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Abstract. In this paper we study Riemannian homogeneous submanifolds of Euclidean
spaces in codimension two. If the index of relative nullity of the second fundamental form
is relatively low, we prove that the submanifold is a product Mm

1 × Rk where Mm
1 is either

isometric to a sphere or to a compact isoparametric hypersurface of the sphere or covered
by Sm−1 ×R. For homogeneous Einstein manifolds we obtain a complete classification which
improves the result in [1].
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Introduction

The purpose of this paper is to extend the results obtained by the au-
thors in [1] and [5] on codimension two homogeneous submanifolds of Euclidean
spaces. In the study of isometric immersions of Riemannian homogeneous man-
ifolds, the first step is to investigate the equivariance of the immersion which
in turn implies that its image is an extrinsically homogeneous manifold, that
is, it is the orbit of an isometric action in the ambient space. Such a property
can be established by studying the rigidity of such immersions. To this end, in
our previous articles we used a result of do Carmo-Dajczer in [4] for rigidity of
isometric immersions in higher dimensions and proved the following result.

(Theorem [CN1]). Let f : Mn → Rn+2 be an isometric immersion of
a Riemannian homogeneous manifold such that the minimum index of relative
nullity ν̄ = minx∈M νf (x) ≤ n − 5. Then either f is rigid or for every point p
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in M there exist orthonormal vectors ξ, η ∈ TpM
⊥ such that rankAη ≤ 2 and

if g ∈ Iso (M), ξ can be oriented so that g� ◦Aξ = Aξ ◦ g�.
It is easy to see from the Gauss equation and homogeneity of M that if

rankAη ≤ 2 then either rankAη ≤ 1 for all points of M or rankAη ≡ 2. The
study of the case rankAη ≤ 1 showed that such immersions (as expected) are
not equivariant, since they are essentially compositions of hypersurfaces with
isometric immersions of Rn+1 into Rn+2. In [5] we showed that if rankAη ≡ 2
then the immersion is still equivariant and we classified it in the case that M is
compact. It is worth pointing out that the equivariance came as consequence of
the classification of homogeneous manifolds which admit immersions with this
type of second fundamental form (see [5, Theorem 4.1]).

However, codimension two homogeneous manifolds of minimum index of
relative nullity ν̄ ≤ n − 5 were not completely classified in [5], since we have
not found in the mathematical literature a characterization of non-compact
extrinsically homogeneous manifolds. It is well known that the compact ones
are isoparametric hypersurfaces of the sphere.

The first result of this paper describes the non-compact homogeneous sub-
manifolds in codimension two.

Theorem 1. Let f : Mn → Rn+2, n ≥ 2, be an isometric immersion of
a non-compact Riemannian homogeneous manifold. If f is equivariant then
f(M) = M1 × Rk, where M1 is a compact isoparametric hypersurface of the
sphere.

Now, if the nullity of the second fundamental form is relatively low, Theo-
rem 1 and the results in [5] give the following complete classification.

(Theorem [CN2]). Let f : Mn → Rn+2 be an isometric immersion of
a Riemannian homogeneous manifold such that ν̄ = k ≤ n − 5. Then M =
Mm

1 × Rk and f = f1 × i, where i : Rk → Rk is the identity map and ν̄f1 =
minx∈M1 νf1(x) = 0. Moreover, one of the following occurs for M1 and f1:

(a) M1 is isometric to a sphere Sm and f1 is the composition of a standard em-
bedding into a hyperplane with an isometric immersion of this hyperplane
into Rn+2.

(b) M1 is covered by Sm−1×R and f1◦p is the composition of h◦(g×i) where p
is the covering map, g is a standard embedding of Sm−1 into a hyperplane,
i the identity map and h an isometric immersion of this hyperplane into
Rn+2.

(c) f1(M1) is a compact isoparametric hypersurface of the sphere.

It also follows from Theorem 1 that the remaining cases for a complete
understanding of codimension two homogeneous submanifolds are non-rigid im-
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mersions for which ν̄ = n−2, n−3, n−4. The methods used in [5] do not apply
to these cases due to the rigidity problem for codimensions greater than 1.

However, for homogeneous Einstein manifolds we obtain a complete classi-
fication. We recall that the class of homogeneous Einstein manifolds includes
the isotropy-irreducible homogeneous spaces by a result of J.A. Wolf (see [3, p.
187]). Since homogeneous surfaces have constant curvature and 3-dimensional
Einstein manifolds have constant sectional curvature, we study the case n ≥ 4.
Notice that either M is Ricci flat and hence flat by a result of D.V. Alekseevskii
and B.N. Kimelfeld (see [3, p. 191]) or νf ≡ 0. Therefore for n ≥ 5 we use the
classification above. For n = 4 we use a result of Jensen [7] which states that
an Einstein homogeneous manifold of dimension 4 is a symmetric space.

The second result of this paper is the following theorem which improves the
result in [1], since it does not require compactness for M .

Theorem 2. Let f : Mn → Rn+2, n ≥ 4, be an isometric immersion of a
Riemannian homogeneous Einstein manifold. Then one of the following holds:

(a) M is flat and hence the product T k×Rn−k where T k is a torus of dimension
k ≤ 2

(b) M is either a sphere or a product of two spheres, each of which is of di-
mension greater than 1.

1 Proof of Theorem 1

Definition 1. A submanifold M of Rn+p is said to be (extrinsically) re-
ducible if M splits in a Riemannian product M1 ×M2 and α(X,Y ) = 0 for all
X ∈ TM1 and all Y ∈ TM2, where α denotes the second fundamental form.

Proposition 1. Let Mn = G(v), n ≥ 2, be a homogeneous (extrinsically)
irreducible full submanifold of Rn+p, where G is a Lie subgroup of the isometry
group of Rn+p. If p = 2 then M is a compact isoparametric hypersurface of the
sphere.

Proof. It follows from a result of Olmos, in the appendix of [10], that M
lies in a cylinder Sm ×Rk. Let η be a unit normal vector field of the inclusion
i : Sm×Rk → Rn+2 and Ãη its corresponding Weingarten operator. Then Ãη has
two distinct eigenvalues, 0 and c. Let Ec denote the eigenspace corresponding
to the eigenvalue c.

For x in Mn, we consider the spaces V (x) = TxM ∩ Ec(x) and U(x) =
TxM ∩Ker Ãη(x). Let y ∈M and g ∈ G such that g(x) = y. Then its differential
g� maps η(x) to η(y), Ec(x) to Ec(y) and Ker Ãη(x) to Ker Ãη(y). Moreover,
g�(TxM) = TyM and hence V and U are distributions defined on M that are
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invariant by isometries in G. Notice that

dim V = dimTxM+dimEc(x)−dim(TxM + Ec(x)) ≥ n+m−(n+1) = m−1

dim U = dimTxM + dimKer Ãη(x) − dim(TxM + Ker Ãη(x))

≥ n+ k − (n+ 1) = k − 1

and then W = V + U is at least n− 1-dimensional, since m+ k = n+ 1.
Now we consider η as a normal vector field of the immersion f : M → Rn+2.

Let ξ be another unit normal vector field which is orthogonal to η and ∇⊥

denote the normal connection of f . Since for X in W , Ãη(X) is orthogonal to ξ
we have

〈∇⊥
Xη, ξ〉 = 0, ∀X ∈W.

Therefore, if dimW = n, we conclude that ξ and η are parallel normal sec-
tions of the normal bundle which in turn implies rank(M) = 2. A result of
Olmos (see [9] and [10]) implies that M is contained in a sphere and since
rank(M) = 2 we conclude that M is an orbit of an s-representation. Further,
the normal bundle is flat and hence M is an isoparametric submanifold of Rn+2.
Since M is irreducible, M must be compact, for complete non-compact isopara-
metric submanifolds are Riemannian products of compact ones with Euclidean
spaces (see [12]). In particular, M is a compact isoparametric hypersurface of
the sphere.

Suppose that dimW = n−1, that is, dimV = m−1 and dimU = k−1. Then
there exists Z1 ∈ Ec(x) and Z2 ∈ Ker Ãη(x) such that Z1 ⊥ V and Z2 ⊥ U . Let
Aη denote the Weingarten operator corresponding to η as normal vector of the
immersion f . Then for X ∈ TM , Aη(X) is given by the orthogonal projection
of Ãη(X) onto TM . Let Z be the unit vector field orthogonal to the distribution
W . It follows that β = {Z,X1, . . . , Xm−1, Y1, . . . , Yk−1} is an orthonormal basis
of eigenvectors of Aη, where Xi ∈ V and Yi ∈ U . We will show that either
〈∇⊥

Zη, ξ〉 = 0 or β also diagonalizes Aξ. In the former case we will have again
two parallel sections; in the latter case we obtain from the Ricci equation that
normal bundle of the immersion f is flat. In both cases we conclude again that
M is a compact isoparametric submanifold of Rn+2.

For that, let ∇ denote the Riemannian connection of the cylinder Sm×Rk.
Since ξ is tangent to the cylinder, we write

ξ = aZ1 + bZ2 Z = bZ1 − aZ2,

where Z1 and Z2 are as above. Observe span{ξ}, TM,Ec and Ker Ãη are distri-
butions invariant by g�,∀g ∈ G and then so is the distribution span{Z}. These
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facts imply that a and b are constant on M . Further, the Riemannian product
structure of Sm×Rk implies that Ec and Ker Ãη are parallel distributions with
respect to the connection ∇. Then, for all X ∈ TM , we have ∇XZ1 ∈ V , since
it is orthogonal to Z1 and to Ker Ãη. Similarly, ∇XZ2 ∈ U . Therefore

∇Xξ = a∇XZ1 + b∇XZ2 ∈W,

and in particular, Aξ(X) ∈W for all X ∈W . This immediately implies that Z
is an eigenvector of Aξ. Moreover, the above for the vector field Z gives

∇Zξ = a∇ZZ1 + b∇ZZ2 ∈W,

and then the eigenvalue corresponding to Z is zero. If either k = 1 or m = 1
then it is clear that Aη ◦Aξ = Aξ ◦Aη.

For the case that m > 1 and k > 1, notice first that if b = 0 then Z ∈ Ker Ãη

and hence 〈∇⊥
Zη, ξ〉 = 0. Let us then suppose that 〈∇⊥

Zη, ξ〉 �= 0. We will show
that in this case the distributions V and U are involutive. In fact, let Y1 and Y2

be vector fields in U . Since ∇⊥
Yi
η = 0, from the Codazzi equation

∇Y1AηY2 −Aη∇Y1Y2 = ∇Y2AηY1 −Aη∇Y2Y1

we obtain
Aη[Y1, Y2] = 0.

Observe that

ÃηZ = bÃηZ1 = bcZ1 = bc (aξ + bZ) = abcξ + b2cZ.

Then AηZ = b2cZ and since we are supposing b �= 0, we conclude that the
eigenvalue of Aη corresponding to Z is non-null. Therefore U is integrable and
its leaves N are homogeneous submanifolds (see [5, Lemma 4.4]) of M immersed
in Rn+p. We also have

〈∇Y1Y2, X〉 = 0 ∀X ∈ V and Y1, Y2 ∈ U

〈∇Y1Y2, Z1〉 = 0 and 〈Aη(Y1), Y2〉 = 0

implying that the first normal space of the immersion from g = f|N : N → Rn+2

is spanned by Z2. Moreover,

〈∇Y Z2, X〉 = 0 ∀X ∈ V, Y ∈ U and 〈∇Y Z2, Z1〉 = 0

and then the first normal space is parallel. Therefore each leaf N is a homoge-
neous hypersurface of Euclidean space Rk. Likewise, the same Codazzi equation
for X1, X2 ∈ V gives

Aη([X1, X2]) = c[X1, X2],
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which in turn implies that V is involutive, for if Z is an eigenvector of Aη

corresponding to the eigenvalue c then b = 1 and hence a = 0; thus Z = Z1

contradicting that dimW = n − 1. Therefore V is integrable and let S denote
denote a maximal leaf through a point. The immersion h = f|S : S → Rn+2 has
first normal space spanned by Z1 and η which is parallel, since

〈∇XZ1, Y 〉 = 0, 〈∇̄XZ1, Z2〉 = 0 and 〈Aη(X), Y 〉 = 0, ∀X ∈ V, Y ∈ U.

It follows that each leaf S is a homogeneous hypersurface of the sphere Sm.
Let us consider now the product of immersions S × N → Sm ×Rk. Then

the manifold M = S ×N is extrinsically reducible in the sense of Definition 1.
Therefore the second fundamental form

(∇XY )⊥ = 0, ∀X ∈ V, Y ∈ U.

It follows then that 〈∇XY, Z〉 = 0 and 〈[X,Y ], Z〉 = 0. This fact implies that
the normal curvature (of the immersion f) 〈R⊥(X,Y )ξ, η〉 = 0, and from the
Ricci equation we get that Aη ◦Aξ = Aξ ◦Aη. QED

Theorem 3. Let f : Mn → Rn+2, n ≥ 2, be an isometric immersion of
a non-compact Riemannian homogeneous manifold. If f is equivariant then
f(M) = M1 × Rk, where M1 is a compact isoparametric hypersurface of the
sphere.

Proof. Since f is equivariant we have f(M) = G(v). If f(M) is non-
compact, the proof of the theorem in the Appendix of [10] implies that f(M)
splits in a Riemannian product M1 × Rm where M1 is irreducible. Now the
previous proposition implies that M1 is a compact isoparametric hypersurface
of the sphere. QED

2 Codimension two homogeneous Einstein submani-
folds

In this section we prove Theorem 2, but first we recall some results concern-
ing 4-dimensional manifolds.

Let us consider M an oriented Riemannian manifold of dimension 4. Let
Λ2 denote the bundle of exterior 2-forms and Λ2 = Λ2

+ ⊕ Λ2
− the eigenspace

splitting for the Hodge +-operator. The Weyl tensor W leaves Λ2
± invariant and

we denote byW± its restriction to Λ2
±. An oriented 4- manifold is called self-dual

if W− = 0.
Proposition 2. Let f : M4 → R6, be an isometric immersion of an ori-

entable, locally irreducible, locally symmetric Riemannian manifold. Then M
has constant sectional curvature.
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Proof. It follows from Corollary 4 of [6] that M is self-dual for some orien-
tation. Moreover, if M does not have constant sectional curvature, then either
M or a double cover of M is a self-dual Kähler manifold. We will show that
if M is isometrically immersed in R6, the latter case implies that M is flat
contradicting the local irreducibility of M .

Suppose first that R⊥ = 0. Then from the Ricci equation we get that the
curvature tensor of M is pure and hence W+ = W− = 0 (see [3, Lemma 16.20,
p.439]). Then M is conformally flat and since a locally irreducible, locally sym-
metric Riemannian manifold is Einstein, M has constant sectional curvature.
Otherwise, let ξ, η be vectors of Tf(p)M

⊥. If {Y1, . . . , Y4} is an orthonormal basis
of TpM and X and Y two arbitrary vectors, the Gauss equation implies

Ric(X,Y ) =
4∑

i=1

〈R(X,Yi)Yi, Y 〉 =

= t1〈Aξ(Y ), X〉 + t2〈Aη(Y ), X〉 − 〈Aξ(X), Aξ(Y )〉 − 〈Aη(X), Aη(Y )〉
where t1 = traceAξ and t2 = traceAη.

Now let {X1, . . . , X4} and {Z1, . . . , Z4} be orthonormal bases of eigenvectors
of Aξ and Aη respectively. Let us denote the eigenvalues of Aξ by λi and of Aη by
µi. We then suppose that neither of these two bases diagonalize simultaneously
Aξ and Aη. Since X1 is not an eigenvector of Aη, there exist, say Z1, Z2 such
that 〈X1, Zi〉 �= 0, for i = 1, 2. Since Ric(X1, Xj) = 0 for all j �= 1 and X1 is an
eigenvector of Aξ, we get from the above that

Aη(t2X1 −Aη(X1)) = γX1.

Writing X1 =
∑
i

aiZi, the equation above implies that ai
∑
j �=i

µjµi = γai, for all

i and, without loss of generality, we can assume that a1 �= 0, a2 �= 0. We obtain∑
j �=1

µjµ1 = γ
∑
j �=2

µjµ2 = γ.

Therefore, µ1 and µ2 are distinct roots of the quadratic equation x2−t2x+γ = 0
and hence t2 = µ1 +µ2 and µ1µ2 = γ. This implies

∑
i�=1,2

µi = 0. This also shows

that if 〈X1, Zi〉 �= 0, for i ≥ 3, the corresponding eigenvalue of Zi is either µ1 or
µ2. Therefore we can suppose that X1 lies in the plane spanned by Z1, Z2. Now
we repeat the procedure for Aξ. There exists, say X2, such that 〈X2, Z1〉 �= 0,
and we have t1 = λ1 + λ2,

∑
i�=1,2

λi = 0 and λ1λ2 = δ, where

Aξ(t1Z1 −Aξ(Z1)) = δZ1.
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Again X2 can be chosen such that Z1 ∈ span{X1, X2}. Thus span{X1, X2} =
span{Z1, Z2} and the Ricci curvatures are given by the sectional curvature
K(X1, X2) = λ1λ2 + µ1µ2. Moreover, the plane span{X1, X2} is invariant by
Aξ and Aη. This implies that the plane span{X3, X4} is also invariant by Aξ

and Aη and hence the 2-forms X1 ∧ X2 and X3 ∧ X4 are eigenvectors of the
curvature operator R with same eigenvalue, because K(X1, X2) = K(X3, X4).
This implies that M has constant sectional curvature, otherwise, since W− = 0,
we conclude that W+ has a null eigenvalue, denoted by W+

1 = 0. Therefore, the
other two eigenvalues satisfy W+

2 +W+
3 = 0. If either M or a double cover is a

self-dual Kähler manifold, Proposition 2 of [6] shows that on Kähler manifold
(with natural orientation) LspecW+ ≤ 2. Therefore W+

2 = 0 and W+
3 = 0 and

being Kähler and locally symmetric is flat. QED

Proof of Theorem 2. SinceM is Einstein, the Ricci curvatures are given
by S/n, where S is the scalar curvature. First we remark that if S = 0, being
homogeneous, M is flat and hence the product T k×Rn−k where T k is a torus (
see [3, Vol.I, p. 191]). But since M is isometrically immersed in Rn+2, a classical
result of Tompkins, [13] implies that k ≤ 2. Now, if S �= 0, we conclude that
ν(p) = 0, for every p in M . Let us suppose first that f is rigid. Since ν(p) = 0,
Theorem 1 implies that f(M) is compact and lies in a sphere Sn+1. Therefore,
it is an Einstein hypersurface of the sphere. A result of Ryan in [11, p. 376]
implies then that f(M) and hence M itself, is isometric either to a sphere or to
a product of two spheres each of which is of dimension greater than 1.

If f is non-rigid we consider first the case n ≥ 5. Since ν(p) = 0, for every
point in M , there exist orthonormal sections ξ, η of the normal bundle such that
rankAη ≤ 2 and Aξ is constant. From Theorem [CN2] we conclude that M is
isometric either to a sphere Sn or f(M) is compact Einstein hypersurface of
the sphere Sn+1 and hence M is the round sphere or the Riemannian product
S2 × Sn−2. If n = 4, a result of Jensen, [7], states that a homogeneous Ein-
stein 4-manifold is a symmetric space. If M is locally irreducible, we get from
Proposition 2 that M has constant sectional curvature. Since a 4-dimensional
hyperbolic space cannot be immersed in R6, M has positive constant curvature
and hence is isometric to a sphere S4 (recall that positively curved codimension
2 submanifolds are simply connected, [8]). If M is reducible, being Einstein, it
is covered by the product of surfaces with the same constant curvature. By the
result in [2] we conclude that the immersion is a product of two hypersurface
immersions and since the hyperbolic plane cannot be isometrically immersed in
R3, M a product of two 2-spheres with the same constant curvature. QED
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