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LIFTING QUASIFIBRATIONS

NORMAN L. JOHNSON

Abstract. The construction of "lifting"” spreads in PG(3, q) to spreads in PG(3,q") is gene-
ralized to lifting quasifibrations in PG(3, K) to quasifibrations in PG(3, K|0]) for a quadratic
extension K|0]| of a field K.

I. INTRODUCTION

The process described in this paper 1s a construction technique called "lifting" by which
spreads in PG(3, g) produce spreads in PG(3,¢~). This construction originated, in the odd
order finite case, in Hiramine, Matsumoto, and Oyama [9]. Furthermore, the author extended
this process to include the finite even order case in Johnson |[13]. Also, see Johnson [14].
M. Cordero has examined the case where a semifield plane of order p* is lifted from a
Desarguesian affine plane of order pz where p 1s a prime. See Cordero |2], [3]. [4].

[n this paper, we generalize the construction of "lifting" to quasifibrations in PG(3, K) for
an arbitrary field which has a quadratic extension field.

Since there are fields which admit infinitely many mutually nonisomorphic quadratic exten-
sion fields, there are astonishing numbers of spreads or quasifibrations which can be obtained
from a given spread or quasifibration.

There are so many lifted structures that it becomes clear that there can be no general
classification of such objects. Since there i1s a general interest in semifield spreads, there
1s a section devoted to the construction of semifield spreads from a given semifield spread.
However, this 1s more to illustrate the chaos introduced 1nto the field by this process rather that
to try to provide a complete analysis of semifield planes. In fact, it might be more appropriate
to treat all such lifted quasifibrations from a given quasifibration as essentially equivalent.

However, it 1s important to be aware that a particular spread may be a lifted version of a
known spread. Moreover, it 1s important to give classification results which identify a lifted
spread by certain group theoretic or structural properties. For example, we are able to identify
lifted quasifibrations by the existence of certain elation and Baer groups.

In section 2, we give the basic construction of lifting quasifibrations in PG(3, K) for K a
field. In section 3, we show how to identify such structures via their collineation groups.
In section 4, we discuss the corresponding "retractions”. In section 5, we discuss "additive”
quasifibrations and their lifted quasifibrations but we could have also discussed any particular
class of lifted structures i a stmilar manner. Finally, in section 6, we show how chaotic the
situation becomes by the construction of chains of lifts and retractions and offer a solution of
SOItS.
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2. LIFTING
We first recall the definition of a quasifibration in PG(3, K).

Definition 2.1. Letr P be a partial spread in PG(3, K) for K an arbitrary skewfield. That is,
P is a set of mutually disjoint left two dimensional K-vector spaces of a left 4-dimensional
vector space isomorphic to K & K & K & K. Let Np denote the corresponding net. Choose
two elements L, M of P and choose bases so that the elements of the vector space are written
in the form (x,v) where x in L and vy in M.

If there exists a nonzero vector e in L such that the points of the translate x = e of M are
covered by the partial spread P, then P is called a quasifibration in PG (3, K) with respect to
(L, M).

Note that a finite quasifibration is a spread. However, there exist infinite quasifibrations
which are not spreads.

Proposition 2.2. Let S be a quasifibration in PG(3,K). Then coordinates may be chosen
so that the set of left 2-dimensional K-subspaces have the following form: x = 0, y = x

el ! I. v . ¥ "
S0 U0 for all u,tin K and functions g and f from K x K to K.

o

Furthermore, any set of matrices x = 0, y = x [H{r,:;} _HL-“?'} for all t,u in K with the
property that the difference of any two matrices is nonsingular or identically zero provides a
quasifibration.

A quasifibration is a maximal partial spread in PG(3, K).

Proof. Choose two elements of S, L, M and choose a basis for ¢ in M so that as a two
dimensional left K-space M has basis {s, 1} so that elements of M have the form s +u = (¢, u)
for all 7, in K and assume that ¢ = (0, 1). Furthermore, choose an analogous basis for L so
that the vector space may be represented in the form (¢s + u, s + u™) for all f, u, ", u™ n K.

So, we may further consider the vectors in the form (x, y) where x = x; s +x2 = (x;,x) and
y = v, 5+ y2 = (y1, y2). Itis easy to verify that the remaining elements of S are of the general
form y = xT where T is some 2 x 2 K-matrix. Hence, we may write 7 = [*"" /"] where
t,u are in K and g and f are functions from K X K to K. Consider the line x = ¢ = (0, 1).
A point (0, I, y>2, v2) 1s incident with v = x7T 1f and only 1f (r, u) = (v, y2). Hence, for the
matrices T, t, u vary independently over all elements of K.

Note that this also implies that if the diftference ot such matrices 1s nonsingular and ¢, u
vary independently over K than the partial spread is a quasifibration. See Jha-Johnson [10]
to see that a quasifibration is always a maximal partial spread.

2.1. When K admits a quadratic extension K[O]

Now assume that K admits a quadratic extension field K[0] such that {1,080} is a K basis
and 0° = O +3 for &, B in K.
Write h(t,u) = f(t,u) + xg(t, u) so that the quasifibration has the form:

x=0,y=x g(f; u) hit,u) —HE{g(I, ")

for all u, r iIn K where x and y are K-2-vectors.
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Define F(0t + u) = —g(t,u)0 + h(f,u). Let o denote the automorphism of K[O] of order
two which maps 0t +u — —0r + u ot for all u, 7 1n K.
Consider the following set of 2-dimensional K[8]-subspaces:

(Bt +u)? F(Os +v)

=0, y=.
o ) ' Os + v Or + u

} for all ©s + v, 0r + u of K[0].

With the above assumption, the difference of two matrices {Hiﬁ i(;f) } — {1‘ FE?")]
is zero if and only if (m — n)°*! = (z — w) (F(z) —F(w)). Since the order of ¢ is two, and
the mapping ¢ + 1 is into K, it then follows that the difference matrix 1s only zero provided
possibly (z — w) (F(z) — F(w)) 1s in K. That this never occurs follows directly from the
argument of Johnson [15] pp. 74-5. For example, Since (z — w) (F(z) — F(w)) for z # w 18
never in K, then in particular, (z — w) (F(z2) — F(w)) # vt forany vin K*.

Hence, we obtain a partial spread. But, also note that we do have now an example of
a quasifibration. So, we obtain either a spread or a maximal partial spread. We call the

constructed quasifibration a lifted quasifibration.

Proposition 2.3. Let S be a quasifibration in PG(3,K) for a field K so that there exists a
quadratic extension K[0].
Then there is a set of quasifibrations in PG(3, K[9]) which are lifted from S.

Theorem 2.4. Each lifted quasifibration is either a spread or a maximal partial spread.

We now consider conditions whereby we obtain a spread.

Proposition 2.5. A lifted quasifibration is a spread if and only if the functions Gg defined by
Gs(v) = H(v)? —bv for each d in K are surjective where the lifted quasifibration has the form

x=0y=x Tt hlg:,)] forallm,vin K[0].

Note that each G, is injective since we have a partial spread.

Proof. Note that the above shows that the function is injective. It suffices to show that this
set of subspaces forms a cover of the 4-dimensional vector space over K[0] = F.

m°  H(v)
V m

A vector (¢, d, e, f) where (c¢,d) = (0,0) 1s contained In y = x { } if and only if

em” +dv=e¢ and cH(v)+ dm = f.
[f either ¢ or d = 0 and H(v) 1s surjective then the above system of equations may be solved

uniquely.
If cd # 0 then there is a solution if and only if there exists an element v such that

(e —dv)/c=({(f —cH(V)) /d).
This equation is valid 1if and only 1f

HW) —(d/e) v =(cf7 —ed”)/ ol
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This proves the result.
[f we translate all of this into requirements for the original functions g(r, u) and f(¢, u)
describing the original functions, we obtain:

Proposition 2.6. Let a quasifibration in PG(3,K) be represented by x = 0, y = x
(t,u) [t u ~ . . . , .,
{‘,’ .f ﬂi )} for all u,t in K and functions ¢ and [ from K x K to K. Let a lifted

f
. . . . m”  Hv)y| . .
quasifibration be represented in the form x = 0, vy = x ’ - for all m;v in K[0]

where 02 = B + f.

Then H(v)? — dv is surjective if and only if for each fixed d in K,

Ot — g(t,u) and f(t,u) +og(t, u) — d(u + o) are both surjective and independent functions
onto K.

Proof. Since ¢ has order two, H(v)” — dv is surjective if and only if H(v) —dv7 is surjective
(tf and only 1f

—g(t, )0 + (f(1,u) + xg(t,u)) — (001 + u)” = d(—0r + u + «1))

Is surjective.
Hence, this 1s equivalent to
(0t — g(t,u)) and (f(r,u) + oxg(t, u) — d0(u + ot) both surjective and independent onto K.

Proposition 2.7. Under the assumption of the previous proposition, assume that the initial
quasifibration is a spread. Then

Ot — g(t,u) and f(t,u) + xg(t,u) — d(u -+ «t) are both surjective
and independent functions onto K.

Proof. Since we have a spread in PG(3, K), then for any vector (¢, d, ¢, ) for (¢, d) # (0,0)
e(t,u)y f(t,u)

f 7
component. Hence, we obtain the equations:

there exists a component vy = x [ } such that the vector 1s 1incident with this

ce(t,u)+dt =e and cf(t,u) + du = j.

Note that the first equation shows that o7 — g(¢, «) 1s onto for all 6 in K.
Further assume that ¢ = 0. Then we obtain the following:

o(t,uy=e/c—dt/cand f(t,uy=j/c —du/c.

Since ¢ and f are arbitrary, it follows that g(7, u) — dt / ¢ and f(t, u) — du / ¢ are completely
independent and onto functions. In particular, it follows that f(¢, u) +vg(t,u) —(d / ¢) (u+yt)
= y(e /) +j/cisonto forany y in K. Hence, this proves the assertion in the proposition.

Hence, we obtain the following theorem:

Theorem 2.8. Let S be a spread in PG(3, K) for K a field which admits a quadratic extension
K[0].
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Then there is a set of spreads in PG(3, K|[0]) called the spreads lifted from S.

A more general theorem concerns quasifibrations.

Theorem 2.9. Ler S be a quasifibration in PG(3,K) for K a field that admits a quadratic
extension K[0].

(1) Then there is a set of quasifibrations in PG(3, K|[9]) called the quasifibrations lifted
from S.

(2) If S is a spread then all of the lifted quasifibrations are spreads.

(3) If any lifted quasifibration is a spread then S is a spread and all lifted quasifibrations
are spreads.

Proof. Note that the previous results show that a quasifibration S provides a lifted quasifibra-
tion and conservely. Also, the covering requirement for a spread 1s equivalent to the covering
requirement tor a lifted spread.

Remark 1. Given a quasifibration with respect to (L, M). We always choose coordinates as
indicated above. If the quasifibration is a spread then any pair of spread lines may be chosen
to represent the spread and possibly different corresponding functions g(t,u) and f(t,u) can
be obtained which would then possibly provide different lifts from the same spread.

3. BAER AND ELATION GROUPS

[n this section, we show how to recognize lifted quasifibrations by their collineation groups.
We begin by considering the effect of certain Baer and elation groups on the structure.

Theorem 3.1. Let S be a quasifibration with respect to (L,M) in PG(3,K|[0]) for K a field
which admits a quadratic extension K|[0].

Let ¢ = 1 denote the translation net associated with S.
Then the quasifibration of PG(3, K|8]) may be represented in the form

x=0y=x

Ju? Hv)
V I

]fnrnﬁ u,vin K[9]

for some function H on K[O] where [5 is an automorphism of K[0O]

if and only if 7w admits a collineation group which is a semidirect product of an elation group
E with axis M by a nontrivial linear Baer group B of order 2 with the following properties:

(1) some orbit of components union the axis of E is a derivable net in 7
(ii) [E,B] # <1 >.

In the above result, the Baer group B could be the tull group with fixed point space FixB
or it could be larger. And, to specify the automorphism, we assume there i1s an embedded
K-regulus net.

Theorem 3.2. Letr S be a quasifibration with respect to (L,M) in PG(3, K[9]) for K a field
which admits a quadratic extension K[0].

Let t¢ = 1 denote the associated translation net associated with S.
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Then the quasifibration of PG(3, K[8]) may be represented in the form

y=0,y=ux u HE) forallu,vin K[0]

V I

for some function IFon K[0]

if and only if 7w admits a collineation group which is a semidirect product of an elation group
E with axis M by a nontrivial linear Baer group B of order 2 with the following properties:

(i) some orbit of components union the axis of E is a derivable net which contains a
K-regulus subnet in ,

(ii) |E, B] # <1 > and the full Baer group fixing FixB pointwise is B.

In this case, the quasifibration corresponds to a maximal partial flock of a quadratic cone
in PG(3,K[0)).

Furthermore, in the finite case, the spread is either Desargusian or a semifield spread of
Knuth tvpe.

We consider the case when the order of B 1s larger than 2 in the following result.

Theorem 3.3. Let S be a quasifibration with respect to (L, M) in PG(3,K|0]) for K a field
which admits a quadratic extension K[9].

Let ¢ = 71 denote the associated translation net associated with S. Let o denote the
involutory automorphism of K[0] which fixes K pointwise.

(1) Then the quasifibration of PG(3, K[0]) may be represented in the form

x=0,y=x “1* H::J forallu,vin K[O]

for some function H on K[0]

if and only if Tt admits a collineation group which is a semidirect product of an elation group
E with axis M by a nontrivial linear group B of order > 2 with the following properties:

(i) some orbit of components union the axis of E is a derivable net which contains a
K-regulus subnet in 7,

(ii) [E,B] # < 1 >.

(2) If (v — $)(H(v) — H(s)) is never in K (for example, if m — m®*Vis surjective) then S may
be lifted from a spread in PG(3, K) (equivalently, there exists a retraction spread in PG(3, K))
if and only if Tt admits a collineation group which is a semidirect product of an elation group
E with axis M by a nontrivial linear group B of order > 2 with the following properties:

(i) some orbit of components union the axis of E is a derivable net which contains a
K-regulus subnet in T,

(ii) [E,B] # < 1 >.

Proof. We first consider any quasifibration in PG(3, K[0]) of the following form: x = 0,y = x
[HI” H(v)

% m

fixing K pointwise.

] for all m, v in K[8] where 8° = O« + (3 and o in the involutory automorphism
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Let
"1 0w 07
O I 0 u 5
E =< 00 1 0 VieK >
0 0 0 1.
and
1 0 0 07
L [} ¢ [) 0 ) oo+ -
B =< 00 ¢ 0 VeeK — {0}; ¢ =1 >.
L0 0 0 1.
It 1s easy to verify that EB satisfies the requirements stated in the theorem.

Furthermore, define g(r, u) and f(z, u) by
HOt + u) = —g(t,u)0 + (f(¢,u) + xg(t,u)).

[n this case, if there is a quasifibration for which (v — s) (H(v) — H(s)) is never in K for
v # s then, the previous arguments show that there 1s an associated quasifibration in PG(3, K)
given by

x =0, y =X |ig(r; ) f(l:; ) } Vit uek.

Hence, we note that any quasifibration of the form given above must be a lifted quasifibra-
tion. For example, if there is a quasifibration and m — m?™! is surjective then there is a
retracted quasifibration.

And, any lifted quasifibration admits groups £ and B as above,

[t remains to show that a quasifibration in PG(3, K[8]) admitting groups £ and B with the
above properties has the form given.

We first give a lemma which 1s required for the result:

Lemma 3.4. Let F be any field and let D be a derivable net with partial spread in PG(3, F).
Let K(F™) denote the kernel homology group of D induced by the elements of F™ as scalar
mappings. Note that K(F™) >~ F* and leaves each component of D invariant.
If K(F™) leaves invariant two 1-dimensional Z-spaces on any component then coordinates
may be chosen so that D has partial spread defined as follows:

u” 0 JoralluinF,
x=0y=ux

0 u pin GalK|[9].

Proof. By Johnson [16], there exists a skewfield Z such that D corresponds to a pseudo-
regulus net in PG(3,7). Hence, considered as 2 x 2 matrices Ts with entries in /, DD has
the following form: x = 0, y = xTs for all & in Z. Moreover, {Ts} forms a skewfield
isomorphic to Z. Under the assumptions, there are two Baer subplanes of the net which must
be F-subspaces. Hence, there are two Baer subplanes which are 2-dimensional F-subspaces.
We may choose coordinates so that the matrices T are diagonal (choose a Baer subplane 7,
= {(0,x2,0,y,) for all x5, v, in F} and 7ty = {(x;,0,y;,0) for all x;,y, in F} and choose

-

three components to be x = 0, y = 0, vy = x). Hence, Z must be a field and 1t follows that 75
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ju 0
10 f(w)
that since components with matrices of this form must cover 7, and 71y, then Z 1s 1somorphic
to F and f 1s an automorphism of F.

This proves the Lemma.

Returning to the proof of the above result (3.1), choose coordinates so that x = 0 represents
the axis of the elation group E. We may assume that the orbit under E contains components
represented 1n the torm y = x and y = 0.

We know the E orbit of y = 0 defines a derivable net in PG(3, K[0] = F). It follows from
the arguments of Jha-Johnson |1 1] that every E-orbit union the axis 1s a derivable net. And,
we known that a derivable net D 1s a pseudo-regulus in PG(3, Z) for some skewheld Z. Acting
as a collineation group of the pseudo-regulus net acting in PG(3,Z), £ has the form:

for some u in F and function f : F — F such that f(0) = 0, f(1) = . It follows

10 0 07
0O 1 0 o], .
( 00 1 0 for all dinZ)
0 0 0 1.

where we assume the vector space in taken as a right vector space over Z and the components
have the form x = 0, y = x0 where (x;,x3) 0 = (x10,x;0). It 1s important to point out that
the components are not all right 2-dimensional Z-spaces unless Z 1s a field. However, Baer
subplanes incident with the zero vector are right 2-dimensional Z-subspaces and x = 0 may
be thought of as a right Z-vector space whose intersections with the Baer subplanes incident
with the zero vector are I-dimensional right Z-subspaces. Similarly, vy = (0 may also be
considered as a right Z-space.

Now the Baer group B also acts as a collineation group of any derivable net D which
contains a component fixed by B. Furthermore, B fixes the axis of E. Hence, b fixes at
least one I-dimensional Z subspace on x = (. Therefore, B fixes a Baer subplane of D.
Note that we may consider x = 0 as a right Z-subspace. Assume without loss of generality
that B fixes the component y = 0. Assume that a 1-dimensional Z-subspace fixed by B on
x = 0 1s incident with a fixed Baer subplane of the net which intersects y = 0 in a B fixed
|-dimensional Z subspace. Then the 2-dimensional right Z-subspace generated by these two
I-dimensional Z-subspaces 1s a Baer subplane of [ which 1s contained in FixB. Since Baer
subplanes are maximal, it follows that FixB 1s a Baer subplane ot D. However, this implies
that B and E commute contrary to assumption.

Hence, we may assume that B fixes at least two Baer subplanes of D. Now K(F™) fixes each
component of D and permutes the Baer subplanes incident with the zero vector. Moreover, B
is F-linear so B and K(F™) commute. Thus, K(F™) permutes the Baer subplanes of D fixed by
B. Since, K(F7™) 1s Abelian, the following situations arise:

(a) B fixes exactly two Baer subplanes of D and K(F™) hxes or interchanges the two Baer
subplanes,

(b) B fixes exactly two |-dimensional Z-subspaces on each of x = 0 or y = 0,

(c) B fixes at least three 1-dimensional Z-subspaces on a component, say x = 0.

Note that B and K(F™) are acting on the Desarguesian spread of right 1-dimensional Z-
subspaces on x = 0. Hence, B is isomorphic to a subgroup of PI'L(3,Z) which fixes a line
(infinite line) and a point. That is, B 1s a subgroup of [ L(2, Z).
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On x = 0, choose the right I-subspaces over Z so that x = 0 is decomposed via bases of
these subspaces as (i, v) for all u, v in Z.

Assume in case (a) that K(F™) interchanges the two Baer subplanes fixed by B. On x = 0,
this means that K(F™) interchanges the fixed points of B in one Z-subspace with the B fixed
points in the other Z-subspace. Considered over the prime field, we have a group which 1s
the union of two subgroups which cannot occur in this case. Hence, K(F™) must fix two Baer
subplanes in case (a).

In case (¢), 1t follows that B fixes all I-dimensional Z-subspaces on x = 0 so that the
elements have the general form for some 0 in Z and p an automorphism of Z and since B also
fixes nonzero points on x = 0, it follows that elements of B have the general form (u,v) —
(u"a,v”a) where T 1s an automorphism of Z.

However, if such an element fixed every 1-dimensional Z-subspace, it must follow that the
[-space v = um for each m of Z 1s fixed which 1s equivalent to T = [ but there are no points
on x = () which are fixed by B.

In case (b), elements of B on x = 0 have the general torm (u,v) — («"a,v"b). Since B
fixes exactly two I-dimensional Z spaces on x = 0, it follows that we are back to case («a).

Hence, in any situation, it can be assumed that K(F™) fixes two Baer subplanes of D. By
the lemma, it may be assumed that a derivable net has the form listed above.

Furthermore, since B fixes x = 0 and y = 0 and the above argument shows that without
loss of generality, B fixes 7t, N (x = 0) and 71; N (y = 0) pointwise.

Work out the form for B using the fact that B normalizes E and E has the form listed above
to obtain

1 0 0 07
o0 o 0 0 L . N N
B = < 0 0 5 0 tor d i some subgroup M of F~ >.
0 0 0 1.

G(v) H(v)

where G and H
V 0

Now consider the action on a component of the form y = x {

GOv)d H()

- e ; . T .rT—.—]
Y 0 ] From here 1t follow that G(vd )

are functions of /. The 1mage i1s y = x {

G(TPJ F(v) to note that

= G(v)d and H(v) = H(»577"). Now subtract this matrix from {

! ()
it must be that G(v) = G(v)d and tor & # 1 then G(v) = O for all v in F. Sirﬁi]ur]y, it then
follows that v&?t! = v for all v so that ' = 1. Hence, it follows that the form is as

maintained.

Now assume the conditions of (3.2).

Since there is an orbit under the elation group which defines a derivable net that contains a
K-regulus net, it follow easily that the standard derivable net with components x = 0, y = x

u” 0 + . . . . .

[ 0 ] contains a K-regulus net. Since with appropriate coordinate choice, we may assume
U

v 0

0 v

is either | or the automorphism ¢ of order two which fixes K pointwise. However, if p = 1|

—+ - 7 - . . . . .
then 87! = &% = | for all corresponding elements of B which implies that B has order 2.

that a K-regulus net has the basic formx = 0, y = x [ } for all v in K, it follows that p
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Now assume that B has order two. Then p = | and the spread has the form:

forall u, vin K[0Q]. We note that the existence of the group B shows that the plane 1s rigid in the
terminology of Jha-Johnson [12] and hence 1n the finite case, the plane 1s either Desarguesian
or a semifield of Knuth type. In the infinite case, there are infinitely many examples which
are not of these two basic types (e.g. Biliotti-Johnson [1]). This proves (3.2). Our remarks
also prove (3.3)(1) from which (3.3)(2) 1s immediate.

Remark 2. Note that if the mapping m — m” " is surjective then (v — s) (F(v) — F(s)) is

never in K for v # s so a retraction may be constructed.

Remark 3. Note that we obtain the full Baer group of the form listed above for all b such
that 877! = 1 is obtained as a collineation group of the plane provided we only assume that
there exists a nontrivial Baer group of order > 2 of the form listed.

Remark 4. The mapping m — m°*! is not surjective when K is a subfield of the reals and

. 2 2 '

0 = V/—1 for then (a + bi)° "' = a* + b~. For examples, the K-quaternion skewfield may be
—17
U
a spread of the indicated form but there is no retraction spread since (t — s) (—(17 — 57)) =

—(t — )V is always in K but simply not in K[0]7 "',

F
. u . .
represented in the formx =0, y = x { r ] for all elements u, t in K. Note that we have

4. RETRACTIONS

Theorem 4.1. Let S be any qguasifibration in PG(3, K[0]) where K([O] is a quadratic extension
Gt u) K1, u) } for all t,u in K[0]

of K. In genral, S has the following form x =0, y = x { I .
and G and F are functions on K[0]. Let 6° = a8 + b.

Assume that f(t, u) has the property that (t — s) (F(t,u) — F(s,w)) is never in K 017! for
all t # s and u, w in K[0].
{M” F(1, 1)

u

two which fixes K pointwise, defines a quasifibration in PG(3, K|[0]) called the o-associated
quasifibration.

(2) Furthermore, if (t — s)(F(t,u) — F(s,w)) is never in K, define g(, 3) and f(x, 3) as
follows: F(t,0) = F*(t = aB + 3) = —g(, ) 0 + (f(ex, )+ agle, B)).

Then x = 0,y = x F(D{’ SUNACS ﬁ)] for all «, 3 in K is a quasifibration in PG(3, K)

(1)Thenx =0,y = x } forall t,u in K|B) and o the automorphism of order

ot 5

called the retraction of the o-associated quasifibration.

(3) The retraction in PG(3, K) lifts to the o-associated quasifibration and is a spread if
and only if the o-associated quasifibration is a spread. In particular, all quasifibrations are
spreads in the finite case.
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5. SEMIFIELDS AND ADDITIVE QUASIFIBRATIONS

First we note that by André’s results, no spread in PG(3, K) can be isomorphic to a spread
in PG(3, L) for K and L skewfields undless L and K 1somorphic. (See, e.g. Liineburg [19]).

Since there is intrinsic interest in semifields, we construct here an infinite number of
mutually nonisomorphic semifield planes. But, note that 1t 1s just as simple to construct
infinite numbers of mutually nonisomorphic lifted structures of essentially any type.

Let K be any field which admits a quadratic extension K[8] where 8% = ¢0 +b. Recall
that the automorphism induced from O maps 10 + u to —10 + u + ar. Then any additive

quasifibration of PG(3, K) 1s, by definition, of the form x = 0, y = x F(? u J (z”)} for

all #,u 1n K where g and f are functions such that g(r + s, u + v) = g(t,u)+ g(s,v) and
[+ s,u+v) = f(t,u)+ f(s,v).
The quasifibration lifted from the additive quasifibration is:

r=0,y=x v+as —s0  —gt,u)0 + f(t,u) + ag(t, u)}

10 -+ u v 4 50

forall t,u,s,vin K.
Hence, we see that the quasifibration lifted from an additive quasifibration is also additive.
In particular, if the original quasifibration is a semifield spread then the lifted spread 1s also
a semifield spread.

5.1. Lifted Pappian spread

We may lift any Pappian spread in PG(3, K) to a semifield spread in PG(3, K[0O]).
In order that a Pappian spread exist in PG(3, K) there must be a quadratic extension K| x|
such that &= = co + d so that the Pappian spread may be represented in PG(3, K) as follows:

=0,y = x[“ — ¢t dr}

[ L

Now assume that there 1s another quadratic extension K[0] not necessarily distinct from
K[x]. Let 82 = a0 + b. Hence, we obtain:

Theorem 5.1. If K is a field which admits quadratic extensions K[0], K[x] where 0% = a0+ b
and «* = cx+d ( possibly isomorphic) then there is a semifield spread in PG(3, K[0]) defined
by:

v+as —s8 —(u— ct)0 + dr + alu — ct)

X:(]’y:"{ 10 + u v + s0

forallt,u,s,vinK.

Corollary 5.2. Let K be any field which admits infinitely many mutually nonisomorphic
quadratic extensions K[\/p] where p is a nonsquare in K for p in a set \. Fix p, in \. Then
the following semifield spreads are mutually nonisomorphic:

X = {]'u y = X v S\/"f_} _H\/ﬁ —1—;?{3?
' r\/ﬁ + u v+ 5\@
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forallt,u,s,vin K in PG(3,K[/p].

For example, in the above corollary, one could take K = O the field of rationals.

5.2. Lifted generalized Knuth semifields

In the following, we generalize the finite Knuth semifields with spreads in PG(3, K) to
arbitrary fields K.

Theorem 5.3. (see Knuth [17] when K is finite).
Let K be a field and «, 3 automorphisms of GF(q). Then each the following defines a
quasifibration in PG(3, g).

IiH.f‘-t + IF-'l."l'. . rf\‘ ‘ ) 1 .
[ x=0y=ux [ .f g 17 forall u,tin K where x®*! + xg — f # 0 for all x in K.
u

The quasifibration is a spread if and only if in addition the function G(t,¢) = 1 f& — ¢t
I — c“t“ ¢ is surjective for each ¢ # (.

Y ttg 1’ . . . , .
I x=0y=ux [H j & uf] for all u,t, in K where x**' —xg — f # 0 forall x in K.

Furthermore, this quasifibration is always a spread.

. x = 0,y = x {

Liﬁr

'
u®tl S 9T AL f Furthermore, the quasifibration is a spread if and only if the function
H(t,c) = t*° f 4 ™ tis surjective for each ¢ # 0.

Proof. First we note that the differences of the matrices in each case are nonsingular or
identically zero. Since the matrices are additive, this is equivalent to showing in situation
I that u® ™'+ Yug— **T1f £ 0 which implies if + = 0 that u®¢*! = 0 which implies that
u = 0. Otherwise, dividing by * + | and letting (« / #) = x, we obtain x**! + xg — f which
1S nonzero by assumption.

The argument for situation /7 1s virtually identical to the above and it is trivial to note that
the matrices of type /Il are always nonsingular or zero.

.lf?, '
[ : : . : :
uf} for all u,t in K where f is a constant in K, provided

0 1 0 07
o, . I 0 0 O . -
Now change base for type [ by the mapping 000 11° [t may be directly verified
0 0 1 0.

that the image spread has the following form:

[ I

for all u, 7 in K. Hence, it follows that x® ! + x¢®  — f = 0 for all x in K which is, in turn,
equivalent to x®* !4 x¥g— f@ £ 0.

Consider type /1. To show that we have a spread, we need to show that any vector (a, ¢, d, €)
1s 1n one of the components of the quasifibration. This 1s obvious if ¢ = 0 or ¢ = 0. Hence,
without loss of generality, we let ¢ = 1 and ¢ # 0.

Hence, we must show that there exists i, f such that

ut +tg+ct = d, and

— 1
4+ cu

c.
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Now solve for u to obtain the following necessary and sutficient condition:

(e — 1" )/ o) =(d — t(g + ¢)).

It follows that we may meet this condition if and only 1f

(= (g + c)

1s a surjective function for each ¢ # 0. However, this 1s merely equivalent to the condition
that
fﬂ - {.f}-(g + i.‘) _ M__(Fn—-—] + {.ﬂg - f'n) ?é 'U'

Hence, we have a cover and a quasifibration so we have a spread in this case.
Assume the conditions of /. In order that we have a cover, for each vector (d, ¢, ¢, 1) and
-H“ _|_ rﬂg Iﬂf‘

not both ¢ and ¢ = 0, there must be a component y = x { ,r
' ¥

} incident with this

vector.

Clearly, this is the case if either d or ¢ is zero. Hence, assume that dc # 0 and without loss
of generality, we may assume that d = 1.

Thus, forany ¢, e, h and ¢ 5 0, there must be a solution to the following system of equations:

E..i'

(u™ +1"¢) + ct

t“f+eu = .
Solve for u as (h — tf) / ¢ so we obtain the following equivalent condition:
(h—1"H /)N =(e—cd—1"g).

Hence. we obtain:

fuzfﬂ o f,'”_]f . {'”f”g . hn - {.H'{J‘

If the indicated function 1s surjective then for fixed ¢, and arbitrary h, e there 1s a solution
for t and reversing the above argument, defining u = (h — 1°f) / ¢, it follows that there is
a solution (u, 1) to the original system of equations and hence there 1s a component which
covers the indicated vector.

The proof to 717 1s almost exactly the same and 1s simply the requirement for the quasifibra-
tion to cover the vector space.

Remark S. Fields that satisfy type I11.
(1) Let F be any subfield of the reals and let K = F{\/—1]. Then x = 0, v = x

] ¥
7] [ + . . : . :
{ f } where o denotes complex conjugation is a spread in PG(3, K) which represents
y .

the F-quaternion skew field.

Note that the existence of the large Baer group shows that there is an automorphism group
of the F-quaterions which fixes the subfield F pointwise and isomorphic to the group {e such
that e’ =1} forall e in K.



38 Norman L. Johnson

For example, if F is the field of real numbers, the automorphism group of the real quater-
nions is well known (see e.g. Saltzmann et al [20]).

(2) More generally, if K is any field which admits an automorphism o such that m — m?*!
fio

_ . , _ u’
is not onto and f in KN Fixo— K" thenx =0, vy = x [ .
U

} forall u,tin K forms an

additive and multiplicative quasifibration which is a skewfield if and only {f_ﬁ‘”: —c"tisa
surjective function for all nonzero ¢ in K.

In particular, a skewfield is obtained provided o = 1.

(3) (Jha, Johnson [10]). Let k be any field and k(x) the field of rational functions over k.
Let o« and [3 be any endomorphisms which preserves the parity of the natural valuation. Let
[ = x or any element of odd valuation.

Thenx =0,y =x [“n at”

‘ [ . U
These examples are generalized in X. Liu [18].

} for all b,u € k(x) defines a quasifibration.

Proof. (2). It s easy to verify that the indicated structure is an additive and multiplicative
quasifibration if and only if f is in K N Fixo — K71,

Theorem 5.4. Let K be any field which admits a quadratic extension K[0). Let 07 = a0 + b.
Then the lifted generalized Knuth additive quastfibrations are given as follows:

Lf“r _I_ IH y I” '
[.x=0v=ux { 5 /

I y } forall u,tin K where x4+ xg — f # 0 forall x in K

» (v+sa—s0 —(u” +12)0 + 1% + alu® + t“g) | .
liftstox =0,y = x “ | in PG(3,K[0)).
/ ‘ u + 10 v+ 50 S
—1
ut +tg 1 . . . .
Il x=0y=x { r 5 f} for all u,t, in K where x*!' —xg —f # 0 for all x in
u
. (v +sa—s0 —(uN0 +17f +au |
Kliftstox =0, v = x ‘ in PG(3,K|0)). Furthermore,
/ ' - u+10 v + 56 (3, K19D)
this quasifibration is a spread given that the original exists.
L f . . . .
Il x = 0,y = x I s;f } for all u,t in K where [ is a constant in K, provided

(v+sa—sB —(u")o + f"fj' + au*
u + 10 v + 50
Now we note that once an additive quasifibration is located within PG(3, K), and K has
a quadratic extension field K[0] then there are many often nonisomorphic lifted additive
quasifibrations.

w9t L liftstox =0, y = x [ ] in PG(3,K[0]).

Remark 6. Let x =0,y = x

[g(h u)  f(t,u)
I

y } be a quasifibration in PG(3, K) where K is a
field which has a quadratic extension field K[0)] where 6° = a® + b.
w?  F(v)

} is never multiplicative.
L? 11._"

Then a lifted quasifibration with spread x =0, y = x [

Proof. The quasifibration is multiplicative if and only if F(v) = v?F(1) and F(1)” = F(1)
(see example (2) above). Hence, F(10 + u) = —g(t,u) 0 + (f(¢t,u)+ ag(t,u)) = (18 + u)°?
F(1) implies that g(¢, «) = tF(1) which is a contradiction to the assumption that the original
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structure 1s a quasifibration.
Hence, we obtain

Remark 7. Lifting semifields can never produce skewfields.

A 0

Remark 8. Let [ 0 C

} be any basts change where A, B, C are 2 X 2 K-matrices.

Then x = 0. v = x A~ {g(ﬂ u) f(t,u)
B J [ 7

lifted to an additive quasifibration in PG(3, K[0]).
Note that although the original structures are isomorphic, the lifted additive quasifibrations
may not be isomorphic.

] C is an additive set of matrices which may be

5.3. Lifting Ganley semifields

The following defines an additive quasifibration in PG(3, K) where K is a field of characte-
ristic 3.
u+nt> nt’ + nt

x=0,y=ux I for all u, 1n K and n a nonsquare in K.
' U

To see this, we need to show that u” + nt'u — nt'® — n’t* # for (u, 1) # (0,0). This is
equivalent to verifying that n*/° + 4(nt'" + n’#*) is a nonsquare. Since 4 = 1 and

n’ + 4(1?{”:' - ”_’%f’z) nt*(nt* + 1% + .”E‘z) = nt*(=2nt* + 1% + n?)

n'.i'z(ﬂ'4 — n)z,

it follows that this must always be the case. (See Cohen and Ganley [7] p. 381, example 3).
If K has a quadratic extension K[0] where 0° = a0 + b, a lifted Ganley additive quasifibra-
L (v+sa—s0 —(u+nt)0—+nt’”+nt+ alu+ nt’)
tionisx = 0,y = x
' u+ 10 v + 50
in K.

for all u,t,v,s

6. LIFTING LIFTS - CHAINS

Note that any lift can be relifted. Actually, a lift can be recoordinatized and relifted
assuming there 1s a convenient quadratic extension.

A chain of lifts 1s a set of litts which are constructed from a given initial spread or quasi-
fibration and a set of quadratic extensions by multiple lifting or lifting lifts. As noted above,
such chains do not have to be direct chains in that one lifts the lifts without recoordinatization.

To bring a bit of order into this, we consider regular chains where lifts are lifted directly
without coordinatization.

As an example of an infinite regular chain of lifted lifts, we consider an infinite sequence of
quadratic extensions of quadratic extensions of the rational numbers Q. consider a sequence
{6, where n = 1,2,...,}. Define Q[8;] = 0),01102) = Q2, ..., Orl[dk+1] = Qp41 for
k=1,1,... where Q = Q, and where it is assumed that Q[d,-+1] 1s a quadratic extension
of Qy. Let &7 = ayb¢ + by for k = 1,2,.... Let o} denote the involutory automorphism of
O+1 which fixes Q; pointwise.

We recall the previous theorem on lifting Pappian spreads:
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Theorem 6.1. If K is a field which admits quadratic extensions K|0|, K|x]| where 0° = ab+b
and o® = coc+d (possibly isomoprhic) then there is a semifield spread in PG(3, K|0]) defined
by

v+as —s8 —(u—ct)0 + dt + alu — ct)

x=0,v=ux
' F= 10 + u v + $0

forallt,u,s,vin K.

For example, we could start with a Pappian spread in PG(3, Q) defined by any quadratic
extension Qo] of Q and form a regular infinite chain of semifield spread.

Theorem 6.2. Let S, denote the initial Pappian spread in PG(3, Q). {f'fxz = a,x + b, then
u—da,t b,t| . .
'r ] forall u,tin Q.
! L
Let S\ denote the semifield in PG(3, Qi [dx1]) constructed by lifting the semifield spread
in PG(3,0y).

the spread has the formx = 0, vy = x {

: et ) filte, ) |, .
Represent S, by x = 0, v = x Sk ; AU for all 1, u; i Q. Note that the
) } ) " ,
functions g, and f;, are well defined by induction.

Then S isx =0,

Tl - .
= Wi — @i (e, i )Op 1 + Julti, ) + apy gty i)
' lig1 = LOpay + Uy W41
forall ty, uy in Qp and for all wi, in Q4.

Hence, we obtain an infinite sequence of semifield spreads {S; for O < i< oo} where S, is
a Pappian spread and each of the other spreads are non-Desarguesian semifield spreads.

Remark 9. We have constructed but a few of the many variations of lifted spreads and lifted
semifield spreads and chains of lifted spreads that can be obtained by lifting.

In fact, the situation is completely chaotic. For example, there are so many semifield
spreads that there is really no hope in forming a classification. There are infinitely many
mutually nonisomorphic semifields spreads which lie in quadratic extensions fields of the
rational field. There are infinitely many mutually nonisomorphic semifields spreads which lie
in regular chains.

Furthermore, one may form a chain of lifts, recoordinatize, form a chain of retractions,
and then lift again etc.

Theretore, we formulate the following equivalence relation.

Definition 6.3. Two spreads or quasifibrations S and R in two three dimensional projective
spaces over fields L and K respectively will be said to be lift equivalent if and only if there
is a chain of quadratic extensions from one field to the other such that S may be constructed
from R by a sequence of lifts and retractions.

Remark 10. Hence, the spreads in three dimensional projective spaces over fields are in
disjoint classes under lift equivalency.
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