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Abstract. In this paper we study Fano threefolds with a torsion divisor (Fano–Enriques).
Due to this torsion divisor, they can be described as quotients of Fano threefolds by a finite
abelian group action. We start from lists of Fano threefolds by Reid, Fletcher and Altınok and
check which of them admit such an action with a Fano–Enriques quotient.
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Introduction

In [9], Reid introduced the graded rings method for the explicit classification
of surfaces, which he used to produce a list of 95 K3 quasi-smooth hypersurfaces
in weighted projective spaces (which were proved to be the only ones). Later,
Fletcher used this method to create more lists of different weighted complete
intersections. From the K3 surfaces he developed two lists of anticanonically po-
larised Fano threefolds that have the K3s as hyperplane sections. These two lists
for Fano threefolds of codimension one and two can be found in [6]. Later on,
Altınok developed in [1] a formula to compute the Hilbert series of a Fano three-
fold (which is very important for the graded rings method). Also, Altınok wrote
a list of codimension three K3 surfaces (which produces a list of codimension
three Fano threefolds). All lists are also in [7].

In this paper we deal with Fano–Enriques threefolds (Fano threefolds with a
torsion divisor σ). These varieties can be expressed as quotients of Fano three-
folds under an action by a Z/(r) group, where r is the order of σ. We use the
above lists of codimension 1, 2 and 3 to give in this paper all possible Fano–
Enriques quotients that can be obtained from these lists.

To find these quotients, one finds restrictions for the covers. Then, one tests
all members of the known lists of Fano threefolds and, for all the members
satisfying the restrictions, one computes the Hilbet series to apply a slightly
modified graded rings method and search for a quotient.
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118 J. Caravantes

The distribution of this paper is as follows. In the first section, we recall some
preliminaries about Fano–Enriques threefolds. We describe Altınok’s method to
compute the Hibert series for the anticanonical ring of a Fano threefold and the
graded rings method in section 2. In section 3 we introduce our modification
for these methods (Altınok’s and graded rings) to Fano–Enriques threefolds.
Finally, in section 4, we show the complete way to obtain the lists of Fano–
Enriques quotients and give these lists.

1 Preliminaries

Throughout this paper, we work over the complex field. We recall that a sin-
gularity of type 1

r (a1, . . . , al) is a point with an analytic neighbourhood which
is isomorphic to a neighbourhood of the origin in Cl under an action by Z/(r)

consisting on multiplying by (ǫa1 , . . . , ǫal) where ǫ = e2π
i
r . Sometimes we just

say singularity of type 1
r without specifying a1, . . . , al. We consider just tridi-

mensional irreducible and reduced schemes over C with at most isolated cyclic
singularities of index 1

r (1, a,−a) with r and a coprime. The necessary back-
ground about the weighted projective space and quasi-smooth subvarieties can
be found in [5] or [6].

1 Definition. A threefold X is Fano if it has at most isolated quitient
singularities of index 1

r (1, a,−a), with r and a coprime, and the anticanonical
class −KX is ample.

2 Definition. A Fano threefold X is Fano–Enriques if it has a torsion

divisor σ, (i.e. there exists r ∈ Z+ so that rσ
lin∼ 0).

We recall now the standard construction that relates every Fano–Enriques
threefold with a Fano threefold. LetX be a Fano–Enriques threefold with torsion
divisor σ of order r. It is well known that we can define a covering π : Y → X
where

Y = Spec(OX ⊕OX(σ)⊕ · · · ⊕ OX((r − 1)σ)).

This covering is r : 1 at each point in which σ is a Cartier divisor. Moreover,
there is a regular action by Z/(r) on Y such that X is the quotient of Y by this

action. This action can be described this way: For j ∈ Z/(r), consider ǫ = e
2πi
r .

Then:

OX ⊕OX(σ)⊕ · · · ⊕ OX((r − 1)σ)
j−→ OX ⊕OX(σ)⊕ · · · ⊕ OX((r − 1)σ))

where
(a0, . . . , ar−1) 7→ (a0, ǫ

ja1, . . . , ǫ
(r−1)jar−1).

Then, for I ∈ Y = Spec(OX ⊕ OX(σ) ⊕ · · · ⊕ OX((r − 1)σ)) its image is the
prime ideal j−1(I).
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Low codimension Fano–Enriques 3-folds 119

3 Remark. If X is quotient of Y by a Z/(r) action, that action can be
extended to the weighted projective space that contains Y . The reason is that
the representation of Z/(r) has a reflection in the anticanonical ring of Y (via
the action on the sheaf of structure). The action on the anticanonical ring

R(Y,−KY ) =
⊕

d∈Z

H0(Y,−dKY )

preserves the degrees of the elements. This means that we have an action for
every R(Y,−KY )d = H0(Y,−dKX). Therefore, each space will be generated by
eigenvectors (this is because the automorphism is an r-th root of the identity),
which means that the matrix of the automorphism of the ring is diagonal after
a suitable change of coordinates. Now we can use Orbifold Riemann-Roch to
classify by eigenvalues (r-th roots of 1) the generators of R(Y,−KY ) (which are
eigenvectors after the change of coordinates). This describes the action that,
together with Y , determines X.

4 Proposition. Let X be a Fano–Enriques threefold with torsion divisor σ
of order r. Let Y = Spec(OX ⊕OX(σ)⊕ · · · ⊕ OX((r − 1)σ)) as above. Then:

(1) All the singularities of Y are terminal.

(2) The cover Y is a Q-Fano threefold.

Proof. Let U ⊂ X be a sufficiently small analytic neighbourhood around
a singularity Q of type 1

rQ
(bQ, 1,−1). We know that Pic(U) is isomorphic to

Z/(rQ) and is generated by the restriction to U of the canonical class, so the
local expression of the torsion divisor σ|U is lQKX |U for some lQ in Z/(rQ).
Then, α :=

rQ
gcd(rQ,lQ) is the order of σ|U in Pic(U) (i.e. ασ is Cartier in Q)

and divides r (the order of σ in the divisor class group of X). Let Yα be the
cover of X associated to ασ. Clearly, Y is a cover for Yα (there is an obvious
monomorphism of rings which defines an epimorphism of schemes with a com-
mutative diagram). Therefore, Q comes from r

α different points with disjoint
analytic neighbourhoods Vi, i = 1, . . . , rα . Observe now that the canonical cover
of a 1

rQ
(bQ, 1,−1) singularity is an analytic neighbourhood of O in C3 defined

as

Spec(OU ⊕OU (KX |U )⊕ · · · ⊕ OU ((r − 1)KX |U )).

Hence, working locally, we easily deduce that each Vi is of type 1
rQ
α

(bQ, 1,−1)
which proves (1).

Since π is an analytically local isomorphism away from the singularities
of X (which are isolated), the anticanonical bundle of Y is π∗(−KX) (i.e.
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120 J. Caravantes

π−1(−KX) ⊕ π−1(−KX + σ) ⊕ · · · ⊕ π−1(−KX + (r − 1)σ)). Therefore Y is
a Fano threefold and we have (2).

QED

5 Example. Consider the complete intersection Y2,2,2 ⊂ P6 with Z/(2)
acting as the multiplication by +,+,+,+,−,−,− (i.e. the generator of Z/(2)
takes (x0, x1, x2, x3, x4, x5, x6) to (x0, x1, x2, x3,−x4,−x5,−x6)). Then, since a
general Y has eight fixed points (the points in the intersection with {x4 = x5 =
x6 = 0}), X has eight singularities of index 1

2(1, 1, 1).

The aim of this paper is to reverse this process, i.e. to describe the possible
X’s for a fixed Y with a prescribed Z/(r) action.

2 The graded rings method for Fano threefolds

In this section we recall Reid’s graded rings method from [10] in order to find
appropriate ambient spaces and equations for Fano threefolds as shown in [1].
The aim is to manage some numerical data (i.e. the type of the singularities
and the selfintersection of the canonical divisor −K3

Y ∈ Q) to search for a
Fano threefold embedded in a weighted projective space by the anticanonical
morphism. For this purpose we use the Hilbert series of the polarized variety
(Y,−KY ) (which depends only on the above numerical data) to guess a possible
set of generators and relations of the ring associated to our threefold embedded
in the appropriate weighted projective space. In general, for an ample divisor
D (for a Fano threefold, we use D = −KX) we can consider the ring

R(Y,D) :=
⊕

n≥0

H0(Y, nD).

If we can find generators and relations for such a ring, then we have a good
description of Y = Proj(R(Y,D)).

We use Hilbert series to find this R(Y,D). The Hilbert series of Y is:

PY (t) :=
∑

n≥0

h0(Y, nD)tn.

To compute tP (t), we can recall Orbifold-RR formula from [10]:

χ(OY (D)) = χ(OY ) +
1

12
D(D −KY )(2D −KY )+

+
1

12
Dc2(Y ) +

∑

Q∈B

cQ(D) (1)
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Low codimension Fano–Enriques 3-folds 121

where B represents the basket of terminal quotient singularities 1
rQ

(1, aQ,−aQ) =
1
rQ

(bQ, 1,−1) (where aQbQ ≡ 1 mod rQ) and the contributions are:

cQ(D) = −iQ
r2Q − 1

12rQ
+

iQ−1∑

j=1

[bQj]rQ(rQ − [bQj]rQ)

2rQ

where:

• iQ is defined by the condition O(D) ≃ O(iQKY ) near the singularity Q.

• [a]r is the minimal nonnegative remainder of a mod r.

6 Remark. Since −KX is ample, the equality χ(−nKY ) = h0(Y,−nKY )
holds for all n ≥ 0 by Kodaira vanishing theorem.

7 Theorem. [Altınok [1]] The Hilbert series
∑

n≥0 h
0(Y,−nKY )t

n of a
Fano threefold Y can be computed as a rational function on t by the formula:

PY (t) =
1 + t

(1− t)2 +
t+ t2

(1− t)4
−K3

Y

2
+

−
∑

Q∈B

1

(1− t)(1− tr)

rQ−1∑

i=1

[bQi]rQ(rQ − [bi]rQ)

2r
ti. (2)

We call numerical data of a Fano threefold to B and the selfintersection of the
canonical class −K3

Y .

8 Remark. We recall from [1] that the selfintersection of the canonical class
of a Fano threefold X is

−K3
Y =

∑ bQ(rQ − bQ)
rQ

+ 2k

for some integer k.

9 Example. Now we illustrate the graded rings method. Consider a hypo-
thetical Fano threefold with just a 1

2(1, 1, 1) singularity and −K3
Y = 5

2 . Using
Alınok’s formula (2), we obtain the Hilbert series:

PY (t) := 1+ 4t+11t2 +24t3 +46t4 +79t5 +126t6 +189t7 +271t8 +374t9 + · · ·

By definition, the coefficient of td is the dimension of the C- vector space of
all homogeneous elements in R(Y,−KY ) of degree d. In particular, we have
generators x1, x2, x3, x4 in degree one. Since a generator contributes to this series
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122 J. Caravantes

multiplying by 1
1−ta , where a is the degree of the generator, we can multiply by

(1− t)4 to simplify the series and discover new generators and relations:

(1− t)4PY (t) = 1 + t2 + t4 − t5 + t6 − t7 + t8 − t9 + · · ·

This shows that there is a new generator y in degree two. Then, we multiply
by (1 − t2) and get 1 − t5. Therefore, one expects to have a relation in degree
five, which means having a hypersurface Y5 ⊂ P(1, 1, 1, 1, 2). And in fact, any
quasi-smooth equation works and give the numerical data we started from (i.e.
a Fano threefold with a singularity of type 1

2(1, 1, 1) and −K3
Y = 5

2).

10 Remark. The expression “one expects” means, as in [2], “if there are no
extra generators and relations”. If there is an extra relation among the monomi-
als (products of the generators), we need a new generator of the same degree to
fill the dimension given by Orbifold-RR and the Hilbert series does not change.
We avoid these special cases (see also Remark 22).

3 The graded rings method for Fano–Enriques three-

folds

This section is devoted to modify the graded rings method in order to apply
it to Fano–Enriques threefolds. We start with an analogue of Altınok’s formula.
We need an useful remark which explains why formula (3) has been motivated.

From Remark 3, one naturally attempts to generalize Altınok’s formula by
defining a new Hilbert series considering two degrees: the standard one in Z and
other in Z/(r) = {r − th roots of 1}:

Clearly, H0(Y,−nKY ) =
⊕r−1

i=0 H
0(X,−nKX + iσ). Therefore, PY (t) =∑r−1

i=0 P
i
X(t) where P

i
X(t) =

∑
n≥0 h

0(X,−nKX + iσ)tn.

So we can define the new Hilbert series in Z[[t, e]]/(er− 1) as
∑r−1

i=0 e
iP iX(t).

The main point of this is that the product in the power series ring agrees with the
Z/(r) action (i.e. a generator in H0(X,−nKX + iσ) contributes to the Hilbert
series multiplying by 1

(1−eitn)
= 1+eitn+e[2i]r t2n+· · · ). So we grade R(Y,−KY )

in a new way:

11 Definition. We call bidegree of an element in H0(X,−nKX + iσ) ⊂
R(Y,−KY ) as (n, i) ∈ Z⊕ Z/(r).

Now we need a formula for
∑
h0(X,−nKX + τ), where τ is a numerically

trivial divisor (in particular, it can be a torsion divisor).

12 Lemma. Let X be a Fano threefold with a numerically trivial divisor τ
and a basket of singularities B. For every singularity Q ∈ B, define lQ such that,
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Low codimension Fano–Enriques 3-folds 123

locally in Q, τ ≃ O(lQKX). Then we have that
∑

n≥0 h
0(X,−nKX + τ)tn =

PX(t) +
∑

Q∈B

(rQ − lQ
1− t

r2Q − 1

12rQ
+

+
1

1− trQ
rQ−1∑

j=0

( j+rQ−lQ∑

i=j+1

[bQi](rQ − [bQi])

2rQ

)
tj
)
. (3)

Proof. By Orbifold Riemann-Roch:

χ(−nKX) = χ(OX) +
2n3 + 3n2 + n

12
(−K3

X) +
n

12
(−KX)c2 +

∑

Q∈B

cQ(n)

where

cQ(n) = −[−n]
r2Q − 1

12rQ
+

[−n]−1∑

j=1

[bQj](rQ − [bQj])

2rQ

and

χ(−nKX + τ) = χ(OX) +
2n3 + 3n2 + n

12
(−KX)+

+
n

12
(−KX)c2 +

∑

Q∈B

cQ(−nKX + τ)

where

cQ(−nKX + τ) = −[lQ − n]
r2Q − 1

12rQ
+

[lQ−n]−1∑

j=1

[bQj](rQ − [bQj])

2rQ
.

It is clear that χ(−nKX + τ) − χ(−nKX) is the sum in B of cQ(−nKX +
τ)− cQ(n). This takes the value:

∑

Q∈B

(
(rQ − lQ)

r2Q − 1

12rQ
−
n+rQ−lQ∑

i=n+1

[bQj](rQ − [bQj])

2rQ

)
.

This expression is clearly periodic with period rQ, so we get (3) QED

13 Remark. Lemma 12 shows that the only numerical data of a Fano–
Enriques threefold we need to consider consist of −K3

X , the order of the torsion
divisor r, and the basket B divided in Bt (singularities where the torsion divisor
is not trivial) and Be (rest of the basket). Moreover, for every singularity Q ∈ Bt
we add the number lQ, which is determined by the local value of the torsion
divisor in the singularity Q.
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124 J. Caravantes

The generalization of the graded rings method to Fano–Enriques threefolds
comes by applying Lemmas 7 and 12. We continue by applying the method to
a concrete example.

14 Example. Consider a Fano–Enriques variety X whose basket is B =
{ 1
10(1, 3, 7), 2 × 1

5(1, 2, 3)} with respective lQ = 6, 1, 1 and −K3
X = 1

2 . We look
for generators as in Example 9 but paying attention also to the new weight in
Z/(5). From formulas (2) and (3), we get the Hilbert series:

(1 + t+ 2t2 + 5t3 + 9t4 + 16t5 + 25t6 + 38t7 + 54t8 + 74t9 + · · · )+
+ e(t+ 2t2 + 5t3 + 9t4 + 15t5 + 26t6 + 38t7 + 54t8 + 75t9 + · · · )+
+ e2(3t2 + 5t3 + 9t4 + 16t5 + 25t6 + 38t7 + 54t8 + 75t9 + · · · )+
+ e3(t+ 2t2 + 5t3 + 9t4 + 16t5 + 25t6 + 37t7 + 55t8 + 75t9 + · · · )+
+ e4(t+ 2t2 + 5t3 + 9t4 + 15t5 + 26t6 + 38t7 + 54t8 + 75t9 + · · · )

The coefficient of eitj is the dimension of the subspace of elements of bidegree
(i, j) in R(X,−KX , σ), so we have generators x1, x2, x3, x4 in the subspaces
H0(OX(−KX)), H

0(OX(−KX+σ)), H0(OX(−KX+3σ)), H0(OX(−KX+4σ))
respectively. They have respective bidegrees (1,0), (1,1), (1,3), (1,4).

A generator in H0(OX(−jKX + iσ)) contributes now to the Hilbert series
multiplying by

1 + eitj + e[2i]r t2j + · · ·
This is an inverse for 1− eitj in Z[[e, t]]/(er − 1). Thus we multiply in our case
by 1− t, 1− et, 1− e3t, 1− e4t, so we get

(1 + t4 + t8 + · · · )+
+ e(t6 + · · · )+
+ e2(t2 +−t7 + · · · )+
+ e3(t8 + · · · )+
+ e4(t4 − t9 + · · · )

This shows that we need a generator y in H0(OX(−2KX + 2σ)) (of bidegree
(2,2)). We now multiply by 1− e2t2 and get:

1− t5,

so we have a relation in H0(OX(−5KX)) (i.e. a weighted-homogeneous polyno-
mial of degree 5 which is invariant by the action). The expression x51+x

5
2+x

5
3+

x54 − x2y2 gives a quasi-smooth relation for Y5 ⊂ P(1, 1, 1, 1, 2), with the action
by Z/(5) consisting on multiplying each coordinate by (1, ǫ, ǫ3, ǫ4, ǫ2).
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Low codimension Fano–Enriques 3-folds 125

Now we should check that all singularities behave as expected. The only fixed
points by the action in P(1, 1, 1, 1, 2) are the five coordinate points and the line
P(x2, y). So the only possible singular points come from points in Y ∩ P(x2, y).
This intersection consists of three points: (0 : 0 : 0 : 0 : 1), (0 : 1 : 0 : 0 : 1), (0 :
1 : 0 : 0 : −1). For the two last points, we can use standard coordinates because
these two points are not singular in Y (nor in P(1, 1, 1, 1, 2)). In fact, we can take
x1
x2
, x3x2 ,

x4
x2

as affine coordinates. Considering our action as the multiplication by

(ǫ4, 1, ǫ2, ǫ3, 1), it is clear that for the second point and the third one we get a
quotient singularity 1

5(4, 2, 3) =
1
5(1, 2, 3). Moreover, since −KX is represented

locally by the divisor {x1x2 = 0} and σ by
x24
x22
, we obtain that σ is, locally, equal

to the canonical divisor (i.e. lQ = 1 for both points). For the first point, we
immediately see that we can take x1

y ,
x3
y ,

x4
y as (analytically) local orbinates.

Here, we have to consider the action in C3 which gives the singularity in Y : it
takes (a, b, c) to (−a,−b,−c). Now we also have another action, generated by
the morphism that takes (a, b, c) to (ǫ4a, ǫ2b, ǫ3c). This means that we actually
have a Z/(10) action generated by the two morphisms just written (the opposite
of a nontrivial 5th root of unit is a nontrivial 10th root of unit). So we get a
singularity of type 1

10(1× 5 + 4× 2, 1× 5 + 2× 2, 1× 5 + 3× 2) = 1
10(3, 9, 1) =

1
10(1, 3, 7). Working as before, we can see that lQ is 6 as expected. This means
that the example we got does have only terminal singularities, and so it is a
Fano–Enriques threefold.

4 The search for Fano–Enriques threefolds

In this section we list all non-special (in the sense of Remark 10) Fano–
Enriques threefolds of codimension 1, 2 and 3. To this purpose we give first some
restrictions for the numerical data that gives (after a computational search), just
39 possibilities for Bt. Then, we combine it with all possible covers (chosen from
the lists of [6] and [1] or [7]) to give the quotients. The lists in this section have
been found using Magma (see [8]), which was used also to do the computer
search for Tables 1.r (r ∈ {2, 3, 4, 5, 6, 8}).

These are some immediate restrictions for the numerical data of a Fano–
Enriques threefold:

(1) from Bogomolov’s instability, as said in [2], −KXc2 > 0, so applying
Orbifold-RR to the canonical class we get

∑

Q∈BX

(
rQ −

1

rQ

)
< 24. (4)
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126 J. Caravantes

(2) the same for the cover Y :

∑

Q∈BY

(
rQ −

1

rQ

)
< 24.

(3) the Lefschetz number is L(g,OY ) =
∑

(−1)iTrace(g∗|Hi(OX)). By the
Atiyah-Singer-Segal formula, it is a sum of various contributions over
Fix(g). So: Fix(g) = ∅ ⇒ L(g,OY ) = 0. By Kodaira vanishing, since the
covering Y is a Fano threefold, we get that L(g,OY ) =Trace(g∗|H0(OX)),
and g∗|H0(OX) is not zero. Therefore the action fixes at least a point. This

means that, if r is the order of the torsion divisor σ, we have a 1
kr singu-

larity for at least one k ∈ Z positive. So r ≤ 24 by

(4).

(4) if we call Bt the subset of B consisting on the singularities Q where τ is
not Cartier (i.e. lQ 6= 0), it is clear that χ(−nKX+τ)−χ(−nKX) depends
only on Bt and the coefficients lQ, not on the rest of B and −K3

X . These
numbers must be integer for all τ = iσ, i ∈ {0, . . . , r − 1}.

(5) Since −KX is ample and σ is numerically trivial, −KX + iσ is ample for
any i ∈ Z/(r). Therefore, by Kodaira’s vanishing, χ(iσ) = h0(iσ) ≥ 0.

After doing an exhaustive computer search (testing all baskets with all
possible combinations of lQ), we found that there are 39 possible Bt (with
r = 2, 3, 4, 5, 6, 8) satisfying the restrictions. The notation we use is

( 1

rQ
(1, a,−a)

)
lQ
.

These are the results, which we divide according to the group Z/(r) acting

Table 1.2. Subsets Bt for order 2 actions:

(1
2
(1, 1, 1)

)
1
,
( 1

14
(1, 1, 13)

)
7

(Bt2.1)
(1
2
(1, 1, 1)

)
1
,
( 1

14
(1, 3, 11)

)
7

(Bt2.2)
(1
2
(1, 1, 1)

)
1
,
( 1

14
(1, 5, 9)

)
7

(Bt2.3)
(1
4
(1, 1, 3)

)
2
,
( 1

12
(1, 1, 11)

)
6

(Bt2.4)
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(1
4
(1, 1, 3)

)
2
,
( 1

12
(1, 5, 7)

)
6

(Bt2.5)
(1
6
(1, 1, 5)

)
3
,
( 1

10
(1, 1, 9)

)
5

(Bt2.6)
(1
6
(1, 1, 5)

)
3
,
( 1

10
(1, 3, 7)

)
5

(Bt2.7)
(1
8
(1, 1, 7)

)
4
,
(1
8
(1, 1, 7)

)
4

(Bt2.8)
(1
8
(1, 1, 7)

)
4
,
(1
8
(1, 3, 5)

)
4

(Bt2.9)
(1
8
(1, 3, 5)

)
4
,
(1
8
(1, 3, 5)

)
4

(Bt2.10)

3×
(1
2
(1, 1, 1)

)
1
,
( 1

10
(1, 1, 9)

)
5

(Bt2.11)

3×
(1
2
(1, 1, 1)

)
1
,
( 1

10
(1, 3, 7)

)
5

(Bt2.12)

2×
(1
2
(1, 1, 1)

)
1
,
(1
4
(1, 1, 3)

)
2
,
(1
8
(1, 1, 7)

)
4

(Bt2.13)

2×
(1
2
(1, 1, 1)

)
1
,
(1
4
(1, 1, 3)

)
2
,
(1
8
(1, 3, 5)

)
4

(Bt2.14)

2×
(1
2
(1, 1, 1)

)
1
, 2×

(1
6
(1, 1, 5)

)
3

(Bt2.15)
(1
2
(1, 1, 1)

)
1
, 2×

(1
4
(1, 1, 3)

)
2
,
(1
6
(1, 1, 5)

)
3

(Bt2.16)

4×
(1
4
(1, 1, 3)

)
2

(Bt2.17)

5×
(1
2
(1, 1, 1)

)
1
,
(1
6
(1, 1, 5)

)
3

(Bt2.18)

4×
(1
2
(1, 1, 1)

)
1
, 2×

(1
4
(1, 1, 3)

)
2

(Bt2.19)

8×
(1
2
(1, 1, 1)

)
1

(Bt2.20)

Table 1.3. Subsets Bt for order 3 actions:

(1
9
(1, 1, 8)

)
3
,
(1
9
(1, 1, 8)

)
6

(Bt3.1)
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(1
9
(1, 2, 7)

)
3
,
(1
9
(1, 2, 7)

)
6

(Bt3.2)
(1
9
(1, 4, 5)

)
3
,
(1
9
(1, 4, 5)

)
6

(Bt3.3)

2×
(1
3
(1, 1, 2)

)
1
,
( 1

12
(1, 5, 7)

)
4

(Bt3.4)
(1
3
(1, 1, 2)

)
1
,
(1
3
(1, 1, 2)

)
2
,
(1
6
(1, 1, 5)

)
2
,
(1
6
(1, 1, 5)

)
4

(Bt3.5)

4×
(1
3
(1, 1, 2)

)
1
,
(1
6
(1, 1, 5)

)
4

(Bt3.6)

3×
(1
3
(1, 1, 2)

)
1
, 3×

(1
3
(1, 1, 2)

)
2

(Bt3.7)

Table 1.4. Subsets Bt for order 4 actions:

(1
4
(1, 1, 3)

)
2
, 2×

(1
8
(1, 3, 5)

)
2

(Bt4.1)

×
(1
2
(1, 1, 1)

)
1
,
(1
4
(1, 1, 3)

)
1
,
( 1

12
(1, 5, 7)

)
9

(Bt4.2)

2×
(1
2
(1, 1, 1)

)
1
,
(1
8
(1, 1, 7)

)
2
,
(1
8
(1, 1, 7)

)
6

(Bt4.3)

2×
(1
2
(1, 1, 1)

)
1
,
(1
8
(1, 3, 5)

)
2
,
(1
8
(1, 3, 5)

)
6

(Bt4.4)

2×
(1
2
(1, 1, 1)

)
1
, 2×

(1
4
(1, 1, 3)

)
1
, 2×

(1
4
(1, 1, 3)

)
3

(Bt4.5)

Table 1.5. Subsets Bt for order 5 actions:

2×
(1
5
(1, 2, 3)

)
1
,
( 1

10
(1, 3, 7)

)
6

(Bt5.1)
(1
5
(1, 1, 4)

)
1
,
(1
5
(1, 1, 4)

)
2
,
(1
5
(1, 1, 4)

)
3
,
(1
5
(1, 1, 4)

)
4

(Bt5.2)
(1
5
(1, 1, 4)

)
1
,
(1
5
(1, 1, 4)

)
4
,
(1
5
(1, 2, 3)

)
1
,
(1
5
(1, 2, 3)

)
4

(Bt5.3)
(1
5
(1, 2, 3)

)
1
,
(1
5
(1, 2, 3)

)
2
,
(1
5
(1, 2, 3)

)
3
,
(1
5
(1, 2, 3)

)
4

(Bt5.4)
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Table 1.6. Subsets Bt for order 6 actions:

2×
(1
3
(1, 1, 2)

)
1
,
(1
4
(1, 1, 3)

)
2
,
( 1

12
(1, 5, 7)

)
10

(Bt6.1)

2×
(1
2
(1, 1, 1)

)
1
,
(1
3
(1, 1, 2)

)
1
,
(1
3
(1, 1, 2)

)
2
,
(1
6
(1, 1, 5)

)
1
,
(1
6
(1, 1, 5)

)
5

(Bt6.2)

Table 1.8. Subsets Bt for order 8 actions:

(1
2
(1, 1, 1)

)
1
,
(1
4
(1, 1, 3)

)
1
,
(1
8
(1, 3, 5)

)
3
,
(1
8
(1, 3, 5)

)
7

(Bt8.1)

15 Remark. In the previous tables we omitted the redundant cases that
are given by a multiple of the torsion divisor (i.e. we get the same singularities
but all the lQ are multiplied by an integer that is coprime with the order r
of σ) because they represent the same Bt but the new torsion divisor is now

a multiple of the former one. For instance, 2 ×
(
1
5(1, 2, 3)

)
3
,
(

1
10(1, 3, 7)

)
8
is

(Bt5.1) considering 3σ instead of σ.

Now we can use this list of possible subsets Bt to check which among all
known Fano threefolds admit a Fano–Enriques quotient. We check three lists,
which we do not reproduce here due to their size. The first two, of codimension
1 and 2, due to Reid and Fletcher respectively, can be found in [6]. The other
one, of codimension 3, is due to Altınok and is in [1]. For the first list (Reid’s
codimension 1) we get:

16 Proposition. Exactly 12 Fano–Enriques threefolds up to deformation
can be obtained as quotients of Reid’s 95 Fano hypersurfaces. They have torsion
2,3 and 5 and are given in Table 2.

Proof. It is a case by case proof of the result. As a sample, we retake
the case of Example 9 and Example 14: Let us suppose Z/(r) is acting on
Y5 ⊂ P(1, 1, 1, 1, 2) (we explained in Remark 3 that the action on Y induces a
diagonal action on P(1, 1, 1, 1, 2)). Necessarily, (0:0:0:0:1) belongs to Y and is
a fixed point by the action on P(1, 1, 1, 1, 2), since it is the only singular point
on this weighted projective space. Therefore, a singularity of type 1

2r appears
in the quotient X. In fact, the basket has to be B = Bt = { 1

r1
, . . . , 1

rl
, 1
2r}, with

ri|r. No (Btr.i) satisfies this condition for r = 2, 4, 6, 8. There is a possibility
for Z/(3), with the basket {4× 1

3 ,
1
6} (Bt 3.6), but it is also impossible because

it should be −K3
X = 5

2r = 5
6 . This contradicts Remark 8, which implies that,

_____________________________________________________________________________________



130 J. Caravantes

for this basket, −K3
X = 3

2 + 2k, k ∈ Z. Therefore, r = 5 and the only possible
quotient is the example we already know (it is No. 2 in Table 2 below). Now we
would play the game in Example 14 to observe these invariants lead to no other
possibility. QED

17 Remark. For the following tables, we list these data for each element:

• the cover, which is a complete intersection Yd1,...,dl ⊂ P(a1, . . . , an) of
hypersurfaces of degrees d1, . . . , dl

• the action on the cover

• Bt := {singularities in the basket where the torsion divisor is not trivial
with their respective coefficients lQ }.

• B\Bt := rest of the basket

Table 2. Fano–Enriques threefolds from codimension 1 Fano threefolds:
No. 1

• cover: Y4 ⊂ P(1, 1, 1, 1, 1)

• action: Z/(5) acts by (1, ǫ, ǫ2, ǫ3, ǫ4), ǫ = e
2π
5

• Bt = {
(
1
5(1, 2, 3)

)
1
,
(
1
5(1, 2, 3)

)
2
,
(
1
5(1, 2, 3)

)
3
,
(
1
5(1, 2, 3)

)
4
} = (Bt5.4)

• B\Bt = ∅

No. 2

• cover: Y5 ⊂ P(1, 1, 1, 1, 2)

• action: Z/(5) acts by (1, ǫ, ǫ3, ǫ4, ǫ2), ǫ = e
2π
5

• Bt = {2×
(
1
5(1, 2, 3)

)
1
,
(

1
10(1, 3, 7)

)
6
} = (Bt5.1)

• B\Bt = ∅

No. 3

• cover: Y6 ⊂ P(1, 1, 1, 2, 2)

• action: Z/(3) acts by (1, ǫ, ǫ2, ǫ, ǫ2), ǫ = e
2π
3

• Bt = {3×
(
1
3(1, 1, 2)

)
1
, 3×

(
1
3(1, 1, 2)

)
2
} = (Bt3.7)
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• B\Bt = {12(1, 1, 1)}

No. 4

• cover: Y8 ⊂ P(1, 1, 1, 2, 4)

• action: Z/(2) acts by (+,−,−,−,−)

• Bt = {8×
(
1
2(1, 1, 1)

)
1
} = (Bt2.20)

• B\Bt = {12(1, 1, 1)}

No. 5

• cover: Y9 ⊂ P(1, 1, 1, 3, 4)

• action: Z/(3) acts by (1, ǫ, ǫ2, ǫ2, ǫ), ǫ = e
2π
3

• Bt = {2×
(
1
3(1, 1, 2)

)
1
,
(

1
12(1, 5, 7)

)
4
} = (Bt3.4)

• B\Bt = ∅

No. 6

• cover: Y9 ⊂ P(1, 1, 2, 3, 3)

• action: Z/(3) acts by (1, ǫ, ǫ2, ǫ, ǫ2), ǫ = e
2π
3

• Bt = {4×
(
1
3(1, 1, 2)

)
1
,
(
1
6(1, 1, 5)

)
4
} = (Bt3.6)

• B\Bt = {13(1, 1, 2)}

No. 7

• cover: Y12) ⊂ P(1, 1, 2, 3, 6)

• action: Z/(2) acts by (+,−,−,−,−)

• Bt = {4×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
} = (Bt2.19)

• B\Bt = {13(1, 1, 2)}

No. 8
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• cover: Y14 ⊂ P(1, 1, 2, 4, 7)

• action: Z/(2) acts by (+,−,−,−,−)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
4(1, 1, 3)

)
2
,
(
1
8(1, 3, 5)

)
4
} = (Bt2.14)

• B\Bt = {12(1, 1, 1)}

No. 9

• cover: Y16 ⊂ P(1, 1, 2, 5, 8)

• action: Z/(2) acts by (+,−,−,−,−)

• Bt = {3×
(
1
2(1, 1, 1)

)
1
,
(

1
10(1, 3, )

)
5
} = (Bt2.12)

• B\Bt = {12(1, 1, 1)}

No. 10

• cover: Y16 ⊂ P(1, 1, 3, 4, 8)

• action: Z/(2) acts by (+,−,−,−,−)

• Bt = {5×
(
1
2(1, 1, 1)

)
1
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.18)

• B\Bt = {14(1, 1, 3)}

No. 11

• cover: Y20 ⊂ P(1, 2, 3, 5, 10)

• action: Z/(2) acts by (+,−,−,−,−)

• Bt = {
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.16)

• B\Bt = {15(1, 2, 3)}

No. 12

• cover: Y24 ⊂ P(1, 2, 3, 7, 12)

• action: Z/(2) acts by (+,−,−,−,−)
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• Bt = {
(
1
2(1, 1, 1)

)
1
,
(

1
14(1, 5, 9)

)
7
} = (Bt2.3)

• B\Bt = {12(1, 1, 1), 13(1, 1, 2)}

18 Remark. In order to define an invariant algebraic set, the equation f of
Yd must be an eigenvector of the Z/(r) action, i.e. the relation of the generators
can be placed in H0(Y,−nKY + iσ). The degree n is given by the corresponding
d subindex, so the data is not complete until we write the second entry of the
bidegree, which is i. All cases above have second degree 0 ∈ Z/(r).

19 Remark. Although we have shown how one gets by hand all Fano–
Enriques quotients from a list of Fano threefolds, there is also a general way to
get them using a computer. The algorithm is divided into the following steps,
which must be repeated for every (Bt . ) and every candidate Y to be a cover:

(1) for each singularity Q ∈ Bt, of type
(

1
rQ

(1, aQ,−aQ)
)
lQ

we describe its

preimage by the covering, which consists in a precise number of points
with the same determined type of singularity. In fact, if dQ = gcd(rQ, lQ),
then the order of the torsion divisor σ in the singularity Q is αQ =

rQ
dQ

.

This means that Q is covered by r
αQ

points where the local Picard group

is Z/(
rQ
αQ

) (of course, this is a 1
dQ

singularity). So we have to find out the

numbers dQ, a, b, c that describe the 1
dQ

(a, b, c) quotient singularity of the

points in the preimage ofQ. We can simplify it considering a 1
dQ

(a, b, c) sin-

gularity under a Z/(β) action, where β is a multiple of αQ (see Remark 20).
We can suppose that the local orbinates have an action of type 1

β (x, y, z).
Since rQ = βdQ, composing the automorphisms generating the represen-
tations of Z/(dQ), we get that Q is a 1

βdQ
(xdQ + aβ, ydQ + bβ, zdQ + cβ)

singularity (even if β and dQ are not coprime, in which case, all numbers
can be reduced) and then, a, b and c are completely determined by 1, aQ
and −aQ (because Q is a singularity of type 1

rQ
(1, aQ,−aQ)). But looking

at all 39 subsets Bt that are listed before, it is obvious that dQ has to be 2,
3, 4, 5, 6 or 7 (or 1, but then it is a regular point and we do not consider this
case since it does not affect the numerical data). There is only one quotient
singularity of order dQ ∈ {2, 3, 4, 6} which is 1

dQ
(1, 1,−1). So we need to

study the cases dQ = 5, 7. But then αQ = β = 2, so x = y = z = 1 (in other
case, aQ would not be coprime with rQ) and the only thing remaining is
to solve the equation 1

βdQ
(xdQ+aβ, ydQ+bβ, zdQ+cβ) = 1

rQ
(1, aQ,−aQ),

which becomes:

1

βdQ
(dQ + 2a, dQ + 2b, dQ + 2c) =

1

rQ
(1, aQ,−aQ).
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(2) repeating this for every singularity in Bt, we have a completely determined
subset B̃ of the basket BY consisting of all singularities where the action
is not free. First condition for Y to be a cover of a Fano–Enriques X with
the selected Bt is that B̃ is contained in BY .

(3) Since Z/(r) acts by automorphisms, we have that the action is free on the
complementary B\B̃. Therefore, the second condition is that BY \B̃ is di-
vided in orbits, each of them consisting of r singularities of the same type.
Choosing an element of each orbit we get the set BX\Bt of all singularities
in BX where the torsion divisor is trivial.

(4) from Remark 8, we know that, for a Fano threefold,

−K3
X = 2k +

∑

Q∈B

bQ(r − bQ)
rQ

.

It is obvious that K3
X = 1

rK
3
Y , so the last condition to test for the numer-

ical data is that
K3
Y

r
−
∑

Q∈BX

bQ(r − bQ)
rQ

= 2k.

(5) for a pair Y,Bt satisfying the conditions in (2), (3) and (4), the numerical
data for a Fano–Enriques X covered by Y associated to Bt then consists
of −K3

X = −1
rK

3
Y and a basket B that is the union of Bt and the comple-

mentary BX\Bt we constructed in step (3)

(6) Finally, we apply the graded rings method (see Example 14) to the nu-
merical data obtained in (5). Observe that even if we start from a list
of Fano threefolds of a given codimension, this final step could produce
a Fano–Enriques X with an unexpected cover of higher codimension (see
Remark 22). We divide our lists by means of the codimension of the result-
ing cover, not in terms of the codimension of the starting Fano threefold
candidate.

20 Remark. In step (1) of the algorithm in Remark 19 we have to take β to
be a multiple of α even if they are actually equal. This is because, in order to use
the expression 1

βdQ
(xdQ+ aβ, ydQ+ bβ, zdQ+ cβ), we need to use a fake β. Let

us think for instance of a Z/(2) action that fixes a singularity of type 1
2(1, 1, 1).

For example we can consider the action given by (+,+,−,−) multiplication in
P(1, 1, 1, 2). To dehomogeneize by the last coordinate, we have to think of the
action as multiplication by (i, i,−i, 1), so β seems to be 4 although it is actually
2. We work as if β = 4 and get a singularity of type 1

8(1·2+1·β, 1·2+1·β, 3·2+1·β)
(i.e. a singularity of type 1

4(1, 1, 3)).
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Now we use the algorithm explained in Remark 19 to test the lists of Fano
threefolds of codimension one, two and three, obtained respectively by Reid
in [10], Fletcher in [6] and Altınok in [1] to find candidates to be a cover of a
Fano–Enriques threefold. Of course, for codimension one we reobtain Table 2.
We list in the next tables the cases of codimension two and three, keeping the
notations of Table 2.

Table 3: Fano–Enriques threefolds from codimension 2 Fano threefolds:
No. 1a

• cover: Y2,3 ⊂ P(1, 1, 1, 1, 1, 1)

• action: Z/(3) acts by (1, 1, ǫ, ǫ, ǫ2, ǫ2)

• Bt = {3×
(
1
3(1, 1, 2)

)
1
, 3×

(
1
3(1, 1, 2)

)
2
} = (Bt3.7)

• B\Bt = ∅

No. 1b

• cover: Y2,3 ⊂ P(1, 1, 1, 1, 1, 1)

• action: Z/(5) acts by (1, 1, ǫ, ǫ2, ǫ3, ǫ4)

• Bt = {
(
1
5(1, 1, 4)

)
1
,
(
1
5(1, 1, 4)

)
2
,
(
1
5(1, 1, 4)

)
3
,
(
1
5(1, 1, 4)

)
4
} = (Bt5.2)

• B\Bt = ∅

No. 2

• cover: Y3,3 ⊂ P(1, 1, 1, 1, 1, 2)

• action: Z/(3) acts by (1, 1, ǫ, ǫ, ǫ2, ǫ2)

• Bt = {4×
(
1
3(1, 1, 2)

)
1
,
(
1
6(1, 1, 5)

)
4
} = (Bt3.6)

• B\Bt = ∅

No. 3

• cover: Y2,4 ⊂ P(1, 1, 1, 1, 1, 2)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {8×
(
1
2(1, 1, 1)

)
1
} = (Bt2.20)
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• B\Bt = ∅

No. 4a

• cover: Y3,4 ⊂ P(1, 1, 1, 1, 2, 2)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {4×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
} = (Bt2.19)

• B\Bt = ∅

No. 4b

• cover: Y3,4 ⊂ P(1, 1, 1, 1, 2, 2)

• action: Z/(3) acts by (1, 1, ǫ, ǫ2, ǫ, ǫ2)

• Bt = {
(
1
3(1, 1, 2)

)
1
,
(
1
3(1, 1, 2)

)
2
,
(
1
6(1, 1, 5)

)
2
,
(
1
6(1, 1, 5)

)
4
} = (Bt3.5)

• B\Bt = ∅

No. 4c

• cover: Y3,4 ⊂ P(1, 1, 1, 1, 2, 2)

• action: Z/(4) acts by (1, 1, ǫ, ǫ3, ǫ, ǫ3) = (+,+, i,−i, i,−i)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
8(1, 1, 7)

)
2
,
(
1
8(1, 1, 7)

)
6
} = (Bt4.4)

• B\Bt = ∅

No. 4d

• cover: Y3,4 ⊂ P(1, 1, 1, 1, 2, 2)

• action: Z/(4) acts by (1, ǫ, ǫ2, ǫ3, ǫ, ǫ3) = (+, i,−,−i, i,−i)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
8(1, 3, 5)

)
2
,
(
1
8(1, 3, 5)

)
6
} = (Bt4.4)

• B\Bt = ∅

No. 5a

• cover: Y4,4 ⊂ P(1, 1, 1, 1, 2, 3)
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• action: Z/(4) acts by (+,+,−,−,−,−)

• Bt = {5×
(
1
2(1, 1, 1)

)
1
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.18)

• B\Bt = ∅

No. 5b

• cover: Y4,4 ⊂ P(1, 1, 1, 1, 2, 3)

• action: Z/(4) acts by (+, i,−,−i, i,−i)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
4(1, 1, 3)

)
1
,
(

1
12(1, 5, 7)

)
9
} = (Bt4.2)

• B\Bt = ∅

No. 6a

• cover: Y4,4 ⊂ P(1, 1, 1, 2, 2, 2)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {8×
(
1
2(1, 1, 1)

)
1
} = (Bt2.20)

• B\Bt = {2× 1
2(1, 1, 1)}

No. 6b

• cover: Y4,4 ⊂ P(1, 1, 1, 2, 2, 2)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {4×
(
1
4(1, 1, 3)

)
2
} = (Bt2.17)

• B\Bt = ∅

No. 6c

• cover: Y4,4 ⊂ P(1, 1, 1, 2, 2, 2)

• action: Z/(4) acts by (+, i,−i, i,−,−i)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
1
, 4×

(
1
4(1, 1, 3)

)
3
} = (Bt4.5)

• B\Bt = {12(1, 1, 1)}
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No. 6d

• cover: Y4,4 ⊂ P(1, 1, 1, 2, 2, 2)

• action: Z/(4) acts by (+,−,−i, i, i,−i)

• Bt = {
(
1
4(1, 1, 3)

)
2
, 2×

(
1
8(1, 3, 5)

)
2
} = (Bt4.1)

• B\Bt = ∅

No. 7

• cover: Y4,5 ⊂ P(1, 1, 1, 2, 2, 3)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.16)

• B\Bt = ∅

No. 8a

• cover: Y4,6 ⊂ P(1, 1, 1, 2, 3, 3)

• action: Z/(2) acts by (+,−,−,−,+,−)

• Bt = {8×
(
1
2(1, 1, 1)

)
1
} = (Bt2.20)

• B\Bt = {12(1, 1, 1)}

No. 8b

• cover: Y4,6 ⊂ P(1, 1, 1, 2, 3, 3)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
6(1, 1, 5)

)
3
} = (Bt2.15)

• B\Bt = ∅

No. 8c

• cover: Y4,6 ⊂ P(1, 1, 1, 2, 3, 3)

• action: Z/(3) acts by (1, ǫ, ǫ2, 1, ǫ, ǫ2)
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• Bt = {
(
1
9(1, 2, 7)

)
3
,
(
1
9(1, 2, 7)

)
6
} = (Bt3.2)

• B\Bt = ∅

No. 9

• cover: Y5,6 ⊂ P(1, 1, 1, 2, 3, 4)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
4(1, 1, 3)

)
2
,
(
1
8(1, 1, 7)

)
4
} = (Bt2.13)

• B\Bt = ∅

No. 10

• cover: Y6,8 ⊂ P(1, 1, 1, 3, 4, 5)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {3×
(
1
2(1, 1, 1)

)
1
,
(

1
10(1, 1, 9)

)
5
} = (Bt2.11)

• B\Bt = ∅

No. 11

• cover: Y4,6 ⊂ P(1, 1, 2, 2, 2, 3)

• action: Z/(2) acts by (+,−,+,−,−,−)

• Bt = {4×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
} = (Bt2.19)

• B\Bt = {2× 1
2(1, 1, 1)}

No. 12

• cover: Y5,6 ⊂ P(1, 1, 2, 2, 3, 3)

• action: Z/(3) acts by (1, 1, ǫ, ǫ2, ǫ, ǫ2)

• Bt = {
(
1
9(1, 1, 8)

)
3
,
(
1
9(1, 1, 8)

)
6
} = (Bt3.1)

• B\Bt = {12(1, 1, 1)}
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No. 13

• cover: Y4,8 ⊂ P(1, 1, 2, 2, 3, 4)

• action: Z/(2) acts by (+,−,+,−,−,−)

• Bt = {5×
(
1
2(1, 1, 1),

)
1
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.18)

• B\Bt = {2× 1
2(1, 1, 1)}

No. 14

• cover: Y6,7 ⊂ P(1, 1, 2, 3, 3, 4)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {2×
(
1
2(1, 1, 1),

)
1
,
(
1
4(1, 1, 3)

)
2
,
(
1
8(1, 3, 5)

)
4
} = (Bt2.14)

• B\Bt = {13(1, 1, 2)}

No. 15

• cover: Y6,8 ⊂ P(1, 1, 2, 3, 3, 5)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {3×
(
1
2(1, 1, 1)

)
1
,
(

1
10(1, 3, 7)

)
5
} = (Bt2.11)

• B\Bt = {13(1, 1, 2)}

No. 16a

• cover: Y6,8 ⊂ P(1, 1, 2, 3, 4, 4)

• action: Z/(2) acts by (+,−,−,−,+,−)

• Bt = {4×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
} = (Bt2.19)

• B\Bt = {14(1, 1, 3)}

No. 16b

• cover: Y6,8 ⊂ P(1, 1, 2, 3, 4, 4)

• action: Z/(2) acts by (+,+,−,−,−,−)
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• Bt = {2×
(
1
8(1, 1, 7)

)
4
} = (Bt2.8)

• B\Bt = {12(1, 1, 1)}

No. 16c

• cover: Y6,8 ⊂ P(1, 1, 2, 3, 4, 4)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {2×
(
1
8(1, 3, 5)

)
4
} = (Bt2.10)

• B\Bt = {12(1, 1, 1)}

No. 17

• cover: Y7,8 ⊂ P(1, 1, 2, 3, 4, 5)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {
(
1
6(1, 1, 5)

)
3
,
(

1
10(1, 1, 9)

)
5
} = (Bt2.6)

• B\Bt = {12(1, 1, 1)}

No. 18

• cover: Y8,9 ⊂ P(1, 1, 2, 3, 4, 7)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {
(
1
2(1, 1, 1)

)
1
,
(

1
14(1, 3, 11)

)
7
} = (Bt2.2)

• B\Bt = {12(1, 1, 1)}

No. 19a

• cover: Y8,10 ⊂ P(1, 1, 2, 4, 5, 6)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {
(
1
4(1, 1, 3)

)
2
,
(

1
12(1, 1, 11)

)
6
} = (Bt2.4)

• B\Bt = {12(1, 1, 1)}
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No. 19b

• cover: Y8,10 ⊂ P(1, 1, 2, 4, 5, 6)

• action: Z/(2) acts by (+,−,−,−,+,−)

• Bt = {
(
1
4(1, 1, 3)

)
2
,
(

1
12(1, 5, 7)

)
6
} = (Bt2.5)

• B\Bt = {12(1, 1, 1)}

No. 20

• cover: Y8,10 ⊂ P(1, 1, 3, 4, 5, 5)

• action: Z/(2) acts by (+,−,−,−,+,−)

• Bt = {5×
(
1
2(1, 1, 1)

)
1
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.18)

• B\Bt = {15(1, 1, 5)}

No. 21

• cover: Y10,12 ⊂ P(1, 1, 3, 5, 6, 7)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {
(
1
2(1, 1, 1)

)
1
,
(

1
14(1, 1, 13)

)
7
} = (Bt2.1)

• B\Bt = {13(1, 1, 2)}

No. 22a

• cover: Y6,8 ⊂ P(1, 2, 2, 3, 3, 4)

• action: Z/(2) acts by (−,+,−,+,−,−)

• Bt = {8×
(
1
2(1, 1, 1)

)
1
} = (Bt2.20)

• B\Bt = {3× 1
2(1, 1, 1),

1
3(1, 1, 2)}

No. 22b

• cover: Y6,8 ⊂ P(1, 2, 2, 3, 3, 4)

• action: Z/(2) acts by (+,+,−,−,−,−)
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• Bt = {2×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
6(1, 1, 5)

)
3
} = (Bt2.15)

• B\Bt = {3× 1
2(1, 1, 1)}

No. 22c

• cover: Y6,8 ⊂ P(1, 2, 2, 3, 3, 4)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {4×
(
1
4(1, 1, 3)

)
2
} = (Bt2.17)

• B\Bt = {12(1, 1, 1), 13(1, 1, 2)}

No. 22d

• cover: Y6,8 ⊂ P(1, 2, 2, 3, 3, 4)

• action: Z/(3) acts by (1, ǫ, ǫ2, ǫ, ǫ2, 1)

• Bt = {
(
1
9(1, 4, 5)

)
3
,
(
1
9(1, 4, 5)

)
6
} = (Bt3.3)

• B\Bt = {2× 1
2(1, 1, 1)}

No. 23

• cover: Y6,10 ⊂ P(1, 2, 2, 3, 4, 5)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
4(1, 1, 3)

)
2
,
(
1
8(1, 1, 7)

)
4
} = (Bt2.13)

• B\Bt = {3× 1
2(1, 1, 1)}

No. 24

• cover: Y8,9 ⊂ P(1, 2, 3, 3, 4, 5)

• action: Z/(2) acts by (+,−,+,−,−,−)

• Bt = {
(
1
6(1, 1, 5)

)
3
,
(

1
10(1, 3, 7)

)
5
} = (Bt2.7)

• B\Bt = {12(1, 1, 1), 13(1, 1, 2)}

_____________________________________________________________________________________



144 J. Caravantes

No. 25

• cover: Y8,10 ⊂ P(1, 2, 3, 4, 4, 5)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {
(
1
1(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
2
,
(
1
6(1, 1, 5)

)
3
} = (Bt2.16)

• B\Bt = {12(1, 1, 1), 14(1, 1, 3)}

No. 26

• cover: Y8,12 ⊂ P(1, 2, 3, 4, 5, 6)

• action: Z/(2) acts by (+,+,−,−,−,−)

• Bt = {3×
(
1
1(1, 1, 1)

)
1
,
(

1
10(1, 1, 9)

)
5
} = (Bt2.11)

• B\Bt = {2× 1
2(1, 1, 1),

1
3(1, 1, 2)}

No. 27

• cover: Y10,12 ⊂ P(1, 2, 3, 5, 5, 7)

• action: Z/(2) acts by (+,−,−,+,−,−)

• Bt = {
(
1
1(1, 1, 1)

)
1
,
(

1
14(1, 5, 9)

)
7
} = (Bt2.3)

• B\Bt = {15(1, 2, 3)}

No. 28

• cover: Y10,12 ⊂ P(1, 3, 4, 4, 5, 6)

• action: Z/(2) acts by (+,−,+,−,−,−)

• Bt = {2×
(
1
1(1, 1, 1)

)
1
,
(
1
4(1, 1, 3)

)
2
,
(
1
8(1, 1, 7)

)
4
} = (Bt2.13)

• B\Bt = {13(1, 1, 2), 14(1, 1, 3)}

21 Remark. Second degree (in the sense of Remark 18) of all equations is
0 except in cases:

• No 4d: The equation of first degree 3 has second degree equal to 2 ∈
Z/(4).
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• No 5b: One of the equations has second degree equal to 2 ∈ Z/(4).

• No 6c: One of the equations has second degree equal to 2 ∈ Z/(4).

• No 6d: One of the equations has second degree equal to 2 ∈ Z/(4).

22 Remark. Case No. 13 deserves attention because it is not a quotient
from a codimension two Fletcher’s example in [6]. The Hilbert Series corresponds
to an example in Reid’s codimension one list: Y8 ⊂ P(1, 1, 2, 2, 3). However,
applying step (6) of the algorithm in Remark 19, when we multiply in the
Hilbert series of X by (1− t), (1− et), (1− t2), (1− et2) and (1− et3), we do not
get 1− t8 or 1− et8 as expected. Instead we get

1− t4 + et4 + higher degree

This means that we need a generator of bidegree (4, 1) and an equation of
bidegree (4, 0). Therefore, the new generator is not in the equation, and then
the equation is not a linear cone, so our threefold cannot be projected “qua-
sismoothly” to a P(1, 1, 2, 2, 3) (for more details, see [6]). It is a “special” case
described by Brown in [3]. All other cases in Table 3 but No. 3 (whose Hilbert
series corresponds to Y4 ⊂ P4) are quotients from Fano threefolds in Fletcher’s
list.

Now we list codimension 3 examples. Surprisingly enough, it contains only
four cases, in contrast with the initial codimension-3 Fano threefolds, which are
the intersection of 3 quadrics in P6 and the 69 examples in Altınok’s list. Ob-
serve also that from [1] or [4] we know that last 69 are defined by the Pfaffians
of a 5×5 skew-symmetric matrix. This is useful to search for equations. For the
only case of Fano–Enriques which comes from a Fano in Altınok’s list (No.2
in Table 4 below), we change the notation and write for the cover Yd1,...,d5 to
give the degrees of the equations of the pfaffians. Also, we add the specifications
about the second degree of the equations of Remark 18.

Table 4. Fano–Enriques threefolds from codimension 3 Fano threefolds:
No. 1a

• cover: Y2,2,2 ⊂ P(1, 1, 1, 1, 1, 1, 1)

• action: Z/(2) acts by (+,+,+,−,−,−,−)

• Bt = {8×
(
1
2(1, 1, 1)

)
1
} = (Bt2.20)

• B\Bt = ∅
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• Second degree of the equations must be 0

No. 1b

• cover: Y2,2,2 ⊂ P(1, 1, 1, 1, 1, 1, 1)

• action: Z/(4) acts by (+,+, i, i,−,−i,−i)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
, 2×

(
1
4(1, 1, 3)

)
1
, 2×

(
1
4(1, 1, 3)

)
3
} = (Bt4.5)

• B\Bt = ∅

• Second degree of the equations must be 0, 0 and 2

No. 1c

• cover: Y2,2,2 ⊂ P(1, 1, 1, 1, 1, 1, 1)

• action: Z/(8) acts by (1, ǫ, ǫ2, ǫ3, ǫ4, ǫ5, ǫ7)

• Bt = {2×
(
1
2(1, 1, 1)

)
1
,
(
1
4(1, 1, 3)

)
1
,
(
1
8(1, 3, 5)

)
3
,
(
1
8(1, 3, 5)

)
7
} = (Bt8.1)

• B\Bt = ∅

• Second degree of the equations must be 0, 2 and 4

No. 2

• cover: Y3,3,3,3,4 ⊂ P(1, 1, 1, 2, 2, 2, 2)

• action: Z/(5) acts by (1, ǫ, ǫ4, ǫ, ǫ2, ǫ3, ǫ4)

• Bt = {
(
1
5(1, 1, 4)

)
1
,
(
1
5(1, 1, 4)

)
4
,
(
1
5(1, 2, 3)

)
1
,
(
1
5(1, 2, 3)

)
4
} = (Bt5.3)

• B\Bt = {12(1, 1, 1)}

• Second degree of the equations must be 0, 1, 2, 3 and 4

23 Remark. Numbers 4 and 18 in Altınok’s list fit the basket and −K3
Y

restrictions when applying steps (1)− (5) in the algorithm in Remark 19. How-
ever, in analogy with Remark 22, their respective Hilbert series require one
more degree 4 relation and one more degree 4 generator (with different second
degrees), so one expects they are codimension 4 special cases.
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