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FUNDAMENTAL GROUPS OF FAT-GRAPHS

MICHEL IMBERT

Abstract. Let I be a fat-graph of genus g, with n faces. In this note, we describe a combi-
natorial algorithm, leading to a presentation of its fundamental group by 2g + n generators
satisfying the surface relation.
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1 Introduction

Let T be a finite and connected graph, and consider its fundamental group. This is a free
group with A(I') = a(I") — s(I") + 1 generators, where a(I') and s(I') are respectively the
number of geometrical edges and vertices of the graph. The way to get a set of generators
using a maximal tree 1s well-known [9].

Assume now that I is a fat-graph, or map, in the sense of [1], [5], or [7]. Then we can realize
" in a canonical way as a deformation retract of an orientable compact surface punctured
by a finite number of points. The fundamental group of T is thus isomorphic to that of the
punctured surface.

Let I1, , the group defined by generators and relations:
g n
I—[g.n =< {AHBI}' .. ?Ag}Bg'.-Clu' . . :C??}XH[AHBI'] Hck = 1> .
i=1 k=1

The topological classification of compact orientable surfaces (as described in [2] or [10], by
reduction to the normal form) and Van Kampen’s theorem furnish a non canonical 1somor-
phism between the fundamental group of a n-punctured compact orientable surface and some
[1, ,; the integer g is the genus of the surface. Thus the fundamental group of a fat-graph 1" is
also isomorphic to some I ,,.

Let I be a fat-graph of genus g (defined by Euler-Poincare formula) with n faces. The aim
of this note is, starting from the algebraic definition of a fat-graph, to establish a combinatorial
algorithm leading to an isomorphism between m;(I') and I, , (theorem 12).

For this, we use three operations on fat-graphs, Whitehead’s moves, duality, and cut and
paste, and we interpret them at the level of their fundamental groups.

This result is motivated by the combinatorial study of moduli spaces M, , of compact
Riemann surfaces punctured at n points (see [3], [6], [8]), and more generally the study of
ramified coverings between compact Riemann surfaces, and of their moduli spaces (called
Hurwitz spaces, see [4]).
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To make the texte readable for everyone, we recall in the next paragraph some basic
notions on graphs. In the third one, we define fat-graphs and combinatorial operations on
them. In the last one, we state and prove the result of this note.

2 Graphs

We recall some elementary facts on graphs and their fundamental groups, with the book [9]
of J.P. Serre as reference.

Definition 1 A graph T is made of a set of vertices S(I') and of a set of oriented edges A(T"),
together with two maps:

A(T) = S(I') x S(T') and A(T) — A(T)

y— (y(0),5(1))  yr—=y

such that the second one is an involution without fixed points, and such that y(0) = y(1).

If y € A(I'), then ¥ is its opposite edge. We denote by y(0) the origin of y, and by y(1) its
end. If y(0) = y(1), the edge is called a loop. The couple {y,¥} forms a geometric edge. We
denote by A,(T"), the set of geometric edges. We set s(I") = #5(I") and a(T") = #4,(I"), so that
#A(T) = 2a(T).

There is an evident notion of sub-graph that we do not develop here.

Definition 2 An oriented path ¢ in a graph T is a finite collection of successive oriented
edges: aj,...,an, with ai(1) = ai11(0) fori € {1,...,n— 1}. We denote by o(c) the origin of
the path, and by t(c) its end. If o(c) = t(c), then the oriented path is called an oriented loop
based at o(c).

In this note, all the graphs will be finite (i.e. #4(I") and #S(I") are finite), and connected
(1.e. two any vertices are linked by a path).

Recall that a tree 1s a graph such that for every vertex s, there is no loop based at 5. The
following fact is classical:

Lemma 3 Let I be a graph. There exists a subgraph T of I" which is a tree, whose set of
vertices is S(I'), and with a(T) = s(T") — 1.

The proof is by induction on the number of vertices of the graph. Such a tree is called a
maximal tree, it is not unique.

We now recall the combinatorial definition of the fundamental group of a graph. If o =
(ai,...,a,) and B = (by,...,by,,) are two oriented paths in a graph I" with a,(1) = b (0), then
we define a new path oy = (ay,...,an,by,...,bn). .

Two oriented paths o and 3 are elementary homotopic if o. = caad and B = ed, where a is
an oriented edge, ¢ and d are two oriented paths (or if the same fact holds reversing the role
of o and ). They are homotopic if they differ by a sequel of elementary homotopies. The
notation is o ~ 3.



Fundamental Groups of Fat-graphs 259

Two homotopic paths possess same origins and ends. Thus the homotopy classes of
oriented loops based at a vertex p of I, with the composition law described above, make up
a group 71 (I, p) called the fundamental group of I” based at p.

If g is another vertex of I, then we have the following isomorphism of groups:

hpqg:m(I,p) — m(T,q)
Y — oyl

where o is an oriented path with o(0t) = p and ¢t(at) = ¢.
It is rather intuitive that 1) (I', p) is isomorphic to the first homotopy group of a geomet-
rical realization |I"| of T.

The classical result on the fundamental group of a graph is:

Theorem 4 Ler T" be a graph. Then n1(T',p) is a free group in h(T') generators, where
h(I') = a(l") —s(T) + 1.

The number A(T") is called the cyclotomic number of the graph. See [9] for a proof.

3 Fat-graphs

We recall definitions and basic properties of fat-graphs. Our references for fat-graphs and
their applications are [1], [5] and [7].

Imagine a graph embedded in an oriented smooth surface. Look at oriented tangent planes at
each vertex of the graph. Project neighborhoods of the vertices on tangent planes. We obtain
a cyclic ordering of edges incident on a vertex, and since the surface is oriented, the cyclic
ordering is the same at each vertex. Hence to embed a graph in a surface gives an additional
data. This leads to the following definition:

Definition 5

o Afat-graph I' is given by a finite set A(I') (of oriented edges) and by two permutations
Oo and ©) of this set, where G is an involution without fixed points.

o The subgroup C(I") of the group of bijections of A(T') generated by Gy and G, is called
the cartographical group of T.

The geometric edges are the orbits (disjoint cycles) of 6(I’), and the vertices are those of
oo(I"). We denote by A,(I") and S(T) there sets, and by a(I") and s(I") their cardinals.

Note that I" is a graph. We take the convention that a(1) is the Gp-orbit of a and a(0) is
the Gp-orbit of ) (a). For convenience, we often put @ = 6 (a). The connectivity amounts to
assume the transitivity of C(I") on the set of oriented edges.
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Figure 1: The action of the cartographical group

We define 6, (I") = 61(I')6o(I") !, such that 6o0,6, = 1. The orbits of 6,(I") are caled
the faces of I". We denote the set of faces by F(I') and its cardinal by f(I'). The length of a
cycle of og(I") (resp. o2(I")) is the valence of the corresponding vertex (resp. face).

Every face is an oriented loop, for, if b = 02(a) then b(0) = a(1).
The genus g(I') of the fat-graph I is then defined by the Euler-Poincaré formula:

2—2g(T) =s(T) —a(l") + f(I).

We can see a fat-graph I as a collection of oriented polygons (given by 6,(I")) glued with
o1(I'). This point of view is a good one for fat-graphs with only one face, such as the
fundamental polygons of compact orientable surfaces (see figure 2).

Moreover, we can realize the faces of I' as oriented polygons is an oriented plane, and fill
in by punctured disks. Then gluing them with G, gives an orientable compact surface F(I')
minus f(I") points (one for each face), together with an embedding i : |T'| < F(I") such that
i(|T]) is a retract by deformation of F(I').

a

»
4

d b

Figure 2: Fundamental polygon of a genus two surface

From the induced isomorphism between first homotopy groups ) (|I'}) and =t} (F(T')), we
deduce that g(T") = g(F(I")). For, on one hand, 7t; (F(I")) is a free group of rank 2g(F(I')) +
f(I') — 1, and on the other hand, 7t; (|I'|) is isomorphic to the fundamental group of I" which
is free of rank a(I') —s(I')+ 1 =2¢(I") + f(I') - L.

In fact the theorem 12 may be used to define g(F(I')) := g(I').

We describe now elementary operations on fat-graphs and their invariants.
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Definition 6 A morphism f: " = I' between two fat-graphs is a map f : A(I') — A(I")
which satisfies to fo6; = G;o f fori € {0,1,2}. If f is bijective, then f is an isomorphism.
The automorphism group is the centralizer of C(T) into the group of all permutations of A(T).

The transitivity implies f(A(T")) = A(I""). Such a morphism induces a morphism between the
underlying graphs. An isomorphism induces an isomorphism between their corresponding
fundamental groups.

Definition 7 Let I" be a fat-graph, and e = (a,a) a geometrical edge which is not a loop
(a(0) # a(1)). Then the Whitehead’s move on " along e consists in removing e and identifying
vertices a(0) and a(1), with the induced cyclic ordering. We denote by W,(T") the new fat-
graph obtained in this way. See the figure 3.

N ,._
e

Let us describe the cyclic ordering of edges around the new vertex. Let (ay,...,a, = @) and

(a=by,...,by) be the orbits of @ and a under 6o(I"). Then the new orbit is (ar,...,ap—1, b2,
.ybyg).

Since the only mono-valent faces are given by loops, the number of faces keeps constant

under Whitehead’s moves. Since the number of edges and vertices both decrease by one, we

deduce that g(I") = g(W,(I")).

Furthermore, the reader can easily check that W, (Wy(I')) is isomorphic to Wy (W,(I")).

Figure 3: Whitehead’s move.

Another classical operation is the duality, which consists in exchanging the role of vertices
and faces (see the figure 5).

Definition 8 LetI" be a fat-graph described by its cartographical group C(T'") =< 6p, 61,52 >.
Then the dual fat-graph T is defined by o, = 03, 0} = 0.

Then we have 65 = 61601, and g(I™) = g(I"), Aut(I'™*) = Aut(T'). Note that I™** is isomor-
phic (but not equal) to T, by conjugation by .

We now restrict ourselves to fat-graphs I" with only face and one vertex. By Euler-Poincare,
we have a(I") = 2g(I"). Such a fat-graph may be seen as an oriented polygon with 2a =
4g edges, with a pairing which induces only one vertex. We can label the oriented edges
by,...,by,; and assume that 6, = by - - - by,,.

We can also look at I" as a symbol made of 4g letters shared in two sets by o : {ar,...,a2.}.
and {@j,...,az}. Note that this symbol do not contain something like ---a@- - -, since this
gives one more mono-valent vertex.

As a well-known example, we have the so-called normal symbol: aja,a@@ - az,—)
@2¢02¢—182g, for which the reader can easily check that oy is a 4g-cycle. .

We also have the symbol a - - - az,@; - - - @2, for which 6; = G%g , hence og = 0%3_] is a 4¢-
cycle.



262 Michel Imbert

Let us introduce now the notion of cut and paste, classically used in the classification of
compact orientable surfaces (see [2] or [10]).

Definition 9 Take a symbol of 2a letters like above which represents a fat-graph with one
face: aobaP, where a and b are oriented edges, o. and B are oriented paths. The operation
cut along b and paste along a consists in forming the new symbol cboc3 where ¢ is an
oriented edge and considering the associated fat-graph.

o

b

oo |

Figure 4: Cut and paste on a one face fat-graph.

The pictorial translation of cut and paste is given on the figure 4.
If we perform many cut and paste, we are able to alter the symbol af3ya@60 into the symbol
cycod.

The following lemma is crucial in the fourth paragraph.

Lemma 10 Let aobaP be a symbol representing a fat-graph T with one face and one vertex.
Then the fat-graph A associated to the symbol choic obtained by cut analog b and paste
along a possess again one face and one vertex.

Proof. Denote by (0¢,01,02) the permutations describing I', and (8¢, 01,02) those which
describe A. We have to show that &y is a 4g-cycle (if g is the genus of I').
We first cut the words o and B into letters (oriented edges): 0. = ay---ap, p = by ---by. Then
we have to distinguish four cases according to the position of b into o or f.

First case: b = q
Then [ # 1 and [ # p. Indeed, if [ = p this refutes the fact that 6y is a 4g-cycle. Againif/ =1
then we have Gp(a) = b and op(b) = a which refutes our hypothesis.
Set A= (ﬂ],,..,ﬂ;_hﬂHl,. Ca ,ﬂp,bl,.. : ,bq).
Look at the respective actions of permutations Gy and dy on the whole set of oriented edges.
Note that if x € A then Gg(x) € A except if x € (@;,a,1,b1), since we have cp(a;) = a,
60(@;4+1) = b and 6o(b1) = a. Furthermore if x and y = Gp(x) belong to A, then y = Jp(x).
Iterate the permutations G¢ and & starting from a for 6y and from b for 8. We have 6y(a) =
b, 6o(b) = a;—1 € A and dy(b) = a;—. So, &y is in late.
The permutation Go can not go away from A by the letter @ since 6(@;) = a and b is not yet
reached. Here, 6y goes away from the set A with by or d;+1. Assume that this is with by (the
conclusion is the same in the other case). We have 6o(b)) = @, 60(@) = b, and 8y(h,) =T,
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80(¢) = by. We are again in A, and we can leave it only with @ (the obstruction for aj
being always valuable). Then we have 6¢(@;41) = b, 6p(b) = a p» on one hand, and &y (a;+;)
= b, 8y(b) =, 8y(¢) = a, on the other hand. Now &y has caught again .
Back in A, the only exist is by @; with og(a;) = a and &y(aj) = b.
We have covered the 4g¢ oriented edges for both 6 and & in 4g “times”, and this proves that
dp is a 4g-cycle.

Second case: b= b;(1 < j < q)
SetA=(ai,...,ap,b1,...,bj_1,bj41,...,by). The permutation 6 coincide with 8y on A and
0o leaves itonly in a,, by or bj; . We play again to the preceding game, starting from a (resp.
b) for 6y (resp. o).
We have op(a) = b, 6o(b) = bj—1 € A and 8(b) = bj—). For the same reasons than in the
first case, Op can leave A only by b; or b;..;. Take for example (the other case is similar) b ;.
Then 0¢(bj41) = b, 69(b) = a, € A and 8g(bj11) = b, 8p(b) = ¢, dy(c) = a,. Back in A we
have the sole possibility to go away by by : 69 (b1) = @, 6o(a@) = b, € A on one hand, and
do(b1) =T, 89(€) = b, on the other hand. We leave A for the last time by @, then 6¢(a@;) = a
and 0g(a;) = b.
We can conclude that &g is a 4g-cycle.

Third case: b = by
Playing again with A = (ay,...,ap,bz,...,b,), G have to reach @, or b, to be out of A at the
next time.
We have 6o(a) = b, 6p(b) = @, 6o(a) = by € A and 8y(b) = ¢, 8y(¢) = b,. Like in the
preceding cases, we can not leave by @ since Gy(a;) = a and b = b; is not yet reached by
6o which is a 4g-cycle. Thus we have oy(b2) = b, 6o(b) = a, and 8g(b2) = b, 8o(b) = c,
d0(c) = a,. Back in A we can leave it only by @, and we end the game by og(@;) = a and
0o(a;) = b.
We can conclude that &g is a 4g-cycle.

Fourth case: b = b,
Here A = (ai,...,ap,b1,...,bg—1). We have 6p(a) = b, 6o(b) =by_1 € A and 9g(b) = by-1.
Always for the same reasons oy can leave A only by b,. This leads to 6y(b;) = a@,0p(a) =
b,60(b) = ap, and 8y(by) =, 8(¢) = b, 8y(b) = ¢, 8y(c) = a,. The final leaving of A is by
a, so we end this game by oy(@;) = a and &y(a;) = b.
We can conclude that g is a 4g-cycle. O

4 Fundamental group of a fat-graph

We have to describe an algorithm to find a presentation for the fundamental group of a fat-
graph I" with 2g(I") + f(I") generators, satisfying only one relation (the so-called surface
relation).

The first 2g loops give the homological loops of the associated surface F(I'); the other
ones give the loops around the punctures and they come from the faces.

Indeed, faces furnish privileged conjugacy classes of m; (I, p). Let (ay,...,a;) be a face
of I" viewed as an orbit of 6,(I"). Join a;(0) to the base point p by an oriented path o, and
consider the homotopy class of ¥ = o, ...a;0. Another choice for o leads to a conjugate of
Y. If the face starts from a; with i > 1, then we get the homotopy class of Pa;.. .a;_p for
some [3, which is homotopic to Ba;...qay ...a;_1a;...aia . ..a;P, a conjugate of v.
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Thus, to each face is associated a well-defined conjugacy class in m; (I").

Definition 11 Every element of the conjugacy class of 1 (I') associated to a face is called a
loop-face.

Using only Whitehead’s move, cut and paste, and duality, we want to prove the following
theorem, a refinement of the classical theorem which classify by their genus the orientable
compact surfaces (see [2] or [10]).

Theorem 12 Let I be a fat-graph of genus g, with n faces. There exists a combinatorial
algorithm to find loop-faces C\,...,C, and 2g other oriented loops A1,By,...,Ag,Bg which
generate w1 (I'), and are submitted to the sole relation:

[A[,Bl]--- [ﬂg,Bg]Cl Oy = 1.

We call such a presentation of 7t;(I") a topological presentation. To show the theorem, the
key-point is the interpretation of operations on I” at the level of its fundamental group. Firstly,
we have the following result (classical for graphs):

Lemma 13 Let I” be a fat-graph, and W,(T") the fat-graph obtained by Whitehead’s move
along the geometric edge e = (a,a). Set v = a(0), w = a(1) and let x be the new vertex of
W,(T). Then there exists a canonical isomorphism between 1, (I',w) and m; (W,(I'),x).

Proof. Recall that the fundamental groupoid of a graph consists in homotopy classes of
oriented paths with the law (not always defined) of successive paths. We define a morphism
t from the fundamental groupoid of W, (I} to that of T".

If b € A(T)\(a,a), set b* the corresponding oriented edge of W,(I') such that b* = b*. If
b(1) = v then define \(b*) = ba, if b(0) = v then 1(b*) = ab, otherwise 1(b*) = b.

Since 1(b*b*) = 1Vb* € A(W,(I')), we have a well-defined map

T (We(D),x) — m(ILw)
Y =aj---a, — y=Ua} - ay)

This is a surjective morphism between two free groups of same rank (a(I') — s(I') + 1), hence
this is an isomorphism. O

Lemma 14 Let T be a fat-graph with s(I') > 2. Choose an edge e = (a,a) with a(0) # a(1),
for example in a maximal tree of . If the theorem is true for W, ('), then it is also true for T.

Proof. Assume that a and @ belong to the same face, and let ae; - - - e,af; - - - f; be an associated
loop-face. Since a(1) = w = €1 (0), we have \(e]) = ae;. And 1(e}) = e,a because ¢,(1) = w.
If for 1 < j<r, ej(l) =w, then ¢;41(0) = w so that 1(eje}, ) = ejejs;. Idem for the
fj. Thus the image by 1 of the loop-face C; = ej---¢} f; - f{ of W,(I') is the loop-face
Cy=aey - -edaf - fsof I.

This means that somewhere before or after C; there is e7* to cancel e]. But e7(1) = e1(0),
hence 1(e7*) = €ja cancelling ae; of C;. Similarly €,(0) = w implies 1(¢;*) = ae, which
cancels ¢,a.
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We can conclude that [A},B1]: - [Ag,Bg)|Cy -+ Cy-+-C = 1.
If a and @ belong to two different faces, then the same kind of arguments shows that the good
presentation for W, (I") gives the good one for I O

This lemma reduces the problem to the case of fat-graphs with one vertex. We also want
to reduce it to the case of fat-graphs with one face.

Lemma 15 Let T be a fat-graph with f(I') > 2. There exists a geometric edge (a,a) sepa-
rating two distinct faces.

Proof. If not, then for every (a,a@), a and @ belong to the same face F. This implies that F,
which is already an orbit of 65 (I") is stable under 6 (I"). Hence F is stable under the action of
the whole cartographical group, which is not compatible with f(I") < 2 and the connectivity
of I. O

Then consider some I" with at least two faces, and take among them Fj; and F; separated
by e = (a,a). We define I'# = {W,«(I"*)}"* (see definitions 7 and 8). This is nothing but

removing e for gluing F; and F; (see figure 5). Precisely, if F; = (a;,...,a, =a) and F; =
(@ =by,...,bs), then the new face is F; # F> = (a1,...,a8,-1.b2,...,b;). Other faces remain
unchanged.

We have s(I' #) = s(I'), a(T'#) = a(I') — 1, and f(T'#) = f(I') — 1. Thus g(I'#) = g(I').
The graph 1s 1n a natural way a subgraph of I'. So, we have an injective morphism 14 :
TC]{F#) — (F)

Figure 5: Whitehead’s move on the dual fat-graph

Lemma 16 Let I” be a fat-graph with f(I') > 2, and e separating two faces F| and F>. Set

I'# = {W,(I"*)}*. Then a topological presentation for T# gives a topological presentation
forT.

Proof. The image by 14 of a loop-face associated to a face Fj(j > 3) is a loop-face I'. If y; 7 is
the loop-face associated to the face Fi#F3, then w(Y12) = 1Yz, and IT[A;, Bi]Y1 2Y3 Yo = 1
implies IT[A;, B;] Yiv2ys - ¥n = 1. O
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Proof of the theorem:

Using lemma 16, we can suppose that f(I") = 1. If g(I') = 0, then we are done: I is a tree
with trivial fundamental group.

Now, g(I') > 1. Using lemma 14, we can furthermore retract all the edges of a maximal
tree, and assume that s(I") = 1.

We represent I” by a 4g cycle, as in the §2.

We can write this cycle aobBaybd, with o, B, Y, some words associated to oriented paths

(we say that b separates a from @). Let us prove this.
Let (0;)i=0,1 2 be the permutations describing vertices, edges and faces of I'. Write the symbol
ayaz---a;--- with @ = ay and a = a; for i > 1. Then, if for all j between 1 and i,a; = a for
another index k between 1 and i, the set (a;,...,a;—) is an orbit for 6y, which contradicts
s(I') = 1 under hypothesis of connectivity. Indeed, if a; # @3 for 1 < k < i, then 6p(ay) = a;
for 1 <1 < i. Since op(@z) = ay, 6p(a;) = a;—y, our set is an orbit of 6, and we have proved
that we can separate a from a.

We are in position to conclude. The key-point is that a cut an paste has an interpretation
as an operation on words in 7t;(I'). For example, aobaP — cboc consists in setting ¢ = ba
or, up to homotopy, a = cb (see figure 4).

Start with a symbol bR@ybdac.. Then perform a cut and paste along (b,b); this leads to
caypcada, or equivalently acadey if =y and yw = 0. By lemma 10, the new fat-graph has
again one vertex, and this allows us to continue. In 71 (T'), the loop-face acbBaybd becomes
acadcy. Note that ¢ € my(T).

Perform another cut and paste along (a,a). Then we pass from acadcy to dedey with
d = ao.

The end of the proof, which mimes the procedure used in the classification of compact
orientable surfaces, is an induction on the number of commutators already present in the
writing of the loop-face. We have done the first step.

Assume that the loop-face of our fat-graph writes down [ay,b;] -« [ap,bp] c1--- ¢y, With
ai,bjem(I')fori=1,...,pand p < 2g.

We have seen that there exists an oriented edge c;(i > 1) which separates ¢ from c;. Set
(= Hf?:] laj,bj], d = c; et ¢ = c1. Our symbol, or element of the fundamental group becomes
{cadPeydd, and dBeydSLco. up to homotopy.

We cut and paste along (d,d) which leads to ecyBeadlc, or eadlcecyP with e = odp.

Then another cut and paste along (2,e) gives ¢ fcadl fyp if we set f = yBeadl.

A last cut and paste along (c,c) leads to fgfyB0dlg where g = cad(, or equivalently {[ap 1,
bp+l] YB'IS where ap+1 = & bp+l = fem ().

The theorem 12 is thus proved. N

Example: Consider the symbol abcdabed which represents a fat-graph of genus two with one
face and one vertex. This symbol also represents a loop-face as an element of the fundamental
group 7y (T).

Write it bedabcda and perform a cut and paste along (b, b), setting e = bed. Hence this loop-
face writes down edcdecda or aedcdecd. Then set f = dcd and cut and paste along (a,a)
gives fefecded.
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We have found the topological presentation of this fat-graph, his homological loops are A; =
acd, By = bed, A» = ¢, and B> = d.

Remark: Using the fundamental groups m;(I") of fat-graphs T, it is not difficult to obtain a
combinatorial version of Riemann’s existence theorem, i.e. a correspondence between cov-
erings of I and homomorphisms from 7t; (I") to symmetric groups. The images of loop-faces
give the monodromy (see [4]).

One can also describe a fat-graph as the quotient of its universal covering (an infinite fat-tree)
by the action of 1ts fundamental group.

Thanks

[ thank J. Bertin for helpful discussions, and R. Bacher for his careful reading.
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