between L* and D’
such that i(L?) = D'.

Let u be an element of D, hence j(u) € L? and

Vol < H“HE% = (& (u, u))? .

1

. . 4 . . . .
So we can consider i : L= - D’ defined in the following way:

Vfel® i(fy=i:D—R: ifu)=(fju)YuecD.
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Then 7 1s well defined, it is linear and continuous, as

F i@z < Il il < ]zl

which yields
()|
|t}

[ = sup < [Ifllez-

-

3

L;]'

Finally one can observe that the adjoint operator of j coincides with i and 7 is injective so
[ =D

Proposition 1.7.

-

({ —A):DA) — L°

can be extended into an injective continuous linear map from D to D' such that

=

I = A)fllor < KIIfIl L

where K is the continuity constant.
Proof. Forevery f € D(A)

[~ Al = sup{|((d — A,z = gD, el <1}
-f..el_
= sup{!&i(f,9),g €D, |gll .+ <1}
< K|f]l .

o 2
L-’I

and by density the relation found holds for all f € D (see (1.5)).

Proposition 1.8. The operator
G : L” — D(A)

can be extended into an injective linear and continuous map from D' to D.

Proof. For every u € L?, by (1.6),

. 2 X ,
Giu||” = E(Gu, Gyu) = (u, Gyu);»
[al

hence (. Gt
u, i) _
— < |11
‘EI% HG]H!L_L — || ( )||;‘}f
€,

|G u]

where i is the map defined in Proposition 1.6. The thesis follows by density of i(L?) in [)'.
We want to remark now that given a form & and its generator A we have

Ev(u,v) = (I — A, v);2 Yu e DA),v €D
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but one can easily prove that
Eiu,v) = —Au,v) Yu,veD

where (-, -) denotes the duality pairing between D" and D.
Moreover
(I —A)u,v)y=(u,(I —Ayw) Yu,vebD.

We are now in a position to give the definitions of Dirichlet form and non symmetric Dirichlet
form.

Definition 1.9. A symmetric form (€, D) is called a Dirichlet form (on L*(X, m)) if it is closed
on L* (X, m) and if, for all u € D, it results

uTAleD and Ewt Al u™ A1) < E(u,u). (1.10)

Definition 1.10. A coercive closed form (€, D) is called a non symmetric Dirichlet form (on
--], P ]
L~(X,m))if, forall u € D, it results

Ew—u Alu+utAN1)>0
u- N1 eDand __ | (1.11)
Eu+u ANlu—u™ A1) =>0.

Remark 1.11. Let (£, D) be a coercive closed form. Then one has

Ew+u"ANlu—u"A1>0 <« Ew " Al,u—u"AN1)>0
Eu—u"ANlu+u" AD>0 <= Ew—-—u AlL,utn]1)>0.

Proof. See [11] pag. 32 Theorem 4.4,

2. CAPACITY FOR NON SYMMETRIC DIRICHLET FORMS

Let X be an arbitrary locally compact separable Hausdortt space and let m be a given Radon
measure supported on the whole of X. By H we denote the Hilbert space H = L? (X, m), with

. | ! |
inner product (u,v);> = | v uvm(dx) and norm || - || = (,-);, and by (&, D) a coercive closed

form. As before we denote by D’ the dual space of D and by (-, -) the duality pairing between
D' and D. Moreover we denote by Cy(X) the space of all bounded continuous functions on X
with compact support. Co(X) is endowed with the uniform norm ||u|| = supy |u(x)|.

[n this section we shall consider only regular forms 1.e.

Definition 2.1. A pair (£, D) is called a regular form if it possesses a core, that is a subset
Fof DM Cy (X), which is dense in Cy (X) with the uniform norm and in D with the intrinsic
norm.

At this point, given a compact subset £ of X, we ntroduce the following closed convex
subset of D

—D
K:={veD:v>1onE}={veF:v>1onkE}
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D + + . .
where { b represents the closure in the space D, and the following variational inequa-

l1ty

ue K: Eu,v—u) >0 Vvek. (2. 1)

Definition 2.2. The solution u of (2.1) is called the capacitary potential or the equilibrium
potential of the set E.

In the same way we introduce the following subset of the dual space D" of D,

C ={t € D' : Tis apositive Radon measure with

suppt C E, T(E) = 1}
and the following variational inequality
weC: blut—w=>0 VrecdC (2.2)

where b(, T) = (G 1, T) which 1s well defined taking into account Proposition 1.8.

Definition 2.3. The solution L of (2.2) is called the capacitary distribution or the equilibrium
measure of the set E.

Then we consider the adjoint variational inequalities:
nekK: &EWw—ian)>0 VYwek (2.1")

LeC: blt—(,0>0 Vtecdl. (2.2")

M

Definition 2.4. The solution it of (2.1°) is called the capacitary copotential and the solution
lLof (2.2°) is called the capacitary codistribution.

Definition 2.5. The following expression
Cap E = & (u, it) (2. 3)
is called the capacity of E associated with the coercive closed form (£, D).

Remark 2.6. If Cap E # 0, it follows that £\(u,u) # 0 and &, (i, it) # O from (1.2).

Lemma 2.7. The inequality (2.1) is equivalent to

ue K:Ewv)y>0 YveDv>0onkE. (2.4)

Proof. Let u be the capacitary potential, hence £,(u,w) > O forallw € K — u. Sincew € K
—yitandonlytfw+u € K, thenw € Dandw > 0on Easu € K.

Proposition 2.8. If (£,D) is a symmetric form, the solution u of (2.1) coincides with the
unigue element u € K minimizing &, (+,-) on K.
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Proof. Let u be the solution of (2.1), hence for all w € K one gets

Eyw,w) =&+ w—u)u+(w—u))=
Ev(u,u) + 28 (u,w —u) +Ew —u,w—u) > E(u, u).

Conversely let v be any elementof D, v > Oon E, thenu +ev € Kand &, («+ v, u + €v)
> &) (u,u) for any € > 0. From this we get & (i, v) > 0 and, by Lemma 2.7, the thesis.

We observe that choosing

Evu,v) = / VuVvdx Vu,ve Hy(Q)

J {2

one obtains the classic definition of capacity.
Now we are exclusively concerned with the case Cap E # 0.

Theorem 2.9. There exist exactly two paris of elements u,it € K, 10 € C which solve
(2.1),(2.1°),(2.2).(2.2°) respectively. Moreover the following relations hold:

u > (Cﬂj}E)_](f — A u > (CEIPE)_IU f—i}ﬁ (2.5)

in the sense of measures and

CapE > (b(p, (1)~ (2.6)

Finally putting W' = —(I — A)u and (' = —(I — A)it one has

CapE > —u'(E) > 0 CapE > —(\(E) > 0 (2.7)
CapE = (—u', i) = (u, —{1') (2.8)
h(n', 'y = CapE. (2.9)

In order to prove the theorem, we have to recall two basic general results, the first concer-
ning duahity for variational inequalities, the second concerning an integral representation for
positive elements of the space D'.

As for the duality result let A be an injective map from a locally convex Hausdorft topo-
logical vector space X to its dual X', D(A) the domain of A and R(A) the range of A. Let
f X — (—oc, o] be a lower semicontinuous convex function, not identically oc, and let
us consider the following variational inequality

u € D(A) : (Au,v —u) > f(u) — f(v) YveX. (/)

We associate to (j) a dual inequality involving the inverse A~ of A and the Fenchel conjugate
f7 of f, that is, the l.s.c. convex function f* defined on X’ by

") = sup{(v,v) = f(») v e Xt viex.
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Moreover we define A’ = A~ : R(A) C X’ — X. The dual variational inequality associated

with (J) can be written as follows:
't € DAY (ATu" v —u") > [Tty - fT07) W e X ()

We have the following

Proposition 2.10. A vector u of X is a solution of (j) if and only if the vector u* = —Au of X’
is a solution of (jj). Moreover, (j) and (ji) hold if and only if u* = —Au, or u = —A'u”, and
the following identity is satisfied

fu) + f(u”) = (u,u™).

Proof. See Mosco [14] Theorem 1 pag 203.

As for the integral representation for positive elements of D" we recall the following

Proposition 2.11. For all v € D', v > 0 there exists a unique Radon measure \L such that
(v, @) = / pdu Yo € DN Cy(X). (2.10)
J X

Proof. See Biroli-Tchou [3] Lemma 2.11.

Now we are in a position to state the theorem.

Proof. First of all (&£, D) 1s a coercive closed form and K 1s a closed convex subset of D. K
1s a non-empty set by Uryshon Lemma and by the density of Cy(X) ND in Cy(X). Hence, by
Proposition 1.3, applied to J = 0, there exists a unique u € K such that & (u,v — u) > 0O for
all v € K. The same considerations hold for (2.17).

In order to apply Proposition 2.10, we write the inequality (2.1) as (j) taking into account
that u 1s the unique solution of the problem (2.1), that A is the generator associated with (£, D)
so (I — A) is an injective map and that (Proposition 1.7) I — A : D — D’ with D and D’ normed
spaces. Then we can write the inequality (2.1) as follows:

ucD:((I—Aw,v—u)>op(u)—o(v)y YvebD (2.11)

where 0k 1s the indicator function of K, thatis, dx(w) = 01f w € K, dx(w) = 4+ otherwise.
The dual variational inequality of (2.11) 1s the following:

ut €D (Gt vt —u") > 0ty — dp(vt)y Wt e D (2.12)
where the conjugate of 0k 1s the support tunction og of K i. e.

ox(v") 1= 0p(v") = sup{(v",v) — dg(v)} = sup(v", v).
D K

[n the following we denote by (2. 11") and (2. 12") the analogous adjoint inequalities of (2.11)
and (2.12) respectively.
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Now we want to evaluate og(v™). We claim:
ox(v") < o if and only if v* is a negative element of D' such that suppv*® C E.

We recall now the definition of the support of an element v* € D’. The point x; belongs to
suppv™ 1f and only if for every neighbourhood U of xq there exists a function ¢ € Cy (U) N D
such that (v*, @) # 0.

Let us check now that suppv® ¢ E implies that o, (v*) = +ox.

[ndeed let xp be an element of suppv® ¢ E, then there exists a neighbourhood V of xg
such that V C X — E, hence there exists a function @y € Cy (V) M D such that (v™, @q) # 0.
Now, being K a non-empty set, we can put ¢ = ¢, +t¢po where ¢, € K, hence ¢ € K and
o (V') = (v, @) H(VT, ). IF (v, @g) <0, we take t — —oc, and if (v*, @) >0 we take
t — oc, so 1n both two cases one concludes og(v*) > +oc.

Let now suppv® C E. Let us prove that, if v is a positive element of D', i.e. (v*, @) for
every ¢ = 0, then oy (v") = oc. At this purpose 1t is enough to choose ¢ € K and set
@ = @1 +t@o for all 1 > 0 to have again ¢ € K and ox (v*) = (v*, @) +1t(v*, ¢p) from
which ox(v™) = ox.

Let us evaluate now og(v™) for negative elements v* € D' such that suppyv* C E. Actually
let ¢ be a positive element of D, and [@]; : = ¢ A 1. We have

ox(v') = sup(v", @) =sup{(v',@): @ € Co(X)ND,p > 1 on E}
Y
< sup{(v*, [l € Co(X)ND, > lonE} = (", 1)

Therefore, recalling Proposition 2.11, if we set v* = v negative Radon measure such that
supp v C E, we have og (v¥) = ok (v) < v(E).

We shall prove that ox(v) > v(E). We know that £ is a compact set of X, then by Uryshon
LLemma there exists a sequence {1, } € Cy(X) such that, = 1 + i on £. By regularity of the
form, we have that every element of the sequence {1, }, can be approximated by a sequence
{gl} € Co (X)ND, then, for each fixedn € N

| |
I {-: ]jl.r T J” {:: .
P 6k Y P

and gl > 1 on E. We consider now the sequence {¢,} = {g"}. This sequence is such that
0, € Co(X)yNnDand ¢, > 1 on E, hence ¢, € K.

Cl_lik(w) :_} {‘V} qjﬂ) — / (p”d’w — = / ';I:]Hi!{xf
JE JE

where ox = —v. We consider now

| / Ppdox — a(E)| =
JE

‘/ Ppdo — / d‘x| = | /([Pnr — l)dﬂi‘ <
E oI JE

| 2
/ ‘(pn o l|{f{l‘£ E /(|q)r: _ ll)n! + |ll)” _ l‘dﬂi) E E‘l(E)
JE JE
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Then — =) < x(E) — [ @ado < 2UE) and — | @ndot > —o(E) —29E) Tt follows

1 n n

2x(E)
n

og(v) = v(E) —

and finally, taking the limit as n — +o0, o (v) = v(E). Now we have found that

a - .
") v(E) it v7 = v negative Radon measure, suppv C E
Oy )= <

| -+ oc otherwise.

We have obtained that in the variational inequality (2.12) the set D’ can be replaced by the set

C' = {1’ € D": negative Radon measure, suppt’ C E}
and (2.12) becomes
uwedd b -y > u(E -T(E) Vel

Therefore, by Proposition 2.10 and by the fact the u[it] is the unique solution of (2.11) [(2. 117)]
(since u|it] is the unique solution of (2.1) [(2. 17)]), we have

w = —(I — A)u is the unique solution of (2.12) and (', u) = W' (E)

X (2.13)
(' = —(I — A)ir is the unique solution of (2,12") and ({i’, t) = {'(E)].
Moreover

W(E) = (—(I — Au,u) = —&(u,u).
g R o (2. 14)

[W(E) = (= — A, u) = —E(u, )]

Now we have to prove that the solution p of (2.2) 1s given by

W= (W(E) ", (2.15)

that is well defined by Remark 2.6, since Cap E # 0. We put T = (1W/(E)) ™' T where T’ € '
such that 7 (E) = u/(E). The measure T is an element of C, conversely, if we put v =
(E)T for all T € C we have that v/ € " and T(E) = y/(E).

We know that i’ is the solution of (2.12), then it is the solution of

Wedl WE)Y bW v -u)>0 vt el :TE =WE (2.16)
then 1 = (1 (E))~'u’ solves (2.2). Obviously, by analogous considerations, {i = ({{'(E)) ™"
(" is the solution of (2.2).

We can now point out that, by (2.1) [(2.17)] with v = @t|v = u]
Evu, )y > E(u,u) [E(u,it) > & (i, it)]

which implies the relations (2.7) and (2.8) 1. e.

—Cap E = —E(u, i) < =& (u,u) = W(E)
[—Cap E = =& (u,it) < =& (i, i) = L' (E)]
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and
Cap E = E(u, ity = (I — Au, ity = — (', it) = (u, (I ﬂ)fij = —(u, ().

Finally (2.5) and (2.6) hold, indeed

= (W(E) "W =—WE) U -Au>(Cap E)"'(I — Au

A A (2.17)
Hl (W(E) ' = —({(E)~ 't — Ayit > (Cap E)~ ' (I — A)ir]
and
by, [V) = (W (E)(WE) (U —A)W, {) > 018
(Cap E)” "(Cap E) '(—u, {{") = (Cap E)” |
then

Cap E > (b(u, (1))~ ".

We can note also that (2.9) hold:

(', 1)y = (G, )y =(U-A) "W, i) =(~u, (') = Cap E.

Corollary 2.12. The capacitary potential can be characterized as the solution of the following
system: u € D such that

u=>1 onk
J Eiu,v) >0 Yy = 0suppy N E # ()
Ei(u,v)y=0 Yvsuppy C X — E
S u—1)=10

Proof. Let u be the capacitary potential. Then, since u € K, u > 1 on E and, by Lemma 2.7
we have that £, (u«,v) > O for all v € D such that v > 0 on E so suppv E # (). Moreover,
by Theorem 2.9, we know that supp(/ — A) u =supp(—') C E, then if suppv C (X — E), it
results &, (u,v) = 0. Again by Theorem 2.9, W (F) = (', u) = (—(I — A) u, u), but W' (£)
= [ du = (W', 1) = (= = A)u, 1) and this implies ((/ — A) u,u — 1) = 0.

Cnm'ur%]y if 1 1s a solution of (2.19), u € K by the first relation of (2.19); furthermore
fixed v € K, itresults v — 1 > 0 on £ so, by the second relation of (2.19). (I — A) u,v — 1)
> () and

uc K:((I—Au,yv—u)y=0(—-Au,v—-1) —((I—-Au,u—1)>0 VYVvek
by the last relation of (2.19).
Corollary 2.13. If (£, D) is a non symmetric Dirichlet form, the following relations hold
O0<u i<l (2.20)

and
Exu,u) = E(u, ity = (i, it) (2.21)
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Proof. First of all, we note that, if (£, D) is a non symmetric Dirichlet form, then &, (-, ")
=& (+,+) +a (-, -) 1s a non symmetric Dirichlet form too.

O0<&Ew—u" ANl u—u" AD=Ewu—u " AD)—=Ew ANl,u—u" A1.

Actually, (£, D) 1s a non symmetric Dirichlet form, so by Remark 1.11 we have &, (u™ A 1,
u — ut A 1) > 0,and by the fact that u™ A1 € K, & (u,u — ut A1) < 0, hence
0<&E@W—u"ANlu—u"A1)<0. This implies u = u™ Al, thatis O < u < 1 on X and
u = 1 on E. Interchanging the two entries of & and replacing u by &t we obtain 0 < &z < 1 on
Xand i = |1 on E.

Now we have to show that

Evu,u) = Ey(u, i) = E(in, it).
Indeed we know that u = it = 1 on E, sou — it = 0 on E hence, by Corollary 2.12,
Evuyu—u)=0and E(u —it,it) = 0

that 1s respectively
Efu,u) = E(u, i) and E (i, i) = E(u, ).

Corollary 2.14. Let (£, D) be a non symmetric regular Dirichlet form. Then the following
relations hold:

= (Cap E)y Y1 - Au (L= (CapE) (I — A)ii (2.22)

and
(b, ()~ = CapE. (2.23)

Proof. It is an easy consequence of Corollary 2.13 and of inequalities (2.7), (2.17) and (2.18).

3. EXAMPLE

Let us give a simple example related to capacity for a non symmetric Dirichlet form. We
shall see that the potential and copotential are indeed different, with values in [0,1] and (2.21)
holds.

Let X = Q = (-1, 1)and m = dx Lebesgue measure on Q. Let a;, a> € R™ such that

(ay > a>C (3. 1)

where ¢ 1s Poincaré constant, that is the constant that appears in Poincaré inequality:

Hu\i% < &llil|,>: Vu € HyC L.

Let us define the linear operator L on L (Q, dx) by

Lu = —ajii — axitr, u € D(L) = Hy(Q) N H(Q). (3.2)
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We shall show that the form (&, D) associated with L 1s a non symmetric regular Dirichlet
form.
L is negative semidefinite: for all u € H} N H*

g 3| 3 5
- . ) .
(Lu, 1) = —a uu — s U = d U — a» Ui (3.3)
—1 J—| J—1 J—1

so, by Holder inequality

v ] 2 :
—Eig/ Uit > —as / it / w| > _f"EH””HI']H“HH" — _HEHHHiﬂ
N N J J ()

and by (3.1)

a a -
(Lu,u) > %Hu”i' — as]|ull;, = (Th - fsg) |y = 0. (3.4)
C (0 () C 0
The associated form (£, D) with —L 1s defined as
Y y
E(u,v) = (Lu,v) = a / uy — - / wy D= H{',(Q). (3.5)
J—1 J—1

We can observe that D 1s a dense linear subspace of H = L*(Q), dx). that the form satisfies the
weak sector condition and that 1t 1s not a symmetric form.

By Holder and by (3.4) we obtain the equivalence between the intrinsic norm and the norm
| |l then D is complete with respect to the intrinsic norm, so (£, D) is closed and (€, D) is

a coercive closed form on L* (Q, dx).

(£, D) 1s a non symmetric Dirichlet form:
we know that if u € Hj, then u™ A 1 € H, (see, for example, G. Stampacchia [16]). By
simple calculations one easily checksthat & (u +u" Al,u—u" A1) >0and € (u—u™ A,
u-+utAn1)y>0.

By Corollary 2.12 we can look for the capacitary potential as the solution of the following
system:

(I + L)u=0onQ)

u=1lonk
u=10on 90
where £ = [—% ,],,:] We can divide the system in two Dirichlet problems on (—~ I, — :1;) and
(%, 1)., sinceu = lonE = [—%, %} We have
( ]
ajii + aru —u =140 on (—l, _E)

ﬁu —1 = ] (3.6)
2

Lu(=1) =0
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whose solution is given by

E,—}u.'!.' .-}'n].\'
u(x) = - + ™ v (3.7)

oy )
e~ T —eT N T e N

where

—dy + \/a% + 4a o —y — \/a% + 4da
2a - 2a

s0, A, A2 € R, since ay,a> > 0. The second problem is

( |
ayit + artt — 1 = 0 on (5, l)

Al =

(3.8)

< U i — ] (3.9)
5| =
X Lf(]) =
whose solution 1s given by
,:l\[.".' .;'k_}-l
e P
ux) = = — (3.10)
{‘JR—TI —E_%_!_}"' {J% _E;_%—?—}n]

To evaluate the capacitary copotential we have to consider the adjoint problem:

1
—ayit + aru + u = 0 on (—l,——)

2
( 1) (3.11)
ul| —= | =1
2
L u(—1)=20
whose solution 1s given by

o p— A1t o= Aax
ux) = —; - + —; o (3.12)

6T —e TN T T3 N
(. |
—a it +au+u=0 on E,l

L (3.13)
4 > —

lu(l) = ()

whose solution 1s given by

and

e

(1) = e (3. 14)
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Finally one gets

Ny LR
¢ ¢! , el l
— —1,-)
r_x_"]—e’_‘_m' ( - f% e Lo
. | 1
u(x) = \ 1 =3, 5] (3.15)
RYE A2 [ 1
N o + Y (3: ll
N e 2T ¢T —¢T T A B
and s — A |
iy ‘ R . T Ay { __‘-.| \ __l‘n_i)
e 2 —e 2 71 ¢l —¢ 277
~ . . I ]
i(x) = < 1 —3,5] (3.16)
— A — A ] T
N g T N T (}]]
e I —e 2 —X ¢ 2 —e 1

We can notice that u # it with u(x) € [0, 1] i(x) € [0, 1] Vx e [—1,1].

Moreover, we know that u = it on £ while w15 solution of (/ + L) « = 0 and & 1s solution of
(I+Lyit =00onQ —E, s0 (I+L)u,u—i)=0and (u— o, (I+ L)) = 0, hence respectively
Ey (uyu — ity =0and &, (u — it, it) = O that implies

ErQuyu) = E(u, i) = & (i, it)

that 1s (2.21).
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