Note di Matematica Vol. 16-n. 1, 1-8 (1996)

A PARAMETER CHOICE FOR MINIMIZING THE ERROR BOUND OF TIKHONOYV RE-
GULARIZATION METHOD

HASAN M. YMERI

Abstract. The paper considers posteriori strategies for choosing a parameter in a simplified
in a simplified version of the Tikhonov regularization. An arror bound is minimized to select
the parameter that regulates the smoothness of approximation in ill posed problems. The rate
obtained in doing so is optimal for the first order and for the iterated case.

I. INTRODUCTION

We are concerned with the inverse problems
Aw = ¢ (1)

A 1s a compact non-negative selfadjoint operator defined on a Hilbert space, g is the known
data, and w is the minimal norm least squares solution that we want to find. This problem
arises in physical situations as an integral equation of the first kind generated by a symmetric
kernel on an L? space.

It 1s wellknown that equation (1) 1s in general an ill posed problem, except when the
range of A i1s a closed set. By this we mean that even if the solution w exists, the mapping
g — w s not continuous. Because ill-posedness leads to unstable numerical schemes, solving
equation (1) requires a procedure called regularization, which 1s designed to make the solution
continuously dependent upon the data g. The most widely known regularization 1s Tikhonov's
method. It uses x,, ., the minimizer of the functional

Fo(x) = ||Ax — g|I* + ol|x||*, & >0,

or equivalently the solution to (o +A*A)x, = A% g, as an approximation to w. Here, < - >
1s the inner product and || - || is the norm of the underlying Hilbert space. In this setting o
controls the smoothness of approximations in the sense that it permits the trade off between
fidelity (small «) and mintmizing the norm of x,, (large «).

For a comprehensive study of inverse problems see e.g. [1, 6, 10].

Simplified regularization consists in minimizing the functional

Go(x) = [|A" 2(x — w)||* + o]|x]|?, (2)

instead of the Tikhonov functional; or equivalently in using w,,, the solution to (a/+A)w,, = g,
as an approximation to w. This regularization is applicable only when the data 1s in the range
of A, g € R(A). If this is not the case, there are examples of w, not being convergent, [11].
Therefore, in this note we assume that the data 1s in R(A).
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As equation (1) 1s intended to model physical phenomena, we have to consider the mexact
data case, because the data comes from experimental measurements that are frequently inexact.
Let ¢° denote the inexact data and assume that the noise level §, is much smaller than the
data; i.e. ||[g° — gl <8< <||g°]|. The core of any regularization processes is the choice of
the positive parameter «, depending on 9, in such way that approximations converge to the
solution w. To meet this end there are essentially two ways: either using priori strategies that
choose o beforehand according to some information of its asymptotic behaviour, or using
posterior strategies that decide the value of « as calculation proceed. Of course, the optimal
parameter choice is the one that minimizes the difference ||w — x,s|/, but since w is not
available we have to leave aside this optimal choice for some other tactic. Among the tactics
we have:

Considering the residual Ax,s — ¢°, or the residual A*Ax.s — A*¢°, to define discrepancy
principles. Some discrepancy principles, that apply to Tikhonov’s method, lead to divergent
sequences 1n simplified regularization, for example Arcangeli’s method [8, 11].

Minimizing an error bound rather than |jw — x.s||, Engl [3] followed these tactics for
approximations of the form U, (A*A)A* ¢ where U, (+) is a regularizing function.

Minimizing the differences between the approximation on hand and a faster convergent
sequence (see Remark 2).

And using only some part of the data to select the parameter that best predicts the rest of
data. This 1s known as the cross validation principle | 10].

For parameter choices in the Tikhonov case see for example [4, 7, 9, 10]. In practice,
a common procedure consists of pertorming the regularization for several values of «, e.g.
21 272 ...,27 % and then selecting the value that satisfies (or almost satisfies) the criterion in
mind. See Gorbonova and Morozov for some of these algorithms [5]. Numerical experiments
show that for difterent examples different tactics perform better then the others, 1.e. no one
parameter choice is the best.

In this article we minimize a bound for the error ||w — w,||. The value of « at this point
1s our a posteriori strategy. Comparisons of the numerical behaviour between the above
strategies calles for a separate study.

2. THE MAIN RESULTS
The following two lemmas proved in [11] are the basis for our parameter choices.

" § . . .
Lemma 1. If g € R(A”) then regularized solutions converge to w as o« — 0, with the order
w—wal| = 0(x).

Lemma 2. For inexact data the error with respect to the idealized approximation w,, is
bounded by ||wo — was|| < 0/ a.

By using the triangle inequality and by making the bounds in Lemma | and 2 of the same
asymptotic order, i.e. o ~ 8'/2, we obtain the order of convergence 0(5'/?), which cannot
be improved as we will see next.

Theorem 1. Suppose that A is of infinite rank and that ||w — wgas|| = 00"/ ?) for every g°
such that ||g — g°| < 9, then w = 0.
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Proof. Let {u;, A\; > A, > ...} be an orthonormal system for A. Suppose that w # 0. If we
take w = u;, g = Ajuy and g“" = g -+ du,, with 0 = )&E — () as n — oo, then we will see a
contradiction.

Since (o + A)Yw — wps) = ow + Aw — ¢° = oaow + g — g%, w # 0 and A is a bounded
operator the equalities

loaw]| = [[(&d + A)w — wus) — (g — g‘{])|| = 0(||lw — wasl]) +0(0) = 05"/ ?)

imply o« = 0(8'/ 2).
From their definitions we have that w — w,s = w — w, — (& + A)~'du, and

lw — 1+-'MH2 = |lw — WHHE —28(ox + Ao <w — w1, > 467 (e + A, 7.

W — was> /86 > —2(x+ M) <w — way tty >+ 24 A8

Since ||[w — wys|| = 06'/?), o« = 0(8'/?) and & = AZ in the limit we have

_ 2
0> llms-;fl}lp NERSVE: <W — Wy, i, > +1.
H—

By taking g° = g the assumption that ||w —w,s|| = 0(8'/?) implies ||w — w || = 0(d'/?).
Therefore the right hand side on the above inequality 1s 0(8' /%) divided by 0(5' /2). and hence
0 > 1, a contradiction that completes the proof.

Q.E.D.

In the following we assume that A is not of finite rank and that w ## O; therefore, the search

is of strategies that provide rate of convergence 0(8'/?). We start by considering the error
estimate

—[[w — was|* < llw = wol|* + = (3)

that comes from Lemma 2 and the parallelogram law. By matching the two terms of the right
hand side, we define our first criterion

hi(o) = ot <(xl +A)“2w,w > = 57, (4)
Some properties of the continuous function /;, that make (4) a valid strategy are: First

lim /() = lim & < o (] +A) *w,w> = 0

cx—{) cx—()

and lim,_ ~ /1(x) = oo, this limit because A is bounded. Second, the derivative hj(x) =
4008 <(ox + A)~? w, w> which is positive for « > 0; therefore, i 1s strictly increasing and
given d there exists a unique x = «(d) that satisfies (4).

And third, we have the following lemma

Lemma 3. The parameter « selected by (4) converges to O as 0 — 0.
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Proof. On the contrary assume that either « — oo, then by (4) lim,_ .~ &* < &> (& +
AY'w,w> = 0; or if there exists a subsequence of o’s that converges to ¢ >0, then in the
limit we have ¢* <(c/ + A)™?w, w > = 0, implying w = 0, which contradicts our hypothesis.

Q.E.D.

In regard to convergence we have

Theorem 2. Ifw € R(A) and «x = x(0) is selected according to (4) then w.s attains the
order of convergence ||[w,s — w|| = 0(8'/?).

Proof. As w € R(A), say w = Au, the approximation («/ + A)~'w converges to u as &« — 0.
Let 0 — 0, then by Lemma 3 « — 0. Because of equation (4)

5 o
ll — = | / —1 . E.
”Jl;}n_‘lb“ ol {l'i”n (o + A)" w|| |

This means that « and 8!/ 2 have the same asymptotic order. Finally, by Lemmas 1 and 2

d
[w = was|| < 0(e0) + — = 0(8' /2)

Q.E.D.

The first order necessary condition for minimizing the error bound (3) 1s 2<w — w,,.
‘—‘d‘—i(w”) > —28% / o’ = 0, which provides the criterion

(o) = ot <(od +A) 2w, w> = 7. (5)

The above equation 1s like (4) with one of the w’s replaced by w,. This suggests that we
replace both w’s to obtain

ha(o) = & <(od + A) “wo, wo < = &%, (6)

Furthermore, since w, 1s not available for computations we may use w,s to obtain the
compulable criterion

ha(o) = &t <(od + A) *Was, Was > = p&?, (7)

where the positive constant p is arbitrary, but no larger than a noise ratio ||g°]|* / 6%, as we
will see next.

The following properties for continuous functions h;,i = 2,3,4, can be proved in the
same fashion as for A;: first, lim,_ 2;(x) = 0; second, the derivative ki(x) > 0 for & >0,
so we infer A; 1s strictly increasing and each criterion (5), (6) and (7) determines a unique
x = od); third, o« — 0 as & — 0; and fourth, lim,_ o h2(x) = 00, liMa—ae A3(x) = ||g]°

and lim,, . oo h4() = ||g°]|*. This limit implies that p in (7) should be smaller than the ratio
lg®1% / &2.



A parameter choice for minimizing the error bound of Tikhnov regularization method 5

The proof of Theorem 2 applies to criteria (5) and (6) but 1s does not apply to (7). To show
that (7) can also provide an o which produces the order 0(8'/?), it suffices to show that the
quotient & / o is bounded from above and from below.

Lemma 4. Assume that w = Au for some vector u. If x = x(d) is selected according to
criterion (7) with g < p, then as o, 0 — 0 we have

Proof. From the definition of A3, h4, w,, and w,g 1t follows that
hy(o0) — ha(o)] < of|(ad +A) (g — °)|I° < |lg — &°||* < &°.

Since o — 0,p > 1, from (6) we have (p — 1)d* < h3(x) < (p + 1)8%. This implies the
existence of a function ¢(&) with values in the interval [p — 1, p + 1], such that A3(x) = g(8)&?
and hy(x) = pd? = phy () / ¢(d). This last equality together with the limit lim,, ¢ /3(x) / o
= |ul|* implies

'. ha(ox 52

F.\HH < lim Inf —-—-(--~)~ = liminf —

p + ] oy —+() :’_'J(J‘ O —0 G'{,4
5* ha(o0) ;?HHH

< lim sup —
up o lim sup .
e, O —{) y—{)

4 _P—]

concluding the present proof.

Q.E.D.

As « and &'/ ? have the same asymptotic order we are ready for the statement on the best
rate of convergence.

Theorem 3. Under the hypothesis of Lemma 4 criterion (7) provides an « that gives
| | /2

Proof. Since x = «(d) — 0 by Lemmas 1,2 and 4 it follows that

O
H'flf' — H‘*n-ﬁ” E U(EI() o ; — O(&lf )

Q.E.D.

Remark 1. 7o compute o from (7) we use the equalities hy() = [|o*(od + A7 w,||> =
HD&E%W 5|12, Then two possible ways are using finite differences of the already known ws'’s
or storing the L — U decomposition to iterate twice the recurrence formula (oI 4+ A)x'"" =
xxV = g% In the second case finding the « is as expensive as computing a second
order regularization. Qur attention turns now to the parameter choice for a high order
regularization.
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3. ITERATED SIMPLIFIED REGULARIZATION

The importance of the iterative Tikhonov methods 1s that they produce rates of convergence
higher than O(«x) [2,4], although at the expense of more computations and the need of selecting

a new parameter n. In simplified regularization we consider the iterative scheme, for i =
2,3,...,
i 1 i1 S IS B ~1
w, = ool +Ay w, +w, withw, = (el +A) ' g. (8)
As in the previous case, we first study some properties of the approximation and then define

criteria for choosing «.

Lemma 5. Ifw € R(A"), then ||[w" — w|| = 0(a").
Proof. By (8) we have

W= (" od +A) "V 4+ axlod +A) T+ Dw),
(o"(od +A) " — D(o(ed + A — D~ 'w!
= —(«"(al +A)" — Dw.

Because w € R(A") then (o + A)™"w converges as ¢ — 0, and
lw—w! || = &«"|[(od +A) "wi| = 0(ax").
Let w” . denote the iterated approximation when g° is used instead of g.

Lemma 6. For inexact data the error with respect to the idealized value w%, is bounded by
1 Ji
Hm’nﬁ o Hf“tH E nd / X.

Proof. Using the proof of Lemma 5, and Lemma 2 we see that

[Wis — wall = lo" ™ (ad +A) """ Pwey — wi)+
| , O o O
et ws —w < —+... 4+ —=n—.
x x x

Q.E.D.

Our goal 1s now to select « so that the n-iterated approximations have rate of convergence
08" /1), Lemma 5 and 6 and the parallelogram law give the error bound

2

l no|2 2 O
—llw—w < |\\w—w_ Vert”+ | n—
3w — w2 < fjw — w .
By matching the two terms on the right hand side of the above inequality, we obtain the
criterion
L 2dnd2 —2n. ., .. 282
k(o) = & <(otl+A) "w,w>=n"d". (9)

By differentiating the above error bound with respect to «, the first order necessary condi-
trions for minimization provide the criterion

kj(ﬂ(.) _ m2n+2 ";::({XI‘I"A)—EHHJH,W'} _ HE&E' (10)
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On replacing w and w,, by w,s 1n (10) we obtain
< -7 T =7
k(o) = o' <(od +A) "w,, W, > =n"0". (11)

and

w2

k(o) = o2 <(od + A) " Wos Wag > = ;F;m : (12)

where p is a constant such that 1 <n’p < ||g®||* /6. Fori = 1,2, 3,4 the functions k; and /;
have similar properties: the equivalent of Lemma 4 1s the boundedness, from above and from
helow, of the equation 8% / o2, This fact is used in the next theorem which says that for
arge n the order of convergence becomes arbitrarily close to 0(d), the best possible in linear
broblems.

Theorem 3. If w € R(A") and «(d) is selected in accordance with (12) then the iterated
. . S | . S S : J _ i f{n+1)
approximations w" s converge with order |[w — w" || = 05"/ + D),

Proof. From Lemma 35 and the fact that & and ! are of the same asymptotic order, it
follows that

Iw = wesll = liw = will +lleq, —wasl

O o
i ﬂ(ﬂll) - = {}(E}JI;{!}—:-]]}.
X

Q.E.D.

* . 7 .

Remark 2. The strategy of selecting the « that moves w5 toward w<., a more expensive
computational approximation, can be realized by minimizing the error bound

l
5

E.

2 - —2 on2 Dy
Iwe, — wasl] < llodCed +A)77g"|" + (x / 8)".
The first order condition for minimizing this bound defines the criterion

hs(o) = 20" <(od + A) Pwos, w+ od > = ,!szr:,

where w., has been replaced by w.s. Note that hs has similar properties to those of hy, and

that the assumption w € R(A) implies boundedness from above and from below of the quotient
) . . .

5% / «°. This last statement implies

5 .
1w — wasl] <O0(x)+ — =0(8""7).
X

Consequently, the order obtained 1n this remark is not as good that one by criteria (7) and
(12).
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