Note di Matematica Vol. 16 -n. 1, 9-19 (1996)

COMPACT HOMOGENEOUS EINSTEIN MANIFOLDS IN CODIMENSION TWO

A.C. ASPERTI, H.P. DE CASTRO, M.H. NORONHA

Abstract. In this paper we study compact Riemannian homogeneous submanifolds of Eucli-
dean spaces in codimension 2 for which the metric is Einstein. We prove that they are spheres
or product of spheres. We apply this result to study compact cohomogeneity one hypersur-
faces whose principal orbits are Einstein manifolds. In the case that they are irreducible
manifolds, we conclude that the cohomogeneity one manifold is immersed as a hypersurface
of revolution.

I. INTRODUCTION

A result of Jensen [10] states that a four-dimensional homogeneous Einstein manifold is
symmetric. A nice proof of this result is given by Derdzinski in [9] for the compact case.
A classification of Einstein homogeneous spaces 1s still an open problem even in dimension
5. Both homogeneous spaces and Einstein submanifolds of Euclidean spaces have only been
studied in codimension | (see [11], [13], [12] Vol. I, pg. 36). Kobayashi [11] showed that
a compact homogeneous hypersurface of R"*! is congruent to a sphere. In this paper we
want to consider compact codimension two homogeneous spaces that are Einstein. One of
the motivations for this 1s the study of cohomogeneity one hypersurfaces ot Euclidean spaces.

A Riemannian G-manifold is said to be of cohomogeneity one if the group G acts ef-
fectively and isometrically with principal orbits of codimension one. In [15], the authors
studied compact cohomogeneity one hypersurfaces of Buclidean spaces and related them to
hypersurfaces of revolution. A hypersurface of R"*! is called a hypersurface of revolution if
it is invariant under the group SO(n) of rotations around a fixed line / of R*™'. They proved
that if each principal orbit under the action of G is umbilical in M then M 1s immersed as
a hypersurface of revolution. It 1s clear that 1f the principal orbits are i1sotropy-ireducible
then they are umbilical. Since the G-invariant metric of 1sotropy-irreducible homogeneous
spaces in Einstein (see [6] pg. 187), it is then natural to ask if a compact cohomogeneity one
hypersurface whose principal orbits are Einstein manttolds 1s a hypersurface of revolution.
Since these orbits are compact codimension two homogeneous spaces we first classify them.
We obtain the following result.

Theorem. Let f : M" — R"2 n > 3, be an isometric immersion of a compact Riemannian
homogeneous Einstein manifold. Then M is either a sphere or a product of two spheres, each
of which is of dimension greater than I. In the latter case the immersion f is a product of
hypersurface immersions.

In [2], it was proved that if each principal orbit of a compact cohomogeneity one hy-
persurface has constant sectional curvature then 1t 18 umbilical and hence it 1s immersed as
hypersurface of revolution. Combining this result with the Theorem above we conclude
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Corollary 1. Let f : M"R "1 n > 4, be an isometric immersion of a compact cohomoge-
neity one Riemannian G-manifold. If the principal orbits under the action of G are irreducible
Einstein manifolds then f(M") is a hypersurface of revolution.

We want to point out that we can remove the assumption on the irreducibility of the orbits
in Corollary 1 it for some point on a principal orbit, the type number t(x) of the immersion
[ satisfies t(x) < 1. If f(M") is of revolution then the group G is either S)(n) or SO(n + 1).
Otherwise, 1f the principal orbits split as a product of spheres, we can show that the immersion
[ restricted to each principal orbit is rigid. Then we obtain the following.

Corollary 2. Let f : M" — R""! n > 4, be an isometric immersion of a compact cohomoge-
neity one Riemannian G-manifold. If the principal orbits under the action of G are Einstein
manifolds then
(a) any isometry ¢ € G is induced by an element g' of a group G’ of rigid motions of R
(b) the principal orbits of G" are spheres or product of spheres
(c) there is a curve v in R"T such that fM) = G'(y).

This article was prepared when the third author visited the Universidade Estadual de
Campinas in Brasil. She wants to thank the Department of Mathematics for their hospitality
and the state agency FAPESP for the financial support.

2. A RIGIDITY RESULT FOR HOMOGENEOUS SUBMANIFOLDS

An isometric immersion f : M" — R" is said to be rigid if given any other isometric

immersion g : M" — R", there exists a rigid motion 7 of R", such that f = T o g. In this
e - - ) H N L ala L. _ , ] e At
case any isometric immersion ¢ . M" — R" 1s also rigid. We point out that the fact that an
immersion from a manifold M is rigid does not imply that f|;, the restriction of f to a subset
U of M, is rigid. Observe also that if f : M" — R" is non-rigid there may be U ¢ M for
which fi;; 1s rigid. The next lemma is crucial for the result of this section.

Lemma 2.1. Let f : M" — RY n > 2, be an isometric immersion of a connected manifold.
If [ is non-rigid then there exists a point p in M and an open neighborhood U of p such that
flu s non-rigid and if p € U" C U, )‘| yt Is also non-rigid.

Proof. Suppose that for each point p in M and every open neighborhood U of p there exists
an open set U' C U such that fj; is rigid. We fix a point p and a neighborhood U’ of p such
that f|,» is rigid. If g : M" — R" is any other isometric immersion, there exists a rigid motion
T of RY such that fj;» = T o g;;». We set

A={xeM:fx)=T(gx))

Obviously, A is non-empty and closed. Further, since U’ C A, the interior of A, denoted by
nt(A), 1s non-empty. Let g be an arbitrary limit point of /nt(A). Our assumption implies that
there exists an open neighborhood V of ¢ such that f|y is rigid. Therefore there exists some
rigid motion S of R" such that fjy = So gy. Let W = VN Int(A). Clearly W is non-empty
and S = 7 on g(W). Our assumtion implies again that for each point x in W there exists a
neighborhood W' C W of x such that /- 1s rigid, otherwise x and W would satisfy the lemma.
Then gy~ is also rigid which in turn implies that there is no affine subspace of R" containing
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2(W"). This means that T = S everywhere on RY, g isin A and V C A, that is, A is open and
hence A = M. But this contradicts that f is non-rigid.

Proposition 2.2. Let f : M" — R n > 2, be an isometric immersion of a homogeneous
manifold. Suppose that there exists a point p in M and an open neighborhood U of p such
that f|y is rigid for every U C U. Then f is rigid.

Proof. If f 1s non-rigid then by Lemma 2.1 there exists ¢ € M and a open neighborhood
W of ¢ such that if W' C W then fjy is non-rigid. Since M is homogeneous there exists an
isometry i of M such that 4(g) = p. Then there exists U" C U given by U’ = h(W') for some
W’ C W. We have then that f|; is rigid and fjy, is non-rigid. This is clearly a contradiction,
since U’ and W’ are isometric.

Now we apply this proposition to study codimension two 1sometric immersions of a ho-
mogenecous space. Before that, we recall a result of do Carmo-Dajczer in [8] for rigidity of
isometric immersions in higher codimensions. Letf : M" — R""~ be an isometric immersion.
s an integer, | < s < 2, and U* C T,M* a s-dimensional subspace. Let 7t : T,M*+ — U
be the orthogonal projection. Consider the bilinear from o : T,M x T,M — U" given by
xs = 7o «, where « 1s the second fundamental form of the immersion. Following [8], we
call

vi(p) = max{dim N(o») : U* C T},Mi}

where N() denotes the nullity space of the enclosed bilinear form. Clearly, v>(p) = v(p), the
usual relative nullity. Theorem 2.5 of [8] states that if forevery pin M, vi(p) < n —(2s + 1),
for s = 1,2 then f is rigid.

Proposition 2.3. Let f : M" — R""2 n > 5, be an isometric immersion of a homogeneous
space such that v(p) = 0 for every p in M. Then either [ is rigid or for every point p in M
there exists M| € TyM~ such that rank A,, < 2.

Proof. Let us suppose that f 1s non-rigid. We will show that this implies that vi(p) > n — 2
for every p € M. This means that there exists 1) € Ty,)M— such that rank A,, > 2. where A,
denotes the Weingarten operator. In fact, assume that there 1s p in M tor which v (p) < n — 3.
Then there exists an open set U containing p such that v,(g) < n — 3 for every ¢ in U. Since
n > 5 and va(p) = v(p) = 0, it follows from the result of [8] that f; is rigid for every
U" C U. But this fact implies by Proposition 2.2 that f is rigid.

3. PROOF OF THE THEOREM

Since M 1s Einstein, the Ricci curvatures are given by S / n, where § 1s the scalar curvature.
We first remark that § > 0. In fact, it § = 0, being homogeneous, M 1s a flat torus 7" (see
Corollary 5.6 in [12], Vol. I, p. 251). But n > 3 and hence 7" cannot be 1sometrically
immersed in R""2, by a classical result of Tompkins, [17]. Now, if § <0, Corollary 5.4 of
[12], Vol. I, pg. 251, implies that the group of 1sometries of M 1s finite, contradicting that M
s homogeneous. Therefore § > 0 and we can conclude that v(p) = O, for every p in M.

If n = 3, it 1s well known that a 3-dimensional Einstein manifold has constant sectional
curvature. If n = 4, as we stated in the introduction, M is symmetric. The classification
of compact symmetric spaces of dimension 4 that are Einstein implies that M 1s either of
constant curvature or isometric to the complex projective plane CP* or covered by a product
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of two 2-spheres with the same constant curvature. Hence, in dimensions n = 3,4, M has
nonnegative sectional curvature. Now, since M is in codimension 2 we use the results in [5]
to conclude that M is simply connected and CP- cannot be imersed in R®. Therefore M is
either isometric to a sphere or splits as product of two 2-spheres of constant curvature.
Now, if n > 5, we suppose first that f is rigid. Then, if 4 is an 1sometry of M,j_' = fohis
another 1sometric immersion of M that being congruent to f, identifies the isometry # with an
isometry of R”*<. This means that the group of isometries G acting on M can be realized as
a subgroup G’ of rigid motions of R"*2. By a result of Cartan (see [12] Vol. I, pg. 111), G’
has a fixed point O and hence M is mapped by f into a hypersphere centered at O. Therefore,
M 1s an Einstein hypersurface of a sphere. A result of Ryan in [16], pg. 376, implies then that
M 1s isometric either to a sphere or to a product of two spheres each of which is of dimension
greater than 1.

[t f 1s non-rigid we can use Proposition 2.3, since n > 5 and v(p) = 0. With the same
notation, let & be the unit vector orthogonal to n in 7, ,yM +. Observe that if for some point
p € M, rankA,,, < 1, the Gauss equation depends only on A¢. Then the same arguments
used in [12], Vol. 11, pg. 36 for Einstein hypersurfaces of positive scalar curvature can be
applied to conclude that Ag,) = Al and hence all sectional curvatures are the same at p.
By homogeneity, we conclude that M has constant sectional curvature and 1s 1sometric to a
sphere, since by [5] we conclude again that it is simply conencted.

We were left with the case that rankA, = 2 for every point of M. The next proposition
shows that in this case M splits in a product of two spheres and one of them is 2-dimensional.
Now a result in [ 1| implies the last assertion of the Theorem. It states that if M 1s compact and
1s a product of two manifolds of dimension greater than 1, then f is product of hypersurface
LMMErsions.

Proposition 3.1. Let f : M" — R"™2 n > 5, be an isometric immersion of an Einstein
homogeneous space such that for every point p in M there exists | € Ty,M~ such that rank
A, = 2. Then M is a Riemannian product of two spheres and one of them is 2-dimensional.

We first prove some preliminary Lemmas.

H

. 2 . . . . .
Lemma3.2. Letf : M" — R""* n > 5, be an isometric immersion with the same hypotheses
of Proposition 3.1. Then the normal curvature R+~ = 0,

Proof. Let & be the unit vector orthogonal to 1 in Ty, M~. Let us assume that 1 is also a
unit vector. We will show that for each point p in M there 1s an orthonormal basis of T,M that
diagonalizes both Weingarten operators, A¢ and A,,. The Lemma will follow from the Ricci
equation.

Let us consider {Y),...,Y,} an orthonormal basis of T,M and X and Y two arbitrary
vectors. Then by the Gauss equation we have

it
Ric(X,Y) =Y (RX,Y)Y;,Y) =
=
= 1{Ac(Y), X) + (A, (Y), X) — (Ac(X),Ac(Y)) — (A,)(X), A, (Y))
where 1} = traceA¢ and 1, = traceA,. Now suppose that A¢(Y) = AY and X 1s orthogonal to
Y. Since M 1s Einstein, Ric(X, Y) = 0 and we obtain that

0 — IE(‘AI}(}/)!X} T (A”(}/),A”(X)} — (Xw‘%(fzy '" A'r,r Y)>
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for every X orthogonal to Y, implying that A, (Y — A, (Y)) = vY. If v = 0 we have
Ay(Ay(Y)) = nA,(Y). 1t A,(Y) = 0, we have then that ¥ € KerA,. If not, A, (Y) is
an eigenvector of A, with corresponding eigenvalue f,. But this is a contradiction, since
t» = traceA, and rankA,, = 2. Now 1ty # O then Y € ImA,,. This shows that whenever Y is
an eigenvector of A¢, Y is either in kerA,, or in ImA,,. Therefore we find an orthonormal basis
iX1,...,X,} of T,M such that A¢(X;) = A;X; and X; € KerA,, fori > 3. Let us suppose that
the matrix of A,, restricted to span{X;,X>} is

a C
c b

We compute now the Ricci curvatures of M, denoted by Ric, using the Gauss equation. For
[ > 3 we have

Ric(X;) =Y A\ (3.3)
J#i

It all A;’s, i > 3, are the same, let us denote them by p. Then we have

Ric(X)) = AN A+ ab — c* + Z?ﬁ?\; = MM +ab — ¢+ — 2D \u

i3

Ric(X5) = MA> +ab — ¢ + Z MA = A Ay +ab — ¢+ (n — )AL
i=3

Since Ric(X|) — Ric(X5) = 0, we get (n —2)i(A; —A>) = 0. But u # 0, otherwise Ric(X;) = 0
for i > 3 which would contradict that the Ricci curvature is positive. Then we conclude that
Al = Ao

It there are distinct A;’s, i > 3, it follows from (3.3) that A; must be root of the quadratic

equation

S
o H‘L’E{'f’ﬂgi‘ + - =10
7

and hence there are only two distinct eigenvalues A;, say y; and . They satisfy the relations
W + Wp = fraceA¢ and wypy = S/ n. Therefore, u; and @, have the same sign. Let m; be
the multiplicity of ;. Then

Wy + Ho = ftraceAgs = myy -+ mallo + AL+ As. (3.4)

Now from the expression for Ric(X;),i = 1,2, we conclude that A; and A, are roots of the
quadratic equation

; S
t* — traceAct + = — (ab — ¢*) = 0,
1

Therefore, 1f A # A,, we have again that A} + Ay = fraceA¢ that substiituted in (3.4) gives

A+ A =mpy +mps + A+ A

implying that m; i, + myu, = 0, which 1s a contradiction, since w1 and > have the same
sign. Therefore, we have again A| = A,. Let us denote this eigenvalue by A.
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This implies that the eigenvectors of A,, in span{X,,X>} are also eigenvectors of A¢ and
the lemma 18 proved.

We point out that only the assumptions M Einstein and codimension 2 are enough to
imply that the normal bundle of M is flat. We proved Lemma 3.5 with the hypotheses of
Proposition 3.1 because the proof shows that with such hypotheses A has at most three
distinct eigenvalues. In the case of three distinct eigenvalues, it follows from (3.4) that they
satisty the equation

(m — Dy + (mx — D 4+ 2A = 0. (3.5)

We will use this fact later.

Lemma 3.6. With the notation above, the eigenvalues of A¢ are constant on M.

Proof. Let A* be the space of 2-forms defined on the tangent space 7,M. Consider R : A* —
A’ the symmetric curvature operator given by

(RXAY),ZAW) = (RX, V)W, Z)

where R denotes the curvature tensor of M. Thenif {X), ..., X, } is an orthonormal basis of the
tangent space that diagonalizes both A¢ and A,,, the 2-forms X; A X; are eigenvectors of K. Let
01 and &, denote the non-null eigenvalues of A,,. Using the Gauss equation, we conclude from
the proof of Lemma 3.2 that the eigenvalues of R are given by A* + 8,85, Aw;, u?,i = 1,2,
and Wy uo (recall that 1y and pu> may be the same). They are the sectional curvatures K(X;, X;)
of the planes spanned by {X;, X;}. Moreover their multiplicities are constant by homogeneity.

Now we fix p in M. For these tangent vectors X;’s at p we have (R(X;,XJ,—)X;{,XH,) = (),
whenever the set of indices {i,j, k, m} has more than two elements. If g is another point in
M, since there exists an 1sometry 22 of M taking p to ¢, we have the same equation for the
vectors X; = dh,(X;). Therefore the 2-forms X; A X; are the eigenvectors of R at ¢. Since the
eigenvalues are given by the sectional curvatures and K(X;, X;) = K(X;, X;), 1t 1s easy now (0
conclude that A and u; are constant.

Lemma 3.7. With the notation above, & and n are parallel sections of the normal bundle
N(M).

Proof. We first show that & and n are differentiable section of N (M). In fact, let { be
a differentiable local section of AV (M). Since ( is linear combination of & and 1, and the
same orthonormal'basis diagonalizes all Weingarten operators, A has eigenvalues of constant
multiplicity. This implies by [14] that its eigenvectors can be chosen smoothly. Therefore
there exist local vector fields X; diagonalizing all Weingarten opertors. Observe that 1 is
orthogonal to «(X;, X;) for i > 3 (where « 1s the second fundamental form) and hence is a
differentiable normal vector field. Consequently, & is also differentiable.
Now we consider the Codazzi equation

Vi (X, X)) = 2a(Vy X, Xj) = Vy «(X;, Xj) — (Vi X;, X)) — ouX;, Vx X;).
Taking inner product to n, we get fori,j > 3

(o(Xx, X)), Vim) = 0.
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Since Vk{n is parallel to & and (o(X;, X;),&) # O (otherwise we would have zero Ricci
curvature), we conclude that Vyn = 0 = Vi &, fori > 3. Now we consider in the Codazzi
equation, i = [,2 and j > 3. Taking inner product to & we obtain

(TXIX;,X,MEE(X;,X;) — ol X;, X)), E.} = {,

where we used that the tact that the eigenvalues of A¢ are constant, by the previous lemma.
Notice that the proof of Lemma 3.2 shows that the eigenvalues of A¢ corresponding to X; and
X; are distinct. Therefore this last equation implies that (Vy X;, X;) = 0. We apply this fact
to the Codazzi equation above but now taking inner product to 1. We obtain now

(X}, X)), Vin) = (Vx.X;, Xi) (X, Xi),m) = 0

and hence ‘Ffﬂ = () = "TT' Efori=1,2.

Proof of Proposition 3.1. From the previous lemmas and with the same notation, we can
define differentiable distributions

D = span{X,, X2} = ImA,,

D~ = span{Xs,..., X, } = KerA,,.

They are globally defined and we will show that they are involutive and parallel. For
X;,X; € D+ and X; € D we write the Codazzi equation

Vi X, Xj) — oV X, Xj) — (X, Vi X)) =

= Vi, a(X;, X)) — Vi, X;, X;) — o X;, Vi, X))

Taking inner product to 1 and using the fact that it 1s parallel, we are left with
(Vi Xjy Xi) o = 0

where O, denotes the eigenvalue of A, which 1s non-null, since it corresponds to X € D.
Therefore (Vyx X;, X) = 0. Now for X;,X> € D and X; € D+ we use the same procedure,
taking inner product of the Codazzi equation to & and using the facts that ¢ 1s parallel and
the eigenvalues of A¢ corresponding to X; and X; are the same. We obtain (Vy X, X;) = 0,
for {k,m} = {1,2}. Then the distributions are parallel and this implies that M is locally
a Riemannian product. Notice that the proof did not depend on the number of distinct
eigenvalues of the operator A¢.

The local reducibility implies that the sectional curvature K(X,, X;) = Ay; = 0, for7 > 3.
Since w; # 0, we conclude that A = 0. Then, if u; # w,, we have the equation 3.5 which
gives then m; = myp = | because A = 0 and u; and w, have the same sign. This contradicts
our assumption that n > 5, which in turn implies m; + m> > 3. Therefore u; = W, = .

By the de Rham decomposition theorem we conclude that the universal covering M of M,
considered with the covering metric, is a Riemannian product M? x M;”? By the result in
[1], f = o f, where 7t is the covering map, is a product of hypersurface immersions. Since
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M, and M, are still homogeneous spaces, we conclude that M| 1s isometric to a 2-dimensional
sphere and M> 1s 1sometric to a (n — 2)-sphere. Then, the sectional curvatures of M are
nonnegative and so are the curvatures of M. Again, by the results in [5] we have that M itself
is simply connected and is the Riemannian product §7 x §"~~.

4. COHOMOGENEITY ONE HYPERSURFACES

Let M be a connected manifold with a Riemannian metric (, ). Let Iso(M) be the Lie group
of all isometries of M with respect to (,). Let G be a connected and closed subgroup of
Iso(M). We say that M is a cohomogeneity one Riemannian G-manifold, if G acts effectively
and the principal orbits under the action of G have codimension one.

From the general theory of G-manifolds (see [7] for instance), we get that for compact
cohomogeneity one manifolds, the orbit space () is a I-dimensional Hausdorff space home-
omorphic to either S' or to [0, 7t]. Let p : M — Q) be the projection onto the orbit space. A
point x 1s called regular if p(x) is an interior point of (). We will denote the set of all regular
pomnt ot M by M,,,. Notice that M,,, 1s open and dense in M.

Definition 4.1. A complete geodesic vy on a cohomogeneity one Riemannian manifold is
called a normal geodesic if crosses each orbit orthogonally.

The following properties of cohomogeneity one manifolds are known. The reader is
referred to [3]. [4] for the proof of (a), (b), (¢), (d) and to [15] for (e).

Proposition 4.2. a) A geodesic 'y is normal if and only if it is orthogonal to each orbit )
through x in y.

b) Each regular point belongs to a unigue normal geodesic.

¢) The group G acts transitively on the set of normal geodesics.

d) The isotropy subgroup H of a regular point x in vy preserves the normal geodesic pointwise.
e) If x € M,.,, then there exists a neighborhood U of x such that U is locally isometric to
(G / H) x I, g, +dr*) where I is an open interval of R, and g, a family of left invariant metrics
on G / H, depending smoothly on t.

Compact cohomogeneity one hypersurfaces of Euclidean spaces were studied in [15] and
[2]. It was shown in [2] that if n > 4 and the principal orbits under the action of G have
constant sectional curvature then M is immersed in R"™' as a hypersurface of revolution.
This implies immediately Corollary 1 stated in the introduction.

Recall that if f : M" — R"*! is an isometric immersion and & is a unit normal vector
defined locally on f(M), the type number t(x) of { at x is defined by the rank of A¢ on T M.
Suppose now that M 1s cohomogeneity one G-manifold. If X is a principal orbit and for
x € 2, T(x) < I, Proposition 3.2 of [2] implies that T(y) < 1 for every y in the orbit X..
If G 1s compact, X 1s a compact homogeneous manifold immersed in codimension 2 such
that for each p in M there exists a normal vector & satisfying rankAc < 1. Here A¢ is the
Weingarten operator of the immersion ¥ — R"*! induced by the Weingarten operator A¢ of
the immersion f. If 2 in Einstein, the proof of our Theorem in the previous section showed
that 1n this case 2. 1s 1sometric to a sphere. Since all principal orbits are diffeomorphic to
each other, 1f follows that they are all irreducible manifolds. Therefore if for some x € M
T(x) < 1, f(M) 1s hypersurface of revolution.

regs
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Proof of Corollary 2. The result is obvious if f(M) is a hypersurface of revolution. Now, 1f
the principal orbits are Riemannian products, we have that f|x-, f restricted to a principal orbit
>2, 1s a product of hypersurface immersions. Then each factor of fiy- 1s an umbilic immersion,
since each factor of the orbit X 1s a standard sphere. Therefore each factor of fy; 1s rigid. It
1s not difficult to see that this implies that f|s; 1s rigid. Since M,,, 1s dense in M, we conclude
that f restricted to each orbit of G is rigid and this implies (a) of Corollary 2. Now, the orbits
of G’ are f(¥) and this implies part (b). Part (¢) will follow from Proposition 4.2 (d) for the
normal geodesic y.
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