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AN EXTENSION THEOREM FOR BILINEAR FORMS

KAY SORENSEN

Apart from the fundamental interest in a weak characterization of quadratic forms the
possibility to extend quadratic forms defined on subspaces of a vector space (P, K) to a com-
mon form on P 1s helptull in the representation of higher dimensional geometries as well as
in characterizing quadrics by their plane sections. In the case that all vector subspaces en-
dowed with a quadratic form are three-dimensional, there are extension theorems, first under
additional conditions by J.Tits [11], FBuekenhout [1], H.-J.Kroll [4], K.J.Dienst, H.Miurer
12], E.M.Schroder [7], H.Maurer [6] and finally 1n the most general form by E.M.Schroder
[8],[10].

Apparently there are only two papers investigating under which conditions quadratic
forms defined on two-dimensional vector subspaces posess a common extension. In [9], (8.7)
E.M.Schroder showed how to extend quadratic forms defined on two-dimensional vector sub-
spaces of a given three-dimensonal vector space by employing the hexagram-condition. In
5] euclidean spaces of arbitrary dimension are described by an axiom system relating only
to 1ncidence and congruence. Taking euclidean planes for granted, it 1s required that every
plane of the space is an euclidean plane. By a further axiom all planes are made compatible.
Based on the method of [4] 1t 1s possible to construct a quadratic form which describes the
cogruence relation. For this construction H.Karzel gave a direct proof in [3]. Implicitly in
his proof in the case of characteristic # 2 anisotropic symmetric bilinear forms are extended
from two-dimensional vector subspaces to the vector space containing them.

In this paper we prove an extension theorem for symmetric bilinear forms defined on
two-dimensional vector subspaces. In the case of characteristic 2 our proof is not valid for
quadratic forms but only for bilinear forms with sufficiently many anisotropic vectors. On
the other side in the case of a characteristic # 2 Satz (3.2) in [8] is a direct conclusion of our
theorem.

Gratefully at the end of section 1 we repeat a comment of this paper’s referee, that our
theorem might be deduced from a general representation theorem for polarities. But in section
2 the extension will be constructed directly.

1. The Extension Theorem

From now on P will be an at least two-dimensional vector space over a commutative field
K and £, the set of all two-dimensional vector subspaces. On each vector subspace £ € £,
let g : E x E — K be a symmetric bilinear form. For vectors a,b € P let (a,b) be the vector
subspace spanned by them. For linearly independent vectors a,b we write

q(”a b) = q(ujh} (ﬂa b) .
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If all bilinear forms gg,E € £, can be extended to a common form on P , then the
following conditions are necessary :

V1 If a,b,c € P are linearly independent and 0 = g(a,b) = g(a,c), then 0 = g(a,b+ ¢).

V2 I'={xeP:3E€ £ withxe Eand gec(x,x) =0} ={xe P:VF € £, withx € F,
qF('r:I):O}‘

To manage the extension in the case of characteristic 2 we need anisotropic vectors in
every non-trivial plane. With V := P\ I we make use of the following property:

V3IIfE e £ with ENV =0, then g = 0.

Theorem. If the bilinear forms qe.E € £,, satisfy the conditions V1, V2 and V3, then
there is a bilinear form f : Px P — K and for every vector subspace C € £, a scalar
Ke € K* := K\ {0}, such that for all a,b € C, f(a,b) = xcqc(a,b).

In the following this theorem will be proved.

In the case V = 0 for every C € £, the form g is trivial, either by itself if charK # 2 or
because of V3 if 2 = (. Therefore the null-form f : P x P — 0 is their common extension. In
the other trivial case K = Z, obviously all k¢ must be chosen equal to 1. So from now on let
V # 0 and |K| > 3. By using V2 the conclusion of V1 can be extended:

(1.1) Let B.C,D € £y and a,b,c € Pwitha,b € C, c,a € B, a,b+c¢ € Dand 0 = gc(a,b) =
ggla,c). Then 0= gqgpla,b+c). O

(1.2) For a € P the set a* := {x € P\ Ka: g(a,x) = 0}U (KaN]l) is either a hyperplane or
equal to P.

Proof. (1) Because of V1, V2 and (1.1) the set a™ is a vector subspace.

(2) Leta € V. For every x € P\ Ka we have g(a,x— q(a,x)q o (a,a)” 'a) = 0, therefore
P=Ka®a".

V3
(3) Let a € I and b € P with g(a,b) # 0. We have Ka—b C V for charK = 2 and

{oa—b:o# qg’ﬁ{fz}b)} C V for charK # 2. Therefore let o,3 € K with o0 # B and oa —

(1.1)
b,Ba—b € V. Then (ca—b)N(Ba—b)* C a’. Because of (Ka—b)Nat =0 and (2) the

set Ka @ ((oa — b)* N (Pa — b)*) is a hyperplane. O

The mapping a — a* has the property

If a € b* thenb € a*
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and therefore induces a (possibly degenerate) polarity on the projective derivation of (P, K).
If one can prove that this polarity can be represented by a O-symmetric semibilinear form
f:PxP — K, then for every C € £, the forms g¢ and f|cxc only differ by a factor x¢.

The following proof of the extension theorem does not make use of a representation the-
orem for polarities.

2. Proof of the Extension Theorem

First we show that for vector subspaces A,B,C € £, and vectors a,b,c € P with a,b €
C, b,c€ A, c,a € Bthe scalar

‘&(H: brC) = QC(H: H)(;A (b:' b)q}? (E?C) —qc (b, b)‘-?ﬂ (C: C)‘?B (ﬂ,ﬂ)

vanishes. This is obvious for {a, b,c} NI # 0 or for linearly dependent a, b, ¢ . Just as obvious:

(2.1) Let a,b,c € V be linearly independent and & € K*. Then A(a,b,c) = 0 if and only if
A(&a,b,c) = 0. [

(2.2) Let a,b,c € V be linearly independent, q(b,c)q(c,a) # 0 and (a,b) non-degenerate '.
Then A(a,b,c) =0.

Proof. Because of (2.1) let
(1) g(a,c —a) = q(b,c—b) =0.

As gc 1s non-degenerate there 1s a vector s € C with
(2) gc(a,a—s) = qc(b,b—s5) =0.

Therefore

(3) gc(qc(b,b)a—gc(a,a)b,s) = 0.

From the quoted equations and (1.1) we get:

4) g(a,c—s) =qg(b,c—s5) =0 by (1),(2),
(S) Q(QC(bﬁb)H_qi‘:(ﬂaﬂ)ba'ﬂ-_s) =0 bb’ (4)1
(6) q({?qu(b: b)ﬂ o ‘:J-”C(aﬁ 'ﬂ)b) =0 b}’ (5),(3)

After multiplying

(7) Q(fa‘?(”ﬁc)f — 4B (E,C)ﬂ) =0

with gc(b,b) and (6) with gg(c,c) and using V1 we obtain

' {a,b) = C and gc are called non-degenerate, if the radical Radge :={x € C:Vy € C, gc(x.y) =0} = {0}.
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()
0=gq(c,qc(b,b)qla,c)c —qp(c,c)qcla,a)b) = qc(b,b)gpla,a)qalc,c)—
).

—gp(c,c)gcla,a)ga(b,b

(2.3) Let a.b,c € V be linearly independent.

(1) If {c,a) is degenerate, then q(c,a) # 0.
(2) If there is a vector d € (b,c) NV with

(a) Ala,b,d) =0 and (b) Ala,d,c) =0, then Ala,b,c)=0.

) Ifgla,b) =0 and {(a,b)NV = K*aUK*b, then K = 7s.

Proof.(1) Since ¢,a € V, Rad gp 1s one-dimensional and c¢,a & Rad gg.

gcla,a)ga(b,b) (a) qﬂ(dad)’é.}'{fhfs}(ﬂﬁa) (b) q,q(ﬂ',i‘)q;g(ﬂja)

2 = . —
) qf(brb) q{d a) (d?d} qﬂ(ﬂ':f)

(2.4) Forall a,b,c € P, A(a,b,c)=0.

Proof. Let a,b,¢ € V be linearly independent. We discuss the cases not considered in (2.2):
(1) Let K # Zs, q(b,c) =0, g(c,a) # 0 and g(a,b) = 0.

V1
By (2.3.3) there is a 0 € K* with b—0c € V, and g(a,b — dc¢) # 0. Since b,c € V,
q(b,b—0c)g(c,b—0oc) # 0. By (2.3.1) neither {a,b) nor (b — 0c,c) are degenerate. By (2.2)
we obtain A(a,b,b —dc) = 0 and A(b — 0c,c,a) =0 and so A(a,b,c) =0by (2.3.2).

(2) Let K # Zs and g(b,c) = g(c,a) = g(a,b) = 0.
Because of (2.3.3) thereisa 0 € K* with h—0dc € V and by (1) we obtain A(b,a,b— 0c) =
0 and A(c,a,b—dc¢) = 0.

(3) If g(a,b) = 0 and g(b,c)g(c,a) # 0, then C is non-degenerate by (2.3.1) and so

Aa,b,c) = 0.

(2.3.1)
(4) If A, B are degenerate and C non-degenerate, then 0 # ¢(b,c)g(c,a).

(5) Let A,B,C be degenerate.

Because of (2.1)leta—b € Rad gc and ¢ —a € Rad gg. Then g(a,b—c¢) =0 by V1.

If D:= (a,b—c) is non-degenerate, thenb—c € Vand Ala,b—c,c) =0, Ala,b—c,b) =0
by (4).

It D is degenerate, then b — ¢ € I and so 0 = ga(b,b) — 2¢(b,c) + ga(c,c). Since A is
degenerate, 0 = ga(b,b)ga(c.c) — q(b,c)*. Together we obtain g4(b,b) = ga{c,c). Since
a—b € Rad qc we have gc(a,a) = gc(b,b), and ¢ — a € Rad gg implies gg(c,c) = ggla,a).
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(6) Let K = Zs and g(b,c) =0, g(c,a) #0, gla,b) =

If b—c €V, then as in the proof of (1), A(a,b,c) =0.

Let

(a) a—bel aswellas (b) b—ce€l.

Then gc(a,a) = —qgc(b,b) and ga(b,b) = —ga(c,c). We will show gg(a,a) = gglc,c),
and therefore A{a,b,c) = 0.

Leto e {1,—1} with

(c) g(06a —c,c) = 0.

From the quoted equations and (1.1) we get:

(d) g(da —c¢,b) =0 because of ¢(a,b) = g(b,c) = 0,

(€) g(da—c,b—c)=0 by (c),(d),

() g(da—b,b—c) =0 by (e), (b),

(g) q(8a—bb—c) = 0 by (f), (a), (b).

Therefore 0 = g(6a — ¢,0a — ¢) = g(6a — ¢,0a) = ggla,a) — gg(c,c).

(7) Let K = Zs and

(a) g(b,c) = q(c,a) = q(a,b) = 0.

Further let either a—b,b—ceVando:=1 or a—b,b—cé&lando:= —1.
Then

(b) gcla,a) =0gc(b,b) aswellas  (¢) ga(b,b) = dqa(c,c).

From the quoted equotations and (1.1) we get:

(d)gla—b.a+0b+c) =0 by(b),(a)

(e)g(b—c,a+0b+c)=0 by(c),(a)

) gla—c,a+0b+c) =0 by(d),(e)
gla—c,a+c)=90 by (f), (a). o

0.

Let e € V be a fixed vector. For o € K let f(oe,0¢) := o>, Fora € P\ Ke and E := (a,e)

let f(a,a) = 3‘;(;3)) Then (2.4) implies

. fla,a) _ f(bb)
2S5)ForCe Lrandalla,be CNV aclaa) — qebh) = Kc.

ForC € Lo withCNV =0 let K¢ := 1.

(2.6)IfCe Lranda € C, B €K, then Xcqgc(a,Ba) =Bf(a,a).

ForC e £yand a,b € C, f(a,b) :=xcqgc(a,b) is welldefined because of (2.5), (2.6).

2T IFC e Ly and a,b € C, then fla,b)gcla,a) = f(a,a)gc(a,b). ]

(2.8) f: Px P — K is a symmetric bilinear form.
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Proof. Let a,b,c € P and A € K. By definition f(a,Ab) = Af(a,b) and f(a,b) = f(b,a).
(1) If a, b, c are linearly dependent, then f(a,b+c) = f(a,b) + f(a,c).

From now on let a, b, ¢ be linearly independent and B := (c,a), C := {(a,b}, D :={(a,b+ ).

(2) Because of gc(a, f(a, b)a— f(a, a)b) %7 0 and ggla, f(a, c)a— f(a, a)c) = 0and

(1.1), we get gp (a, (f(a, b)+ fla, ¢))a— f(a, a)(b+c¢)) = 0. This and

27) . o
gpla, fla,b+c)a— f(a,a)(b+ c)){ :}O further implies

(f(ﬂb) -|-f(ﬂ‘,£‘) ‘“f(ﬂ:.b+'i‘))t?m(ﬂ,ﬂ) = ().

Therefore for a € V we obtain f(a,b+c) = f(a,b) + f(a,c).

(3) If two of the scalars f(a,b), fla,c), f(a,b+ c¢) vanish, then f(a,b+ c')‘:g:lf(a:b) +

fla,c).

(4)If BUC C I, then gg = gc = 0 by V3 and so g(a,b+¢) = 0.
S)Let2#0,a¢VandCNV #0. ThenthereisaB € K withd :=pBa+b €V, and

flatd+c,a+d+c) =2 fla,a)+2f(a,d+¢)+ fld+c,d+c) 2
= fla,a)+2f(a,d+c)+ f(d,d)+2f(d,c)+ f(c,c) =

= fld,d)+2f(d,a+c)+ f(a,a) +2f(a,c) + f(c,c).
Because of 2 # 0 we get

fla,d+c)~ fla,c) — fla,d) = f(d,a+c) - f(d,c) - f(d,a) 2 0.

Therefore f(a,b+c) = f(a.b+c)+ f(a,Ba) £ f(a,Ba+b-+c) = f(a,Ba+b)+ fla,c) =

= f(a,Pa)+ f(a,b)+ f(a,c) = f(a,b)+ f(a,c).

6)Let 2 =0,a¢V, CNV #£#0 and BNV # 0. Then C\V = Ka since g¢(b,b) =
= gc(Ba+ b,Pa+b) for B € K.

ItDNV #£ 0,thenb,a+b,c,b+c €V, and

——

.f(ﬂvb—}_c) — f(ﬂ ——b"{“bb*}'[) {i) f(il'— bb—}-{‘) ‘I‘f(b.,b-l-{) {__}
= fla=b,b)+ f(a=b,c)+ f(b,b) + f(b,c) 2 f(a,b) = f(b,b) + flase) = f(b,c) +
f(b,b) + f(b,c).

[f DNV =0, then gp =0 by V3and so f(a,b+c¢)=0and b+c ¢ V. Since b,c €V,
(b,c)\V = K(b+c). Therefore b+ 0c € V for d € K\ {1}, and as in the case DNV # 0 we
have f(a,b+ 0c) = f(a,b) +0f(a,c). Because of (3) let f(a,c) # 0. Then f(a,b+ dc) # 0
by V1. Forall 6 € K\ {1} we obtain f(a,b) # 0f(a,c), and therefore f(a,b) = f(a,c).




An Extension Theorem for Bilinear Forms 297

References

|1] F. Buekenhout: Ensembles quadratiques des espaces projectits. Math.Z. 110 (1969)
306-318.

[2] K.J. Dienst & H. Miéurer: Zwei charakteristische Eigenschaften hermitscher Quadriken.
Geom. Dedicata. 3 (1974) 131-138.

[3] H. Karzel: Zur Begriindung euklidischer Raume. Mitt. Math. Ges. Hamburg. 11 (1985)
355-368.

4] H.-J. Kroll: Zur Darstellung miquelscher Mobiusraume. J.Geom. 2 (1972) 185-188.

5] H.-J. Kroll & K. Sorensen: Pseudoeuklidische Ebenen und euklidische Rdume. J.Geom.
8 (1976) 95-115.

6] H. Maurer: Symmetries of Quadrics. In: Geometry - von Staudt’s Point of View (ed:
P.Plaumann & K.Strambach). Dordrecht (1981) 197-229.

[7] E.M. Schroder: Zur Charakterisierung von Quadriken. J.Geom. 8 (1976) 75-77.

[8] E.M. Schréder: Uber die Grundlagen der affin-metrischen Geometrie. Geom. Dedicata.
11 (1981) 415-442,

9] E.M. Schroder: Aufbau metrischer Geometrie aus der Hexagrammbedingung. Atti Sem.
Mat. Fis. Univ. Modena. 33 (1984) 183-217.

[10] E.M. Schroder: An Extension Theorem for Quadratic Forms. Resultate Math. 11 (1987)
309-316.

[11] J. Tits: Ovoides a translations. Rend. Mat. 21 (1962) 37-59.

Kay Sorensen
Zentrum Mathematik
Technische Universitat
D-80290 Miinchen



