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GEOMETRIC-COMBINATORIAL CHARACTERISTICS OF CONES

J. CEL

Abstract. /1 is shown for a proper closed locally compact subset S of a real normed linear
space X that kerg$ = (){cl affBY : z € regS}, where keryS is the R-kernel of S, regS denotes
the set of regular points of S and BX = {s€ Sz isR-visible from s via S}. Furthermore, it
is shown for a closed connected nonconvex subser S of X that kergS = ({convBX: ; € D},
where D is a relatively open subser of S containing the set IncS of local nonconvexity points of
S.If Xis auniformly convex and uniformly smooth real Banach space, thenthe first of these
formulae is shown to hold with the setsphS OF  spherical pointsof §in place of regS, and
the second one for a closed connected nonconvex set S. For a connected subset S of a real
topological linear space L with nonempty sIncS, the set of strong local nonconvexity points
of S, itis shown rhar ({ affAfo : z eslneS} C gkergoS, where gkergoS isthe quasi-R°-kernel
of S and Afo = {seclS:zisclearly R°-visible from s via S}, and that the equality holds
provided, in addition, S is open. In conjunction with an injinite-dimensional version of Helly s
theorem for flats, these intersection formulae generate Krasnosel skii-type characterizations
of cones and quasi-cones. All this parallels the research done recently by the author for
starshaped and quasi-starshaped sets.

1. INTRODUCTION

We start with some definitions and terminology. Let S be a nonempty set in a real topological
linear space L. For pointsy and x inclS, yisvisiblefromx viaS$ if and only if the openline
segment (X, y) liesinS. S isstarshaped if and only if every point of § isvisiblevia § froma
common point g of §, and the set of all such points q is called the kernel of § and denoted by
kerS. S isacone if it isthe union of a nonempty set of closed halflines having the common
endpoint called the apex of the cone and the set of all such apices, denoted by kergS, is called
the R-kernel of S. For distinct points x and y in clS, y is R-visible (R°-visible) from x via §
if and only if there isin$ aclosed halfline R(x, y) (an open halfline R°(x, y)) emanating from
x through y. We extend these definitions to the case when y and x coincide and require then
that S contain some closed (open) halfline emanating from x. Similarly, y in clS is clearly
R-visible (clearly R°-visible) via S from x inclS if and only if there is some neighbourhood
N of y such that each point of S NNV isR-visible (R°-visible) from x via S. Following [ 11], a
nonempty set S inL issaid to be quasi-starshaped if and only if there is some point qinclS
such that the subset of points of S visiblevia$ from g is everywhere dense in$ and contains
intS, and the set of all such points ¢ is called the quasi-kernel of S and denoted by gkers.
Furthermore, S iscalled aquasi-cone if and only if there is some point ¢ in clS such that the
set of points of S which are R°-visible via S from q is everywhere dense in S and contains
intS, and the set of all such points q is called the quasi-R°-kernel of S and denoted by gkergosS.
It is easily seen that for any §in L, kergS C gkergoS C qkerS and kergS # @, gkergoS # @
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are flats in L, for S # L, contained in bdryS. Moreover, if S is closed, then kergS$ = gkergoS.
Following [22, Def. 4.2], apoint s in clS is said to be a poinr of weak local convexiry (WiC
point) of Sif and only if there is some neighbourhood N of s such that for each pair of points
X,y in SN N, the closed line segment [x, y|liesin S. If S fails to be weakly locally convex
at g inclS, then ¢ iscalled a point of strong local nonconvexity (sinc point) of S. Moreover
[22. Def. 4.31, apoints inclS is said to be a point of strong local convexity (sl¢ point) of Sif
and only if SN N isconvex for some neighbourhood N of s. If Sfails to be strongly locally
convex at g inclS, then ¢ is calleda point of mild local nonconvexity (minc point) of S. wlcs,
sIneS, sleS and mineS will denote sets of wic, sinc, slc and minc points of S, respectively.
By [22, Th. 1.5], intS C wicS and slncS C bdryS. If H isa subset of L, then a point s in
cl(SnH)iscalled an H-wlc (H-sinc) point of Sif and only if SN H isweakly locally convex
(strongly locally nonconvex) at s. For L localy convex, wicS = slcS and slncS = mincS
are called for simplicity the sets of local convexity points (Ic points) and local nonconvexity
points (Inc points) of S, and denoted by IcS and IncS, respectively. A pointsin Siscaled a
regular point (reg point) [22, Def. 6.4] or a cone point of S| 14] if and only if there exists a
closed halfspace in L which hass in its bounding closed hyperplane and containsall points
visiblefrom s via S. A real normed linear space X is said to be smooth if its closed unit
ball is smooth [22, Def. 7. 5] X is said to be wniformly convex if for each 0 < e < 2 there

exists >0 such that 1- || 3(x+y) |> 6whenever |x ||=||y |= 1 and || xy |[> ¢, and
uniformly smooth if for each € > O there exists 1> 0 such that 1 — || 2(x + ) [ <e/x = 1|
whenever || x ||=]|y[l=1and | x y]|<n. If X is smooth, then, following |3], [4] and

[9], a point s is caled a spherical point (sph point) of Sif and only if there exists in the
complement of S, ~ S, some open ball withs lying onits boundary. reg$ and sphS will denote
sets of all reg and sph points of S, respectively. By the dimension (codimension) of asubset
A of L, we mean the dimension (codimension) of affA, the affine hull of A. (xy), (xy2), (xy)-
and (xyz), will represent respectively: astraight line determined by two distinct pointsx,y, a
two-dimensional flat determined by three noncollinear points x, y, z, a two-dimensional closed
half-flat determined by (xy) and containing 7 ¢ (xy) and a closed halfspace in aff{x,y, z,u}
determined by (xyz) and containing i ¢ (xyz). For zin S C L, we denote S-: = {s € S: z
isvisible from s via S} and B = {s € S: ;isR-visble from s via S}, and for 7 in clS,
AF ={y¢ S ;isclearly Rvisible from s viaS} and A% = {s € clS: zis clearly R°-visible
from s via S}. Observe that BX C - and A% C AR®.

A central theorem of combinatorial geometry due to Krasnosel’skii [19],] 12, E2],[22, Th.
6.17] states that a compact subset S of R is starshaped, i.e.kerS # ¢ or dim kerS > 0 if and
only if every d +1boundary points of S are visible via straightline segments from acommon
point in S. Since its discovery in 1946, variousrelatives and generalizations of this criterion
have been investigated in detail by many authors (cf.[2],[12,E2],18],120]). Recently, making
use of closed halflines in place of line segments, the author has extended Krasnosel’skii’s
theorem to cones in R¢ [3]-|7] and exhibited a geometric similarity between cones and
starshaped sets (cf. [7] and [8]). In the present paper, we investigate various geometric and
combinatorial characterizations involving boundary points and local nonconvexity points for
cones in topological linear spaces. This parallels a research done very recently for starshaped
sets [8]-[ 11]. The geometric characteristics of cones are representations of kergS (gkergoS)
in the form of intersections of affine hulls of R-visibility (clear R°-visibility) sets of selected
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boundary points of S. Two such formulae have been previously established in [7]. The
desired combinatorial characterizations of the codimension of kergS or gkergoS follow then
immediately from Helly’s theorem for flats. The reader is referred to [3]-[ 1 1] for details
concerning notation and terminology.

2. PRELIMINARIES

We collect here several lemmas useful in proofs of the main theorems in the next sections.
Thefirst of them isavariation of Helly’stheorem for flats.

Lemma 2.1 A nonempty family G of flats in a linear space has a nonempty intersection
of codimension at most ¢, where 0 < ¢ = max,eg{codimg} < ¢ < oc, if and only if every
subfamily of ¢ — ¢ + 2 orfewer members of G has a nonempty inter section of codimension at
most c.

Proof. We establish the sufficiency of the condition. Fix thus an integer ¢ and let g, € G
be such that codimgo = g¢. We proceed by induction on g. First let g = c. For every
g € G, the imposed intersection condition implies ¢ = codimgo< codim(gy N g) < ¢, whence
g0 = goMNg,s0 gy = [,eg 9 and, in consequence, codim() ;9= codimg = C, as required.
Let further ¢ > 1. Assume the truth for all numbers greater t?1an g > 1 andconsider the given
family G satisfying the intersection condition. Define afamily ¢'= {gon g : g € G} and
anumber g = maxgcg { codimg'}. Of course g > ¢ and the imposed condition implies
g <c.If ¢’ =g, then theinequalities g’ > codim(go N g) > codimgo = g imply go=goN @
for any g € G, whence codimﬂgeﬁ g =codimg = ¢ < ¢, as required. If g > g, then, by
assumption about G, every subfamily of ¢ = ¢ + 1 or fewer members of G’ has a nonempty
intersection of codimension at most c and ¢ = g + 1 > ¢ — ¢’ + 2 so that, by the induction
hypothesis, codimﬂgeg g= codimﬂg,eg, g < cwhich proves the assertion for g.

Lemma 2.2. Let S be a closed locally compact subset of a real normed linear space X and
p, s distinct pointsin X, s€ S. If sisarelative boundary point OF SN R(p,s), thenin every
neighbourhood of s rhere is a regular point z of S such that p ¢ cl affBX .

Proof. By assumption, there exists a number v > 0 such that $N clB(s, €) is compact for all
0< e <y. Wefix such ¢ > 0 arbitrarily and assume that p is the origin of X. The subspace
Y =d aff((SNclB(s, €)) u {p})is compactly generated, so that arguing asin[9, Lemma2.21,
it can be smoothly renormed.

Suppose first that s is a relative boundary point of § N [p,s]. Asin [9, Lemma 2.3],
we produce then in Y an open v-ball By(Ags,v) with respect to a new smooth norm with
the closure contained in B(s, 5) and with 0 < < 5 digoint from § and such that ; € §n
clBy(Aos, V) # 2 and the unique closed hyperplanehin Y supporting By(Ags, V) at z does not
contain p. However, the smoothness of By(\ys, v) at z implies easily that cl aff(Y 1 BX)Ch,
so that p ¢ d aff(Y N BX). On the other hand, easily BXC S.C Y, sothat p ¢ cl affB¥. By the
Hahn-Banach theorem [ 18, §17.6.(1)], there isin X a closed hyperplane $ containing b and
§. liesin this closed halfspace determined by § in X which does not contain p, so that ; €
regS, and the proof in this case isfinished.
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Now suppose that § is a relative boundary point of S N R(p, s) ~ [p, s) and let € > 0
be a number for which By(s, E) C B(s, €). Hence, there is a point u € By(s, €)N ~
SN (R(p,s) ~ [p, s]) and a number 6 > 0 such that clBy(u, 6) C By(s, €’) ~ S. Fix a
point py € (p, $) N By(s, E)). Since SN clBy(s, €') is compact and s € (py, u), there exists a
largest 0 < Ao < I such that the closure of By(po+ Aot po), Agd), the homothetic image
of By(u, 6) with respect to py, intersects S. Let 7 belong to this intersection. Then if
C = U/\(,</\<l By(po + A(u —po), Mod) C~ S, then z belongs to the boundary of C and let § be
a closed hyperplane in X not containing (ps) and supporting C, and also By (po-+Ao(it—po), Aod)
at z. The smoothness of Y implies easily that § n R(p, 5) C [po, u), and that cl affB* C .
Consequently, p ¢ affo and :z € B(s, €). The Hahn-Banach theorem implies that z € regS
and the argument is finished.

Lemma 2.3. Let Sbe a closed subset of a real Banach space X which is uniformly convex
und uniformly smooth, and p, s distinct pointsin X, s € S. If s is « relative boundary point of
SMR(p,s), theninevery neighbourhood of Sthere isa spherical point z of Ssuch that p ¢

ol affBX,

Proof. Select in X an arbitrarily small open u-ball B(s, 1) centered at s and assume for
simplicity that p istheoriginin X.

Let first s be arelative boundary point of S [p, s]. Then the argument in[9, Lemma?2.5]
produces an open ball B(x, || z=x ) C~ Swithx close enough to [p, s] such that p andx lie
in the same open halfspace determined by the closed hyperplane §). supporting B(x,| z— X||)
at z. The smoothness of X impliesthat cl affBX C ©y_, whence p ¢ cl affB~, as desired.

Now suppose that s is a relative boundary point of SNR(p, s) ~ [p, s). Hence, there is a point
u € B(s, )N ~ SN (R(p,s) ~ [p,s ))and anumber 6 > 0 such that clB(u, 6) C B(s, u) ~ S.
Fix a point py € (p,S) N B(s, 1. Since s € (py, u), there exists a smallest 0 < Ay < 1 such
that S N B((1 = A)pg + Au, Ad) = @ for all Ay <A <1, where B((1  A)po + Au, Ad) is the
homothetic image of B(u, 6) with respect to p,. Asin [ 14, Th.] and [9, Lemma 2.51, for
any nonzeroy € X let f; denote the linear functional of norm one which supports the ball
B(o, ||y ||y aty. Then f.(y) =| y | and the hyperplane supporting B(x, | z = x |)) at z is
given by §.=x +f_'(]|z =x |). By construction, for any 0 <\ <\, close enough to A,
wehave ST B((1  A)po + Au, Ad) # @. Since X is uniformly convex, [21, Cor.] (cf. [ 13,
Th.]) impliesthat for any fixed® > 0 we can find a point x with||x— (( 1= A)py + Au) || <8
such that x has the nearest point zin S. By choosing 6 small enough, we can also assume that
2= ((1=Npo+Au) || <AS. Since || z— (1 =Ap)po+Aou) | > Ao and || z—((1 =N)po+Au) ||
< Adisequivalent to || z+ (A\y = A)(u = po) = (( 1= N)po + Aout) || < A& < Agd, we have
|| (z+A 1 (u=po))—((1=Ag)po+Agu) [|= Aod forsome 0 < Aj < Ag—A,i.e. W = z+A;(u—pp) €
bdryB((l - 7\())[)() + )\()M,}\()é).

Furthermore, let B(o, x) be the homothetic image of B(u, 6) with respect to p,, wherey =
511 poll /Il 4 -po|. The smoothness of X implies that B(o, x)and B(( 1 Ap)po+ Ayu, Agd)

lie in the different open halfspaces determined by the hyperplane $,, = (1 — Ao)po + Aou +
»:—]((l—/\“)/)<)+)\uu)()\06)’ so that infﬂlllgxﬁ\'—((l —)\(1)170+>\(1H)(Z)

Zﬁrf((l—/\u)ﬂnﬁ-)\oll) (P()) > )\06 +fw—((l —/\(1)1J1)+)\¢)r1)((1 - )\())17() -+ Aou). But
Infj < xfie—=Ropot A (®) = = SUPJ <y =1 = Mgyt A (D] = =X sO that
x 2 Mod A+ fu—=roporren (1 Ao)po + Agu).
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Finally, since X issmooth, 7 € sphS and cl affBX C §_. Ifp¢ §)_, then we are done, assume
the contrary, i.e. ). passes through the origin for every point z arising in the way described
above. This means that o € x +f_\(|| z =x [), i.e 0 =[[z = x | +f._(x). Since X is
uniformly smooth, it is uniformly strongly differentiable [ 18, §26.10.(6)], so that for A — A,
and 6 — O, implying 7 — wand x — (1 = Ag)po + Aou, 0 =|| 7 = X || +f:_.(x) becomes
arbitrarily close to Agd + fiu— (1 = xgpo+r00 ({1 = Ag)po + Aotr) < —1u, a contradiction finishing
the argument.

Lemma 2.4. Let She « closed connected nonconvex und locally compact subset of a real
normed linear space or « closed connected nonconvex subset of a real Banach space which
is uniformly convex und uniformly smooth. Let x € (.., dl affB%, where T is the set of al]
regular or spherical, respectively, points of Sin a relatlvely open subset D of Scontaining

IncS, nnd let[a, b] CS.Ifpoints x, a, bare noncollinear, then there exists a number 6 > 0 such
that S0 conv(R(x,a) JR(x, b)) U, ¢, B0, 6) consists exclusively of conv(R(x, a) u R(x, b))
-lc points of S. Hence, if, in addition, [u, a] U [g,v] C S for some points « € [X, a] and
V €R(x,aq)~ [X, @), thenconv([u,v] Ula,b]) CS.

Proof. By Tietze's theorem [22, Th. 4.4], IncS is nonempty. Suppose, to reach a contradiction,
that no such 6 > 0 exists. Since the segment |«, b] is compact and the set of conv(R(x, a) U
R(x, b))-Inc points of §is closed, there must be a conv(R(X, @) U R(x, b))-Inc point y of § in
la, b]. Obviously, y £ IncS C D, so that there exists a number € > 0 such that B(y,e)C D and
X ¢ clB(y, ¢). Since'y isa conv(R(X, a) U R(x, b))-Inc point of S, there exist pointsr, § € SN
conv(R(x, @) U R(x,b))N B(y,e) such that [r, s]Z § and additionally, R(x, r)N [a, b] CB(y,€)
and R(x, s) Nla, b] C B(y, ¢). Select points € [r, 5] ~ Sand #y € R(x, t) N[a, b]. Let
w be a point of S lying on [f, {] as close as possible to /. Then w is a relative boundary
point of S N R(x, t), so that Lemma 2.2 or Lemma 2.3 implies that there exists in B(y, ¢) a
regular or spherical, respectively, point z of S for which x ¢ cl affBX, a contradiction. This
establishes the first assertion. Now suppose that [u, a] U [a, V] C S for some pointsy € [X, a]
and v € R(x,a) ~ [X a). Define a set P = {d € [u, v] : conv{d, a, b} C S}. It follows
easily from the first part of the proof above and [9,Lemma 2.7] that P is relatively open
in [u, v]. By closedness of §, it is also relatively closed in [u, v], whence P = [u, V], i.e.
conv([u, V] U[g, b]) CS§, as required.

Lemma 2.5. Let S be ¢ nonempty subset of a real topological linear space L. For distinct
points x and p inclS, if pisany limit point of the nonempry intersection wlcS N R°(x, p) and
is clearly R°-visible fromx via§, then itis a wic point of S,

Proof. Theresult is simply a reformulation of [7,Lemma 2.2] for R- visibility and its proof is
therefore omitted.

Lemma 2.6. Let § be a nonempty subset of a real topological linear space L. If the point
q € sIncS is clearly R°-visible via S from every point of a finite subset K # {q} of clS, then
g €relint(slncSN aff(K u {q})). A parallel statement holds with clear R-visibility in place of
clear R°-visibility.
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Proof. The argument, included for completeness, is the same for both kinds of visibility. We
apply theinduction on dim(KU {g}) = m. The case m = | follows immediately from Lemma
2.5. Assume the truth for all sets K' C cl§ with dim(K’ U {qg}) =m = 1> 1 and consider
a set K Ccl§ such that dim(K U {qg}) = m There exist in K points xi, . . ,x, such that
dim{g,x;,...,x,} = m Observe that points ¢, x|, . . . ,x, are parwise distinct and affinely
independent, so thatdim{q,x,...,x, } = m = 1 with x, € aff{g,xi,..., x,_1}. By
the induction hypothesis for the set {x;,. .. x,_}, g € rel int(slncSM aff{qg, x;, . X -1 }).
Since dim(K u {q}) = m, we have aff{q,x1, ... x,} = af(K u {g}). By [22, Th. 1.8,
identify aff{q, x, ..., x,} in the topology induced from L with R" and select a relatively open
ball B in aff(K U {q}) centered at q such that ., ¢ cIB, B = BN aff{q,x;, ..., x,—1}CslncS
and each point of S N B is clearly R°-visible from x,, via S. Lemma 2.5 and the closedness
of slncS inclS imply easily thatB N Upe;; R(x,, , p) contains a relative neighbourhood of q in

af(K u {g}), whence q € rel int(sIncSN aff(K u {q})), as required.

Lemma 2.7. Let S be a nonempty subset of areal topological linear spacel, ;< clS and x €
affAR® ~ {z} # 0. Ifz € § or zjs alimit point of the nonempty intersection SN R°(x, 7),
then 7 € relint(S N R°(x, z)). The same holdsforx ¢ affA* ~ {7} # @.

Proof. Since A¥ C AR® itis enough to justify the first assertion. Let x € affA%” x# z. By[7,
Lemma?2.1], there is asmallest subset of n+ 1 affinely independent pointsui, . .., i, ; in AX°
suchthatx € aff{uy, ..., u,.}.1f n =0, thenx = u;, whence R°(x, 7) C S and we are done.
Hence,n > landx ¢ {uy,..., 1} 1f n =1, then, in view of x € (uju,), a simple planar
argument reveals that z € rel int(S N R°(x, 7)) and we are done, so let n > 2 in the sequel.
By [22, Th. 1.8], we identify aff{u,.. . , u,+1,z}inthetopology induced from L with R" or
R"*! depending on whether or not z € af{ u;, . , u,, }. Let B be afull-dimensional closed
ball inaff{u, ..., u,+1,z} centered at z such that each point of S N B is clearly R°-visible
fromu,, ..., u,. viaSandx ¢ B. Now if ve SN BN R°(x, z), then the inductive argument
of [3, Lemma2.8] or Lemma 2.6 showsthat v e rel int(SNaff{u;, ..., u,1, z}), whenceve
rel int(S N R°(x, 2)), i.e. S is relatively open in B ™ R°(x, z). On the other hand, if (/, v") is
a nonempty open segment in S 1 B 1 R°(x, z), then the argument in [4, p. 366] reveals that
[V', v']1C SN B R°(x, 7). Consequently, B NR°(x, z)C S, as desired.

Lemma 2.8. Let S be a subser of a real topological linear space L with sincS nonempty,
X € MN.comes affAfO and [a, b] CS If points x, a, b are noncollinear, then [a, b] consists
exclusively of conv(R(x, a) U R(x, b)) - Icpoints of S. If, moreover, [u, a] u [a, v] C S for some
points u € [x, a] and ve R(x, a) ~ [x, a), then conv((u, v) U [a, b)) CS.

Proof. Suppose that there isin [a, b] aconv(R(x, & u R(x, b)) -Inc point y of S. Obviously,
y € slncS, so that x € affAfO,x #y. By |7, Lemma 211, there is a smallest subset

{uy, ..., u,41}of affinely indépendent pointsinA(?osuchthatx caf{u,...,u,—}.LetN
be a neighbourhood of y in L such that each point of S N N isclearly R° -visible via S from
points u;(i=1,... ,n+1). Hence, for every point zin SON we have x € aff{u, ..., u, 11} C

affAfo. By [22, Th. 1.8], identify aff{x, a, b} in the topology induced from L with R? and
select arelatively open ball B C N in aff{x, a, b} centered at y such that x ¢ clB. A simple
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application of Lemma2.7 yields BN J, ., ., R(x, ) €S, whenceyisaconv(R(x,a)UR(x, b))
-lc point of S, a contradiction which estabhshes the first statement.

Now, let in addition [, a] U [a, v] C Sfor some pointsu ¢ [x, a] and v € R(x, a) ~ [x, a).
Define a set 7= {r € [u, V] : conv((t,a] U [a, b)) C S}. Since ¢ € T, T is nonempty. It
isimmediate that 7' is closed in [y, v] and it remains to show that 7 is open in [y, v]. To fix
attention, suppose that € (1, ] # @. The argument as in the first statement above shows
that [f, b] consists exclusively of conv(R(x,a) UR(x, b)) -Ic points of S. Since|, b]is compact,
there must exist a point ¢’ € [u, ) such that no conv(R(x, a) U R(x, h)) -Inc point of S lies
inconv{, t, b} ~ [',b]. Thus, by [10,Lemma 2.21, conv{t’, ¢, b} ~ (#',b) C S implying
(', a] CT. Consequently Tisopenin[u,v], sothat T=[u, V], i.e.conv((u,V) U[a,h)) CS§,
as required.

Lemma 2.9. Ler Sbe a proper subset of R.If ¢ € bdryS is clearly R -yisible via S from a
d- elernent set {x|, ., x;} C clS of affinely independent points, then g € aff{x;, . . ., x4}.

Proof. The statement is simply a reformulation of [5, Lemma 2] for clear R-visibility and its
proof is therefore omitted.

Lemma 2.10. If S is a connected set in RYd > 2) with IncS nonempty, then g =
max. elms{(,odllﬂAR b > 2

Proof. By Lemma 2.9, LOdlmAR > 1 for all z € IncS. Assume, to reach a contradiction,
that codimA®” = 1 for all z ¢ IncS. Fix any point ; € IncS. By assumption, it is clearly R°
~visible via S from some affinely independent points X[, .-, XginclS. By Lemma29, ; ¢
aff{xy, .. x,}. Let B. be an open ball in RY centered at ; such that each point of S N B.
is clearly R° -visible viaSfrom x;,...,x,. By LemmaZ2.9, there are no boundary points
of Sin H;u H,, where H; and H, are open halfballs in B. ~ aff{x|, ... x,}. If some
Hi(i =1,2) contains a point of S, then H," bdryS= @ implies f, C S. Besides, Lemma
2.9 applied toaff{xy, ..., x;} inplace of R’ implies that there are no relative boundary points
of Sin B.Naff{x;,... x;}. Hence, if B.Naff{x;, ... x,} containsa point of S, then B.N
aff{x;,..., x;} €S But ; € IncS, i.e. there are points r, s of Sin B.= H, u H, U (B.N
aff{xy, ..., xs}) such that [r, s| £ S, which by what haSjUSt been established, can happen
only when one of points r, s liesin H; while the other in H,, whence H,u H, C S and B.N
aff{xy, ..., xs} C~ S. Now let us define a subset K of aff{x, ..., x,;}as follows. A point
¢ belongs to K if and only if g < bdryS ~ S and for some open ball B, in R? centered at
q, B, ~aff{x;,... x;} C Sand B,Naff{x,... x;} C~ S Sncez € K, K is nonempty.
Of course, K isrelatively openinaff{x,,...  x;}. Now suppose that a point « € clK. Since
K CIncS and IncS is closed in bdryS, u € IncS, whence, by initial assumption, there isin
clS a d- element set {y, ..., y,} of affinely independent points from which u is clearly R°
-visible via S. Let B, be an open ball in R? centered at i such that each point of SN B, is
clearly R°-visiblefrom y;, ..., y,viaS. Sinceu € c|K, there isin B,Naff{x, ..., x;} a point
w € K and an open ball B,. in R? centered at w such that B, ~ aff{x;, ... x;} C S Letus
say that B, C B,. If some of points y; ...y, lay beyond aff{x,, .. x,}, then the clear R°
-visiblity of SN B, from it via Swould imply w € S, a contradiction. Hence, aff{x;, ., x;} =
aff{y, . ., v}, whencein the same way as at the beginning, B, ~ aff{x,, ..., x,} C Sand
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B,N aff{x),... ,xs} C~ §. ie. u € K. Hence, K is a nonempty open-closed subset of
aff{x;, ., xs},sothatK = dff{xl v -+ 1 X4} Then however aff{x, ..., x;} would separateS
contradictory to the connectedness of S. Consequently, g = max. elmg{COdlmAR }>2 8
desired.

Lemma 2.11. Let She a set in R and, for noncollinear points a, b and ¢, let R°(a, q) U
R°(b, q) C S If each Inc point of Sisclearly R°-visible via S from some point of (ab), then
conv(R°(a, q) UR’(b,g))CS.

Proof. An easy argument involving Lemma 2.5 reveals that R°(a, ) and R°(b, q) are com-
posed exclusively of (gab) -lc points of S. Select arbitrarily points a’ € R°(a,¢) and
b’ € R°(b, q). Suppose that there are (gab)- Inc points of S inconv{g,a’, b’} and let h be such
apoint lying inconv{g,a, b’} asfar aspossiblefrom (a’b’). By above,h ¢ [a’, q] u[q, &'].
Next, let ' be a (gab) -Inc point of S lying inconv{g,a’, b’} on the straight line ¢ parallel to
(@'b’) and passing through h, h' as close as possible to (ag). By a variant of Tietze's theorem
[10, Cor. 2.31, conv((a’, q] U[g, b)) C S where{a"}=ocn[a,q),{b"} = onI[b,g.By
the imposed condition, h’ is clearly R°-visible via S from some point of (ab). Since (h, u”]
consists of (gab) -Ic points too, the situation described in Lemma 2.5 arises and $ fails to
be (gab) -locally nonconvex at h', a contradiction. Consequently, no (gab) - Inc points of S
are present in conv{g, &, b'}, whence[10, Cor. 2.3] implies conv((a, q] u [g, b')) CS An
arbitrary choice of &, b’ implies the required inclusion conv(R°(a, q) U R°(d, q)) C S.

Corollary 2.12. Let S bea set in R?, g itsn¢ point, a and b distinct pointsinclS collinear
with ¢ fromwhichgisclearly R° -visible via S. Theng isclearly R°-visible via§ fromeach
point of la, q) U[b, q).

Proof. Let, e.g., @ # ¢ and denote by B, a closed nondegenerate ball in R’ centered at ¢
such that a ¢ B, and each point of § N B, is clearly R° -visible via § from aand b. For each
z € SNB, ~ (ab), by Lemma 26, ; ¢ rel int(SN (zab)) and there are no relative boundary

points of S in B,N rel int(z ab) whence B,N rel int(zab), C S. Identify ¢ with the origin and,
for v € [a, g), denote by B = B(,jl‘jg; Z As easily seen, each point of SN E/ is clearly R°

-visible fromv viaS. Thlsrevealsthat [aq)C CA"’ and the assertion is established.

3. GEOMETRIC CHARACTERISTICS

The material of this section plays the key role in the paper. Geometric results below should
be compared with their analogues for starshaped sets [8]-[ 10] as well as with those established
previously for cones [7, Th. 3.11.

Theorem 3.1. Let S be a proper closed |ocally compact subset of areal normed linear space

X. Then
kerzS = ﬂ Bf = ﬂ coanf = ﬂ cl affo (1
z€regs ZEeregs Z€1egS
If, moreover, S isclosed, connected and nonconvex, then
kergS = (1) BS = [ convBE 2)

€D €D
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where D js ¢ relatively open subset of § containing IncS. If X is a reql Banach space which
is uniformly convex and uniformly smooth, then (1) holds with regS replaced by sphS for a
proper closed set S und (2) holds for a closed connected nonconvex set S.

Proof. To prove (1) select any point x £ ., ¢l affB¥, where W stands for reg§ or sphS,
respectively, and any point 5 ¢ §, s # x. It follows from Lemma 2.2 or Lemma 2.3 that in
any case § isrelatively open in R(x,s) C S, i.e. x € kergS. Consequently, (.., o affBX C
kergS. Since the sequence of inclusions kergS C .y Bf C[.cy convBX €.y df affBf
is clear, the proof of (1) isfinirhed.

To prove (2) select any point X € (., convBf and any point s ¢ D, s # x. We claim
that R(x,s) C S. Hence, x € convBf and, by Carathéodory’s theorem (22, Th. 1.21],
there is a smallest subset of » + 1 affinely independent points uy, . . ., i,+;in Bf such
that x € conv{u, . .,u,. }. Assume, without loss of generality, that {u,, ..., u-}is
the minimal subset of {uy,...,u,} such that x € conv{u;,.. ,uyy,s}. If k = 0, then
X =iy € BX, whence R(x, s) C S and we are done. Let thusk > L If s € aff{uy, .., g1},
i.e dim aff{u,.., u, S} = k, then Carathéodory’s theorem in R* and the minimality of
{ury.. ., gy} would imply x € relintconv{uy, ... w1} € conviuy, ... sy, 5} = Ug]
conv({uy, ... ugs1,5} ~ {u;}), whence x € conv({uy,. ., w1, s}~ {u;, }) for some index
1< iy < k + 1, contradictory to the choice of {uy,...,u1}. Hence, s ¢ aff{u, ... ups}.
Now observe that BY C S, for every z € §, sothat x €., convBX C (.., convS., where
T stands for DN regS or DN sphs, respectively. But, by [9, Th. 3.11, (.., convS. = kerS,
i.e x ckerS and § is starshaped relative to x. Inparticular, [x, §] C S and it remains to show
that R(x, s) ~ [x, s] CS. Since D is a relatively open subset of § and s € D, Lemmas 2.2
and 2.3 imply that in any case s cannot be a relative boundary point of S N R(x, S). Suppose
that R(x, s) g S and let v be the point of R(x,s) ~ [X, g closest to s for which [s,v] C S
Points x, s, «; are noncollinear for each 1<i <k -+ 1, so that Lemma 2.4 and the closedness
of S imply that clconv([s,Vv] U R(u;, S) ~[u;,s) CSfori=1..., k+1  Denote by
R; =V —u; + R(u;, 5) a closed halfline parallel to R(u;, s) emanating from v via S. It must be
v ClcS,since otherwise ve D and Lemmas 2.2 and 2.3 would contradict the choice of v. By
[22, Th. 1 .8], we can identify G = aff{uy, . ., w4, v} with R¥t1. Since v isa G- Ic point of
S, one can choose a closed nondegenerate ball B in G centered at v such that SN B is convex
and s ¢ B. Denoting [v, rj] = BNR, fori = 1,...,k+ 1, we have conv{r,..., 11, v} C S,
whence easily [v, vg] C S, where {y,} = (xs)n aff{ri, . ., re1} vo € R(s, V) ~ [s, v],
contradictory to the choice of v. Hence, R(x, s) C S, as desired. Consequently, x € .., BX.
Now choose any point cin§, c # X, to prove that R(x, ¢) C S. We already know that x € kerS,
so that in particular [x, ¢] C S. By [9, Lemma 2.9] (cf. [7, Lemma 2.3]), [c, ¢] C S for some
Inc point q of S. If ¢ = x, then as established above, points of D N (c, q) # @ are R-visible
from x via §, so that R(x, ¢) C S, as required. Thus let q # x. We know that R(x,q) C S.
Suppose, to reach a contradiction, that x ¢ 1cS and let gy € (x, q] be an Inc point of S closest to
X. But R(x, t) C § for all points t € D, in other words ¢ is clearly R-visible from x via S. But
[X, q¢) C1cS, so that by [7, Lemma 2.21, it must be ¢ € IcS, a contradiction. Consequently,
x€1ncS and again points of DN (¢, X) # 0 are R-visible from x via$, implying R(x, c) C §, as
desired. Hence, x € kergS and (., convBY C kergS C (.., BY C (V.cpp convBY implying
Q).
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The proof iscomplete.

Theorem 3.2. [f Sis a comnected subser of a topological linear space L with sIncS nonempty,
then

() affA®” C gkergoS 3)
z€slneS

and
[l affAd C qkergeS (3)

z€mlneS

Proof. Since sincS C mincS, we have mlncS # @ and it is enough to justify the inclusion
(3). Select any point x (7 _, aftAR The argument proceeds in three steps.

Firstly, we show that R(/\ y) C sincs for every slnc point of S different from x. By
assumption, x € affA®", so in virtue of [7, Lemma 2.11, there is a finite subset K C A{?C of
affinely independent poi nts such that x € affK. By Lemma2.6, y < rel int (slncSN aff (KU {y}).
Since x € affK, this implies that y € rel int (sincS N R°(x, y)). Hence, the set of strong local
nonconvexity points of Sis openin R°(x,y). But as closed in ¢S, sincSis also closed in
R°(x, y), whence R(x, y) CslncS, as desired.

Secondly, we select a point b of S different from x to show that, for b £ intS, b isvisible
via S from x and, for (X, b] g S, b is alimit of points of S visible via S from x. In other
words, we claim that x € gkerS. Recall that gkergoS C gkerS. By [ 11, Lemma 2.1], sIncSN
clS, # @. Select a point d € slncSN clS;,. Forx # d, it follows from the first step above
that R(x d) C sIncS. Now select an arbitrary point ¢ € [d, x]. Since r € slncS, we have X €
affA®" and, by [7. Lemma 2.11, there exists a smallest finite subset of affinely independent
points mAR containing x in its affine hull. For eacht € [d, x|, fix exactly one (n, + 1) -tuple
(Uy sy ..., Uy, Up) consisting of n, affinely independent pointsisy,, . .., u,, ,in AR containing
X in its affme hull and a neighbourhood U, of ¢t such that each point of S ﬂ U, is clearly
R°-visible from u, ,, . ., u,,, viaS. Since [d, x] is compact, it can be covered by finitely
many sets U, (j = 1,...,K), ; € Id,x]. U_I U, iS an open set containing [d, x|, so that,
by [22,Th. 1. 10] there eX|sts a starshaped nelghbourhood V of the origin in L such that
[dx]+ VC U L Uy, Simee d € clS), there is a point g € S, N (d + V). If g = X, then
[x, b] € Sand theargument is finished, so that let g # x. We claim that (x, gl C S. By
construction, ged + VC U,,O for some 1 < jy <Kk, t, € [d, X], so that Lemma 2.7 implies
that [¢, x) N (d + V) C S. Suppose thus that (x, g] ¢ Sand let h be apoint in [g, x) closest
to x such that [g, h) C S. Obviously, h € [d,x] + V C U U, sothat h € U, for some
index 1 < m< k which means that h is clearly R°-visible V|anrom Uity s oo Un, g, viaS
and x € aff{ui ¢,y ...\ uy 4} C affAR". T he situation considered in Lemma 2.7 arises and
we conclude that h € rel int(SN R°(x, g)), contradictory to the choice of /. Consequently,
(%, dl € S. If pointsbh, g, x are collinear, then easily (x, b] C S and the argument is finished,
so that in the sequel let b, g, x be noncollinear. Suppose first that b € intS. Then there is a
point b’ € R(g, b) ~ [g, b] such that (x, g] u[g, b'] C Sand Lemma2.8 impliesthat (x, b] C
conv((x,g] U [g, b)) C S, asrequired. If (x, b] ¢ S, then still (x, g] U [g, b] C S and again
by Lemma 2.8, conv((x, g] U [g, b)) C S, i.e.all points of [g, b) are visible via S from x. If
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X=d, then x € afﬂé\fo, so that we can select a smallest finite subset of affinely independent
points u; x, ..., Uy, xin A’jo and a starshaped neighbourhood U/, of x such that each point of
SN U, isclearly R® -visible via S from y; (i = 1,. . ., n,). We select a point g € §; N U,.
Then Lemma 2.7 implies that (x, gl u [g, b] C S and the argument proceeds as above. Hence,
the step two of the proof is finished.

Thirdly, we prove that x € Afo, ie. x is clearly R°-visible from itself via S. Since
slncS # @ by assumption, the first step above implies easily that x € slncS, whence x €
affAfo‘ By [7, Lemma 2. [], there is a smallest subset of » + 1 affinely independent points
Ur, ... Uygpin A{eo such that x € aff{u;,... ,u,41}. If x coincides with one of points
wi(i=1,...,n+1), then obviously x € AX° , sothat suppose further that x ¢ {1/, ..., 1, }.
whence n > 1. By Lemma 26, x € relint (sincSM aff{ u;, ..., 41 }) CslncS. Let N
be a closed starshaped neighbourhood of x in [, such that each point of SN N is clearly
R°-visible viaSfrom uy,..., u,.,. Select any point » € SN N, b # x, to show that
R°(x,b) C'S. Of course, {ur,. . sy}t © AR, so that Lemma 2.7 implies that b ¢
rel int(S N R°(x, h)). Immediately also b € sincS. An easy application of Lemma 2.7 gives
next R°(x, b)) NN C S. Consider first the case b € (xu; ). Suppose that R°(x, h) Q Sand let
(X, €) bea largest open line segment in. SN R°(x, h). Asobserved in the first step, c €slncS,
whence x € affA®” ~ {¢} # 0. Then however, by Lemma 2.7, ¢ € rel int(S " R°(x, b)).
contradictory to the choice of (x, c). Consequently, R°(x, b)) C S and we are done. Hence
in the sequel let b ¢ (xu,). Since (x, b] C S is clearly R° -visible from u;via S, we have
conv(R°(u; ,x) U (x,b]) ~ R°(u; ,x) C S. Let us identify, by [22, Th. 1.8], aff{x, u; ,b} in
the topology induced from L with R* and define a subset K of R°(x, 1) as follows. A point
w belongs to K if and only if there isin S M (xu,), a relatively open halfball centered at .
Obvioudly, (X, u;)CK and K isopeninR°(x,u;). To provethat K isclosed in R°(x, u;) select
any point g€ clKN(R(x, u;) ~ (x,u;)). We know that ¢ €slncS, sothatx €affA!” and, again
by [7, Lemma2.1], there isa smallest subset of m+ 1 affinely independent pointsvi, ., v,
in A% such that x € aff{vi, ..., v, }. Thusthere existsinL a neighbourhood M of g such
that all points of SN M are R° -visible viaSfrom v;,, v, 4. Let us selectarelatively open
ball B, in MNaff{x,u;, b} centered at ¢ such that x ¢ clB,. Sinceq & clK, there existsa point
w € K together with a relatively open halfball Q,. € SN (xu, ). Say, 0,, € B,. For each point
d € B,Ncl(SNB,), we have {vi,..., v, 1} C Af‘,’o, so that x € affAf}O and an easy application
of Lemma2.7 yieldsB,N|J,,, R°(x,d) CS, whenceq €K, as desired. Thus K is nonempty,
simultaneously open and closed in R°(x, uy), implying K = R°(x, u;). Now select arbitrarily
a point r € R°(x, uy) ~ (X, u;]. Since [uy, r] C K is compact, an easy argument reveals that
there existsa point t € (1, b) such that conv((u;, t] U [r, Y)) C S. The situation described in
Lemma 2.8 arises and an easy reasoning yields conv(R®(u, b) U R°(r, 1)) ~ R°(r,1t;)Cs.
Since r has been chosen arbitrarily in R°(x, u;) ~ (x, # |, we conclude that (xu, ), CS, so
that R°(x, b) C S. Since b has been chosen arbitrarily in SN N, we conclude that x € A’fo, as
required.

Finally, steps two and three of the argument imply that every interior point of Sis R°-visible
via § from x and that every point of Swhich isnot R°-visiblevia S from x isa limit of points
R° -visible viaSfrom x, This means that x € gkergoS which completes the proof.

Easy planar examples reveal that in general the inclusion (3) or (3') cannot be replaced by
the equality. Thisis however possible if Sisopenas the following corollary shows.
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Corollary 3.3. If Sis un open connected nonconvex subset of a real topological linear space

L, then
gkergoS = ﬂ Afo = ﬂ convAfeo = ﬂ affAﬁeo 4)
z€slnes z€sIneS z€sinesS

Proof. By a variant of Tietze's theorem [10, Cor. 2.31, slncS # 2. Since S is open,
the sequence of inclusions qkerkoS C (.. osAX C Mocnes €ONVART C ) e affAR” is
clear. On the other hand, if x < (... affAffO, then in view of (3),x € gkergoS and (4) is
established.

4. COMBINATORIAL RESULTS

Here, a combination of Helly-type theorems with geometric formulae derived in the pre-
ceding section will produce a variety of Krasnosel’ skii-type criteria for cones.

Corollary 4.1. Let Shea proper closedlocally compact subset of a real normed linear space
X(dimX > 2),and 1 <c¢ < dimX a natural number. Then codim kerp < c if and only if
every ¢ + 1 or fewer regulur points of Sare R-visible via S from euch point of « common
c- codimensional subset of S. If Sisa proper closed set und X is a uniformly convex and
uniformly smooth real Bunuch space, then this holds true with regulur points replaced by
spherical points of S.

Proof. The necessity of the condition is obvious. To establish its sufficiency, consider the
nonempty family of flats G = {cl affBY : 7 € regS}. If all flats in G coincide with X, then
(1) implies that S O kergS = (¢ eqs d affBX = X, a contradiction. Hence, g = maxgeg{
codimg} > 0 and, by the imposed condition, every ¢ +1 >c - g + 2 or fewer members
of G have a nonempty intersection of codimension at most c. Hence, by Lemma 2.1 and
the formula (1), codim kerzS = codimﬂgegg < ¢, as required. The proof of the paralel
statement for spherical points of S proceeds in the same way.

Corollary 4.2. Let Sbe a connected subser of a complete separable metric linear space
with sincS nonempty und o a curdinul number: If affAR® is closedfor every ; € sincS, then
dim gkergoS > o provided every countuble subser of sincS is clearly R° -visible via S from
each point of a common  -dimensional subser of clS.

Proof. By assumption, every countable subfamily of the family H = {affAfo : z €slneS}
has at |east an a-dimensional intersection and each member of 7 is closed, so that, invirtue
of an infinite-dimensional version of Helly’s theorem [17, 1.8],[16, Th. 4.11, there exists a
countable subset C of slncS such that dim(., s affAX" = dim(). . affA®” > «, as desired.

Corollary 4.3. Let Sbe a connected subset of a real topological lineur space L(dimL > 2)
with sIncS nonempty, und 1< ¢ <dimL a natural number. Then codim gkergoS < cprovided
every ¢ + 1 orfewer sinc points of Sare cleurly R°-visible via Sfrom euch point of a common
c-codimensionul subset of clS. If L isjinite dimensionul, then the number ¢+ 1 can be repluced
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by c for a stronger result.
If Sisa proper subset of L, then the first statement holds with kergS, clear R-visibility and
bdry pointsin place of gkergoS, clear R°-visibility and sinc points, respectively.

Proof. The argument in the infinite-dimensional case proceeds as in Corollary 4.1. If L
is finite dimensional, then, by [22, Th. 1.8], it can be given a topology in which it is
topologically isomorphic to R/, Then by Lemma 2.10, ¢ = max;cx{codimf} > 2, where
H= {affAfo czeshneS}. If everyc>c g+ 2 or fewer members of H have a nonempty
intersection of codimension at most ¢, then Lemma 2.1 and the formula (3) yield the required
inequality codim gkergoS < c.

If Sisaproper subset of L, then, by [7,Th.3.1(1)], kergS = ﬂ:ehdrys affA® and the argument
isasin Corollary 4.1.

The proof is complete.

The proof of the following final theorem focuses most of results of this paper and shows
that the combinatorial constant in Corollary 4.3 is not optimal. For S closed, connected and
nonconvex it yields immediately |3, Th. 1.3], [6].

Theorem 4.4. Let § bea connected set in R* with IncS nonempty. I/ every two/nc points of §
are clearly R°-visiblevia S from a common point of clS, then S is a quasi-cone. In particular,
this holds for an open connected nonconvex set §in R.

Proof. The argument employs the idea of [6], where the case of S closed has been considered,
but is technically more complicated. Let usconsider the first statement. If there isan Inc point
s of § for WhiChARo isa single point p, then, by the imposed combinatorial condition, all Inc
points of § are clearly R° -visible from p viaS$, so that Theorem 3.2 implies that p € qkergoS,
i.e S isa quasi-cone with apex p. Suppose in the sequel that A! R is one- or two-dimensional
for every s € IncS. In view of Lemma 2.9, AR cannot be three-dimensional. Select any Inc
point g of S for which d1mA‘R =1 and choose arbitrarily distinct pointsu, v € AR to show
that [u, ¢] C IncS and dlmAf = Ifor all 7 € [u, q].

Firstly, suppose that g ¢ affAffo. Let E, be a closed nondegenerate ball with center at q
which is digoint from affA{fO and such that each point of S ™ B, is clearly R° -visible via §
from both « and v. By combinatorial condition, each Inc point of S is clearly R° -visible via
§ from some point of (uv), so that, by Lemma 2.11, conv(R°(u, ) U R°(v, 1)) C S for every
point 7 € S N B,. Easily, no points of rel bdry(S N (uvt)) are present in B, N (uvt), whence
B, N (uvt) CS. LetH and H' be open halfspaces determined by (uvq) in R} Weclaimthatq
isan H-Inc or H'-Inc point of S. Suppose not, i.e. ¢ is both an H-Ic and an H'-Inc point of §.
Since g €IncS, and the condition S N B, N (uva) # < impliesB, M (uvq) C S, there must bea
sequence {g. },<, of pairwise distinct pointsin SN Bq ~ (uvq) convergent to g. Easily, such
asequence must exist in at least one of halfspaces H, H'. If, for example, {¢, } >, C H, then,
since ¢ isan H -lc point of S, conv(|J,~ o (B, N (uvg,))) C S for someindex ny > 1, hence S
contains some open halfball in H centered at g. For g to be anInc point of §, it is necessary that
such asequence exist inH' too, whence for some open ball D, centered at ¢, D, ~ (uvg) €S
and SN D, N (uvg) = @. Then however the clear R° -visibility of ¢ from u via S implies that
g is clearly R° -visible via S from each point of [y, g), whence dimAfo = 2, a contradiction.
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Hence, assume further that ¢ is an H -Inc point of S. A small variation of Lemma 2.5 (cf.
[3, Lemma 2.4]) shows that ¢ cannot be the limit point of H- Ic points of S lying on [u, g].
ie. Eq N [u, q] does not contain H-lc points of S. Let r € [u, ¢) be the point closest to u
such that|r,¢] consists exclusively of H-Inc points of S. Suppose, toreach a contradiction,
that r # u. There exists a sequence {r, }>, C [, r] Of H-lc points of S convergent to r.
By combinatorial condition, ; is clearly R°-visible via S from some point w € Affo. Again,
by Lemma 25, w # u. Since dimAfo > 1, there is another point x Afo different from
. Let B, be a closed nondegenerate ball with centre at » such that B, N (uv) = &, B, C
conv(B, U {u}) and each point of SN B, isclearly R° -visible from x and w vias. If x & (uvg),
then the condition B, N (uvg,),, C Simpliesr €intS C IcS, a contradiction. Hence, x € (mq).
Next, let x ¢ (rw). By Lemma 25, x ¢ (ur). Diminishing, if necessary, B,, we can assume
for the moment that x ¢ B,. Letr,, be apoint on [u, r| sufficiently close tor such that R°(x, r,,)
and R°(w, r) intersect inside B,. The argument asin |3, Lemma 2.4], [7, Lemma2.2] reveds
that all pointsof R(x, r,,) N B, are H-Ic points of S and, furthermore, that r is an H-1c point of
S too, a contradiction. Hence, x € (rw). Let first x = r, i.e. r is clearly R°-visible from itself
viaS. Since B, N (uvg,) C S for n=1,2, converges to B, N (uvg), immediately H C §, an
easy contradiction with the fact that ¢ is an H-Inc point of S. So x € (rw)~ {r, w}. Again,
let ¢ B,. Select an arbitrary point a € S B, ~ (rw). It is easily seen that there are no
relative boundary pointsin S N B,N rel int(rw),, whence B, N R°(r, a) C S. Together with
B, N(uvg,) C S, thisimpliesthat B, N H C S, i.e. r is an H- Ic point of S, a contradiction.
Consequently, [it, ¢| consists exclusively of H-Inc points of S. An appropriate part of the
above argument can be repeated to show that dimAffo =1for z €(u, ¢). Thisin turn implies
that dimA®” = 1 for all 7 € [u, q.

Secondly, suppose that ¢ ¢ affAffo and let, for example, u # q. By Corollary 2.12,
lu, ¢) € A%, so that one can assume without loss of generality that v € (i, ¢). Let B, be

aclosed néndegenerate ball with center at g not containing points i, v and such that each
point of SN B, is clearly R°-visible via S from y and v. Denote by r ¢ |u, ¢] an Inc point
of Slying farthest from ¢ and such that |4, r] C IncS. By Lemma 25, r # q. Suppose, to
rcach a contradiction, that r # .. By the imposed combinatorial condition, ¢ and r arc clcarly
R°-visible via S from some point y < (uv). Since r € Inc$ is the limit point of aset(r, 1] 1cS,
Lemma 2.5 implies that it must be y = r, i.e. r is clearly R°-visible from itself via S. Since
dimAX® > |, r is clearly R°-visible also from some point w + 1 which, again by Lemma 2.5,
does not lie on (uv). Now let H and H’ be open halfspaces determined by (uvw)in R”. Suppose
that there isapoint ;€ SNB, ~ (UV). Itis clear that there are no relative boundary points of S in
E(,ﬂ rel int(uvz)., whence B,N rel int(uvz). C S. Since ¢ € IncS, there are points a, b€ SN Eq
such that [a, b] gz S.If a,b lay in distinct halfspaces, thenaccording to the observation made,
conv( {u} U (B,Nrelint(uva),)) C Sandconv({u} U (B,Nrel int(uvb),)) C S, sothat the clear
R° -visiblity of » from y and w via § would yield H u H’ C S. Now if SN Eq N (uyw) = &,
then easily ¢ is clearly R°-visible via S from any point of (uvw), SO that dimAffO = 2 which
is contradictory. On the other hand, if SN B, N (uvw) # @, then an easy argument yields
S = R*, a contradiction. Hence, suppose that, e.g., «, b € clH. If u, b € H, then as above
la, b] C H C S, acontradiction. If a, b € clH ~ H, then easily [a, b] C (uvw) C S, a
contradiction. If,e.g.,« € H and b € clH ~ H, then HC Sand (uvw) C S, whence again
a contradiction. We conclude that r =, i.e. [4,¢] C IncS, as desired. Now fix any point
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20 €(u, q) to show that the assumption chmA”* — 2 leads a contradiction. Applying Lemma
2.5inthesame way as in Lemma 2.6, we obtain that there existsa closed nondegenerate ball
B., centered at z, such that B, ~ affA®” C Sand B, N affA¥’ C~ S. Assume that (ug) ¢
affAR Since z, € IncS, the comb| natonal condition imposed on S implies that ¢ and z, are
clearly R°-visible via S from some point t € (uq). If t £ z,, then immediately z, € intS, a
contradiction. If L= then immediately ¢ € intS, agam a contradiction. Hence, it must
be (ug) C affAX”. Denote Z = {z € (u,q) : dimAR® = 2 and affA*" = affA®"}. By above
assumption and d|scussion, Z is nonempty and relat|ve|y open in (u,q).Let hbe apoint of clZ
lying closest to g. It may happen that i = q. Of course. & € IncS. Assume first that /1 = ¢.
Since ¢ is clearly R°-visible via S from ¢ and ¢  clZ, easily there is a closed nondegenerate
ball B, centered at g such that ¢ B,,SNB,= B, ~ affAﬁf)C and each point of S n B, is clearly
R°-visible from u via S. Then however it is easily seen that each point in (i, q) has a small
relatively open neighbourhood in affARo from every point of which ¢ is clearly R°-visible,
i.e dlmAR =2, a contradiction. Hence, it must be 1 # g. Since /i € clZ, it is clear that
A}f C dffAR An easy argument revealsthatA,7 - Ajf # 0. If there is a point of A1
on (uq) beyond h, then we conclude as just above that dimAX” = 2 and affAR” = afng]o,
ie. h € Z, a contradiction. Hence, h € A" , i.e. his clearly R°-visible from itself via S.
Besides, there is another pointy ¢ Aff ~ (uq) C affAR If there were points of Sin affAR
sufficiently close to g, then the conditions i € Affo, h,) e AR® would imply affAR CSa
contradiction. Hence, there is some closed nondegenerate circle C, C affAf_ ~ S, centered
at gandu,h¢C,. Let B, bea closed nondegenerate ball centered at ¢ such that each point of
SN B, isclearly R°-visible viaSfrom 4 and v and u, v, h ¢ B, and B, affA®” C C,. Since
q € IncS, there are points a, b € SN B, with [a, b] ¢ S. By established above, a, b ¢ affAff.
By Lemma 26, B,N rel int(uv), € S and B,N rel int(uv), C S If b € (uvy),, then these
two inclusions together with i € Afjo, y € Aﬁfo and h € A{fo imply la, b] C int{uvy), C S,
a contradiction. If b ¢ (uvy),, then the same reasoning implies B, ~ (uvy) C S, whence
C, L~ S yields dimA';O = 2, again a contradiction. Hence, theinitial assumption about the
existence of 73 € (u, q) with dimAffgo = 2 is contradictory, so that for all 7 € (u, g] we have
dimA®® = 1. 1f dimA.".’C; = 2, then aso dimA{"f) = 2 for all 7z in some neighbourhood of u, a
contradiction. Hence, moreover, dimAffc =1, as desired.

Now we are ready to finish the proof. By Lemma 2.10, fix in ¢1S an Inc point q of Sfor
which Aﬂ is one-dimensional. If g is another Inc point of S for which d1mAR/ = 1, then,

by assumption, there is a point ¢ £ Aff u A§ . It follows from the above dlSCUSSIOﬂ that
lg,t] U[t,q] € IncS and dimAﬁ"3 =1 for every 7 € [q, f] U [t, g]. Consider a mapping
g, JUt,q] 37— affAfo As easily seen, it islocally constant on (g, ]U [t, ¢'1, whence

all affA®” coincide for all 7 ¢ [q, t] U [t, g]. In particular, affAR, = affA®”. Now select an
arbitrary point g € IncS for which dlmAifo = 2 if it exists at d”, and Iet Py P2, P3 € Afo
for all Inc points z in some relative neighbourhood of g in (p;p,p3). Let B, denote a closed
nondegenerate ball centered at g such that for each Inc point zin B, (pypops), dimAR” = 2,

Then, the argument in Lemma 2.10 implies that B, n (pip2p3) C~ SN IncS and for every
7 € intB, N (p;pyps) there is a closed nondegenerate ball B, C B, centered at ;7 such that
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B. ~ (pipap3) € S. Now if there were no Inc points z of Sin (p1p2p3) for which Afo is
one-dimensional, then this would contradict the connectedness of S, because (p1p2p3) T~ S,
asin Lemma 2.10. Hence, there must be an Inc point r in (p;paps) for which dimAX” = 1 and
since the set of such pointsr isclosed in(pp,ps), letr be chosen closest to g. Then[g,r) CS
and for any 7 ¢ [g, r), dimAX° = 2. Again con sider the mapping g, r) > z — affA’. As
easily seen, itislocally constant on [g, r), whence all affAfO coincide for all ; €lg,r), i.e.
affA%” = affA%”. Now let &, k, € AX" be affinely independent points. Of course, k;, k, €
aﬁAR Li.e. aﬁAR C affAR®. But aﬁAR = affAX”, by what has been established above.
Consequently, affA C ﬂ clncs affA , SO that by Theorem 3.2, affAffo C gkergeS # @, i.e.
Sisaquasi-cone, asdeSIr

5. REMARKS

Let us consider the set S;= {(x,y,2):x >0,y > 0,2 >0} u {(1,5,0): v <0} C R
It is not a cone, i.e. kergS, = &, while, for D= 5§, N B((1, 0, 0), ¢) with 1 > e > 0, we
have (¢, affBY = (). affBX = (1,0, 0), so that neither the formula (1) can be
strengthened by restrlctlng the family of intersecting flats nor the formula (2) can be extended
to the intersection of flats (cf. [7,Th.3.1]), and thus produce an analogue of a formula existing
for the kernel of a starshaped set [20, Th. 1],[9, Th. 3.1].

Next, consider the set §,= {(x, 0) : x > 0} U {(X,¥): 0 > x>~} C R* and
D = 5 N B((0,0), ) with %> ¢ > 0. Every 3 regular points of D are R- visible from a
common point via$,, yet S, isnot acone. This shows that in Corollary 4.1 the combinatorial
condition has to be applied to the whole set and not to a vicinity containing its Inc points to
ensure that it is a cone,

In this paper, sequel to [3]-[7], we continue to study combinatorial characterizations of
cones involving concepts of R-visibility and clear R-visibility. As for Krasnosel’ skii-type
theorems for starshaped sets[2], [ 12, E2] certain intersection formulae [4, Th. 2.2],[7, Th.
3.1] representing the R-kernel of aset S astheintersection of afamily of flats associated with
selected boundary points of S play the key role. The rest is, to some extent, an application
of avariant of Helly’s theorem for flats formulated in general form in Lemma 2.1. The only
thing which remains to be done is to eventually diminish the combinatorial constant ¢ + 1
appearing in Corollary 4.3. In the finite-dimensional setting, as[5] and Corollary 4.3 show,
it can be replaced by ¢ for a broad classes of sets S. Nevertheless, the constant ¢ is not
optimal even in R?. Since the argumentsin the finite-dimensional setting proceed essentially
by induction on the dimension of the surrounding space, they cannot be directly adapted to
the case of infinite-dimensional topological linear spaces. Let usillustrate these difficulties
in more detail.

Suppose for simplicity that S is a nonempty closed subset of L, S # L, and let q be a
boundary point of . We saw above that estimating codimA§ isone of crucial stepsin finding
the combinatorial constant in Corollary 4.3. As a starting point, it would be good even to
have the inequality codimA > 1 or, somewhat stronger, codim(A¥ u {g}) > 1. With hope
for a contradiction, assume that codim(A} U {a}) = O or, equivalently, aff(Af u {q}) = L.
Consider in L any finite-dimensional flat § through g, dim§ > 1. Hence, § C aff(Aff u {q})
and [7,.Lemma2.1] implies easily thatsgaff{_yl e ,_yd,q},where{yl e Vd (/} isasubset
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of affinely independent poi ntSOfAj; u{q}. By[22,Th.1.8],aff{y, .., y4, o} can beidentified
with R4 and [3,Lemma 2.8] implies further that ¢ € relint(SNaff{y;, ..., y4, ¢}). sothat, in
particular, g € rel int(§ N §). Hence, the boundary point q of S is an interior point of S
relative to any finite-dimensional flat in L through qg. If L itself is finite dimensional, then this
already leads to a contradiction (cf.[3,Cor.2.9]) and one would like to have examples of some
particular infinite-dimensional topological linear spaces L in which thisideaworks similarly.
A tempting example is areal linear space £ endowed with the topology of finitely open sets
T inwhich open is exactly this set whose intersection with every finite-dimensional flat § is
open in the natural topology of §[ 15],[ 1]. It has been known for a long time that T transforms
L into a topological linear space L if and only if £ is countable dimensional [ 15] (cf. dso [ 1],
where this has been reestablished), and in the latter case T coincides with the finest localy
convex topology on C. Unfortunately, even in case of such L we cannot claim that conditions
¢ € bdryS and ¢ < rel int(S N §) for every finite-dimensional flat § through ¢ are mutually
exclusive, as an introductory counterexample in [ 15] reveals. Observe, however, that any
other combinatorial condition, e.g., with the number 2 instead of ¢ + 1, imposes its own
restrictions on the geometry of §, independent of those resulting from estimates of codimAﬁf |
Both these factorswill surely interplay in any possible improvement of Corollary 4.3.
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