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ul.  Lojasiewicza 6, 30-348 Kraków, Poland
debecki@im.uj.edu.pl

Received: 16/11/2006; accepted: 24/09/2007.

Abstract. We give an explicit description and calculate the dimension of the vector space
of linear natural liftings of p-forms on n-dimensional manifolds M to q-forms on TD

r

kM , where
Dr

k is the Weil algebra of r-jets at 0 of smooth functions Rk −→ R, for all non-negative integers
n, p, q, r, k except the case p = n and q = 0.
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Let A be a Weil algebra and TA the Weil functor corresponding to A (see [2]
or [4]). Let us denote by ΩpM the vector space of p-forms on a manifold M .
A linear natural lifting of p-forms to q-forms on TA is a family of linear maps
LM : ΩpM −→ Ωq(TAM) indexed by n-dimensional manifolds and satisfying
for all such manifoldsM , N , every embedding f :M −→ N and every ω ∈ ΩpN
the condition LM (f∗ω) = (TAf)∗(LN (ω)).

In [1] we have given a classification of liftings of this kind for all non-negative
integers n, p and q except the case p = n and q = 0. There we have established
an isomorphism between the vector space of such liftings and the vector space
in the table below for proper n, p and q.

0 ≤ p ≤ n− 1 p = n n+ 1 ≤ p
q = 0 Ap−q {0}

1 ≤ q ≤ p Ap−q ⊕Ap−q+1 Ap−q {0}
q = p+ 1 Ap−q+1 {0} {0}
p+ 2 ≤ q {0} {0} {0}

Here As for the Weil algebra A inducing TA and a non-negative integer s is the
vector space of skew-symmetric s-linear maps F : A×· · ·×A −→ A∗, where A∗

denotes the vector space of linear functions A −→ R, satisfying

F (a1, . . . , at−1, bc, at+1, . . . , as)(d) =

F (a1, . . . , at−1, b, at+1, . . . , as)(cd) + F (a1, . . . , at−1, c, at+1, . . . , as)(bd) (1)
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for every t ∈ {1, . . . , s} and all a1, . . . , at−1, at+1, . . . , as, b, c, d ∈ A.
Unfortunately, the vector spaces As are a bit abstract and we cannot find out

the dimension of As for every Weil algebra A and every non-negative integer s.
This work is devoted to the study of a special case, namely if A is the algebra Drk
of r-jets at 0 of smooth functions Rk −→ R. We will give an explicit description
of (Drk)s and calculate its dimension for all non-negative integers r, k, s. The
importance of the special case we treat is that each Weil algebra A is a factor
algebra of Drk for some r, k (see [3]), so As is a subspace of (Drk)s for each s.

Fix non-negative integers r, k, s. We will denote by xi for i ∈ {1, . . . , k}
the r-jet at 0 of the function Rk ∋ u −→ ui ∈ R and we will write xα =
(x1)α

1 · · · (xk)αk
and |α| = α1+ · · ·+αk for each α ∈ Nk, where N stands for the

set of non-negative integers. It is obvious that xε for ε ∈ Nk such that |ε| ≤ r
form a basis of the vector space Drk and

xζxη =

{
xζ+η if |ζ + η| ≤ r,
0 otherwise

for all ζ, η ∈ Nk such that |ζ| ≤ r, |η| ≤ r.
Of course, A0 = A∗ for every Weil algebra A. Therefore we will be concerned

only with the case s > 0. If r = 0 or k = 0 then Drk = R, so (Drk)0 = R∗ and it
is a simple matter to see that if s > 0 then (Drk)s = {0}. Therefore we will be
concerned only with the case r > 0 and k > 0.

We can now formulate our main result.

1 Definition. Let Z denote the set of (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

with the properties that i1 < · · · < is and either |α| < r or |α| = r and
is < max{ l ∈ {1, . . . , k} | αl > 0 }.

2 Theorem. The map I : (Drk)s −→ RZ given by

I(F )(i1, . . . , is, α) = F (xi1 , . . . , xis)(xα)

for every F ∈ (Drk)s and every (i1, . . . , is, α) ∈ Z is an isomorphism of vector
spaces.

Proof. The theorem will be proved by showing that for each C ∈ RZ there
is a unique F ∈ (Drk)s such that

F (xi1 , . . . , xis)(xα) = C(i1, . . . , is, α) (2)

for every (i1, . . . , is, α) ∈ Z. Fix C ∈ RZ . Our construction of F will be divided
into six steps.

Step 1. We define F (xi1 , . . . , xis)(xα) for (i1, . . . , is, α) ∈ Z by (2).

_____________________________________________________________________________________



Linear natural liftings of forms 101

Step 2. We define F (xi1 , . . . , xis)(xα) for (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

such that either |α| < r or |α| = r and max{i1, . . . , is} < max{ l ∈ {1, . . . , k} |
αl > 0 }.

Since F should be skew-symmetric, we put either

F (xi1 , . . . , xis)(xα) = sgnσF (xiσ(1) , . . . , xiσ(s))(xα)

if there is a permutation σ of {1, . . . , s} such that iσ(1) < · · · < iσ(s) (note that
there is at most one σ with this property) or F (xi1 , . . . , xis)(xα) = 0 otherwise.

Step 3. We define F (xi1 , . . . , xis)(xα) for (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

such that i1 < · · · < is and |α| ≤ r, but (i1, . . . , is, α) /∈ Z.
If G ∈ (Drk)s, t ∈ {1, . . . , s} and γ1, . . . , γs, δ ∈ Nk then, by induction on |γt|,

(1) leads easily to

G(xγ1 , . . . , xγs)(xδ) =
∑

j∈{ l∈{1,...,k}|γlt>0 }

γjtG(x
γ1 , . . . , xγt−1 , xj , xγt+1 , . . . , xγs)(xγt−ej+δ), (3)

where e1, . . . , ek stand for the standard basis of the module Zk.
The condition (i1, . . . , is, α) /∈ Z means that |α| = r and is ≥ max{ l ∈

{1, . . . , k} | αl > 0 }. Taking t = s, γ1 = ei1 , . . . , γs−1 = eis−1 , γs = α + eis and
δ = 0 in (3) we see that F should satisfy

0 = (αis + 1)F (xi1 , . . . , xis)(xα)+
∑

j∈{ l∈{1,...,k}|αl>0 }\{is}

αjF (xi1 , . . . , xis−1 , xj)(xα+eis−ej ), (4)

since xα+eis = 0 and F should be s-linear. But F (xi1 , . . . , xis−1 , xj)(xα+eis−ej )
for every j ∈ { l ∈ {1, . . . , k} | αl > 0 } \ {is} has already been defined, as
max{i1, . . . , is−1, j} < is = max{ l ∈ {1, . . . , k} | (α+ eis − ej)l > 0 }. Therefore
we put

F (xi1 , . . . , xis)(xα) =

− 1

αis + 1

∑

j∈{ l∈{1,...,k}|αl>0 }\{is}

αjF (xi1 , . . . , xis−1 , xj)(xα+eis−ej ). (5)

Step 4. We define F (xi1 , . . . , xis)(xα) for (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

such that |α| ≤ r.
This goes in the same way as step 2.
Step 5. We define F (xγ1 , . . . , xγs)(xδ) for γ1, . . . , γs, δ ∈ Nk such that |γ1| ≤

r, . . . , |γs| ≤ r, |δ| ≤ r.
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Since F should satisfy (3) and take linear values, we put either

F (xγ1 , . . . , xγs)(xδ) =
∑

j1∈{ l∈{1,...,k}|γl1>0 }

· · ·
∑

js∈{ l∈{1,...,k}|γls>0 }

γj11 · · · γjss ·

· F (xj1 , . . . , xjs)(xγ1−ej1+···+γs−ejs+δ) (6)

if |γ1 + · · ·+ γs + δ| ≤ r + s or F (xγ1 , . . . , xγs)(xδ) = 0 otherwise.

Step 6. We complete our construction easily, because xε for ε ∈ Nk such that
|ε| ≤ r form a basis of the vector space Drk and F should be s-linear with linear
values.

Thus we have proved the uniqueness of F . By step 1, the map F we have
constructed satisfies (2). By step 6, it is s-linear with linear values. By steps
4, 5, 6, it is easily seen to be skew-symmetric. What is left is to prove that it
satisfies (1).

We begin by showing the crucial fact that for all g1, . . . , gs−1 ∈ {1, . . . , k}
such that g1 < · · · < gs−1 and every ε ∈ Nk such that |ε| = r + 1

∑

h∈{ l∈{1,...,k}|εl>0 }

εhF (xg1 , . . . , xgs−1 , xh)(xε−eh) = 0. (7)

If either s = 1 or s > 1 and gs−1 < m, where m = max{ l ∈ {1, . . . , k} | εl >
0 } which implies m ≥ max{ l ∈ {1, . . . , k} | (ε− em)l > 0 }, then (7) is nothing
but (4) with i1 = g1, . . . , is−1 = gs−1, is = m and α = ε − em. So (7) holds, as
(4) is equivalent to (5) which holds.

If s > 1 and gs−1 ≥ m, then max{g1, . . . , gs−1, h} = gs−1 ≥ max{ l ∈
{1, . . . , k} | (ε − eh)l > 0 } for every h ∈ { l ∈ {1, . . . , k} | εl > 0 }. Hence if
h /∈ {g1, . . . , gs−1} then the skew-symmetry of F and (5) with {i1, . . . , is} =
{g1, . . . , gs−1, h} (which implies is = gs−1) and α = ε− eh give

F (xg1 , . . . , xgs−1 , xh)(xε−eh) = − 1

εgs−1 + 1
·

·
∑

j∈{ l∈{1,...,k}|εl>0 }\{gs−1,h}

εjF (xg1 , . . . , xgs−2 , xj , xh)(xε−eh+egs−1−ej ), (8)

because if εh > 1 then F (xg1 , . . . , xgs−2 , xh, xh)(xε−eh+egs−1−eh) = 0, by the
skew-symmetry of F . Substituting (8) into (7) and omitting the terms which
vanish on account of the skew-symmetry of F we see that the left hand side of
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(7) equals

− 1

εgs−1 + 1

∑

h∈{ l∈{1,...,k}|εl>0 }\{g1,...,gs−1}

∑

j∈{ l∈{1,...,k}|εl>0 }\{g1,...,gs−1,h}

εhεj ·

· F (xg1 , . . . , xgs−2 , xj , xh)(xε−eh+egs−1−ej ).

But, using the skew-symmetry of F again, we have

εjεhF (xg1 , . . . , xgs−2 , xh, xj)(xε−ej+egs−1−eh) =

− εhεjF (xg1 , . . . , xgs−2 , xj , xh)(xε−eh+egs−1−ej ).

Therefore the left hand side of (7) equals 0. This establishes (7).
We recall that our aim is to show (1) for F we have constructed. Since F is

skew-symmetric, it suffices to prove (1) only for t = s. This will be proved as
soon as we can show that

F (xα1 , . . . , xαs−1 , xβ+γ)(xδ) =

F (xα1 , . . . , xαs−1 , xβ)(xγ+δ) + F (xα1 , . . . , xαs−1 , xγ)(xβ+δ) (9)

for α1, . . . , αs−1, β, γ, δ ∈ Nk such that |α1| ≤ r, . . . , |αs−1| ≤ r, |β| ≤ r, |γ| ≤
r, |δ| ≤ r, because both the sides of (1) are (s + 2)-linear with respect to
a1, . . . , as−1, b, c, d and xε for ε ∈ Nk such that |ε| ≤ r form a basis of the
vector space Drk.

We now observe that (9) holds in four special cases.
Case 1. β = 0 or γ = 0. Then (9) is evident because, by steps 5 and 6, we

have F (xα1 , . . . , xαs−1 , 1)(xγ+δ) = 0 and F (xα1 , . . . , xαs−1 , 1)(xβ+δ) = 0.
Case 2. There is i ∈ {1, . . . , s− 1} such that αi = 0. Then (9) is evident, as

both the sides of (9) equal 0, by steps 5 and 6.
Case 3. |α1 + · · · + αs−1 + β + γ + δ| > r + s. Then (9) is also evident, as

both the sides of (9) equal 0, by steps 5 and 6.
Case 4. |α1 + · · · + αs−1 + β + γ + δ| ≤ r + s, |β + γ| ≤ r, |β + δ| ≤ r,

|γ + δ| ≤ r. Then (9) can be easily checked, because we may apply (6) to the
left hand side of (9) as well as to each of two terms of its right hand side.

Assume that it is none of the above cases. Since it is not case 2, |α1| ≥
1, . . . , |αs−1| ≥ 1. Since it is not case 3, |α1 + · · · + αs−1 + β + γ + δ| ≤ r + s.
Combining these yields |β + γ + δ| ≤ r + 1. If it were true that |β + γ| ≤ r, it
would also be true that |β+ δ| > r or |γ+ δ| > r, as it is not case 4, and so that
γ = 0 or β = 0 respectively, contrary to the fact that it is not case 1. Therefore
|β + γ| = r + 1, and so δ = 0, |α1| = 1, . . . , |αs−1| = 1.

Summing up, it remains to prove (9) only if |α1| = 1, . . . , |αs−1| = 1, |β| ≤ r,
|γ| ≤ r, |β + γ| = r + 1 and δ = 0. Then there are g1, . . . , gs−1 ∈ {1, . . . , k}
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such that α1 = eg1 , . . . , α1 = egs−1 . Since F is skew-symmetric, without loss of
generality we can assume that g1 < · · · < gs−1. Moreover, xβ+γ = 0 and F is
s-linear, hence the left hand side of (9) equals 0. Using (6) we can rewrite (9)
as

0 =
∑

h∈{ l∈{1,...,k}|βl>0 }

βhF (xg1 , . . . , xgs−1 , xh)(xβ−eh+γ)+

∑

h∈{ l∈{1,...,k}|γl>0 }

γhF (xg1 , . . . , xgs−1 , xh)(xγ−eh+β),

which is nothing but (7) with ε = β + γ. This completes the proof of the
theorem. QED

3 Corollary. The dimension of the vector space (Drk)s equals
(
r + s− 1

s

)(
r + k

r + s

)

Proof. We will compute the number of elements of Z, which is equal to
the dimension of (Drk)s, by the theorem.

For each v ∈ {0, . . . , r − 1} the number of (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

such that i1 < · · · < is and |α| = v equals
(
k

s

)(
v + k − 1

k − 1

)

Furthermore, we have

(
k

s

) r−1∑

v=0

(
v + k − 1

k − 1

)
=

(
k

s

)(
r + k − 1

k

)
=

(
r + s− 1

s

)(
r + k − 1

r + s− 1

)

For each m ∈ {s+1, . . . , k} the number of (i1, . . . , is, α) ∈ {1, . . . , k}s×Nk such
that i1 < · · · < is, |α| = r and is < m = max{ l ∈ {1, . . . , k} | αl > 0 } equals

(
m− 1

s

)(
r +m− 2

m− 1

)
.

Furthermore, we have

k∑

m=s+1

(
m− 1

s

)(
r +m− 2

m− 1

)
=

(
r + s− 1

s

) k∑

m=s+1

(
r +m− 2

r + s− 1

)
=

(
r + s− 1

s

)(
r + k − 1

r + s

)
.
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Hence the number of elements of Z equals

(
r + s− 1

s

)(
r + k − 1

r + s− 1

)
+

(
r + s− 1

s

)(
r + k − 1

r + s

)
=

(
r + s− 1

s

)(
r + k

r + s

)
.

This completes the proof of the corollary. QED

Note that the corollary is still true if r = 0 or k = 0 or s = 0, as is easy to
check.
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