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Abstract. Thisis a survey on left invariant semi-Riemannian metrics on compact Lie groups.

1 Introduction

Let K be a Lie group endowed with a semi-Riemannian metric g. There is
in general two fundamental questions that one can ask in comparing the general
situation to the Riemannian one:

(1) Is the geodesic flow of K complete, that is every geodesic in K is defined
for all time (as this is the case when g is Riemannian)?

(2) Is the isometry group lsom(K, g)-acting properly on K7 This means that
Isom(K, g) preserves some auxiliary Riemannian metric, say g.

Let us consider the two additional natural following questions:

(3) By definition (of being a left invariant metric), K is a subgroup of Isom(K, g),
but, then, what is the full isometry group of (K, g)? In particular, is the
isotropy of 1 € K made by automorphisms of K7

(4) When is the conformal group Conf(k, g) essential, that is its action on K
does not preserves a metric in the conformal class of g? Observe in fact
in this case (of left invariant metrics) that non-essential means exactly
Conf(K,g) = Isom(K, g).
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1.1

In this note, we will survey this topic, by focusing on the case where K is a
compact Lie group. As said above, Isom(K, g) is an extension in the diffeomor-
phism group Diff(K) of K (where K is seen as a subgroup of Diff(K), acting
by left multiplication on itself). Let us observe however that existence of such
extensions of K, say by a non-compact group G, is not a surpriszing matter.
Indeed if a semi-simple G is a Lie group, and K is its maximal compact, then
K acts simply transitively on G/B where B is a Borel subgroup of G. Thus
the left K-left-action of K on itself identifies with the the K-action on G/B (as
K C G). Thus the G-action on G/ B is an extension of the K-action. This action
preserves some geometric structure, surely of parabolic type. All the question
now is to see if this G-action on K can preserve a (conformal) semi-Riemannian
structure (this is specially related to Item (4) above)?

1.2 Results

The recent and classical literature are summarized in the following results:

1.2.1 The geodesic flow

Marsden [12] proved that the geodesic flow of a compact semi-Riemannian
homogeneous space (M, g) is complete. It was observed in [§], that there is a
Riemannian metric g on M, which once seen as a scalar function on the tangent
bundle T'M, is a first integral of the geodesic flow of g. So, not only the geodesic
flow is complete, but its orbits are uniformly bounded.

1.2.2 Left Riemannian metrics

Regarding Item (3), T. Ochiai and T. Takahashi proved in [I3], that if K is
a compact simple Lie group, and the metric g is Riemannian, then the identity
component of the isotropy group acts by automorphisms. So, up to a finite cover,
Isom(K, g) is contained in K x K, acting by the left and the right on K.

This beautiful proof, of topological-algebraic nature, will be recalled in some
details in This result is no longer true in the general semi-simple case, see
the example in due to Ozeki [14] who proved a generalization of [13] which
can also help to handle the semi-simple case.

1.2.3 Non-Riemannian case

Regarding Item (2), again if K is simple, but g has any signature, it was
recently proved by Z. Chen, K. Liang and F. Zhu, that Isom(K, g) is compact. In
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particular, this group preserves a left invariant Riemannian metric, and hence
satisfies the previous description.

The beautiful proof uses deep results from Gromov’s rigid transformation
groups theory. We will show in §4] that this result also follows from the sim-
pler and direct techniques by Baues-Globke-Zeghib [I] (and [2]). We will also
partially sketch this approach.

Semi-Riemannian compact semi-simple non-simple groups can however have
non-compact isometry groups, see for examples. Actually, results of [1] give
many details about the semi-simple case, and tend to show that this construction
is essentially the unique way to get examples (of non-compact isometry groups
for left invariant metrics on compact semisimple groups).

1.2.4 Maximally symmetric metric

The two previous results can be formulated as follows:

Theorem 1. Let K be a compact simple Lie group. Consider gx, its left
invariant (in fact also right invariant) metric determined by the Killing form
(defined on the Lie algebra t). Then, gx is mazimally symmetric among left
invariant metrics, that is, for any left invariant metric g on K, lsom®(K, g) C
Isom®(K, gx).

1.2.5 The conformal group

The new contribution of the present article concerns the conformal ques-
tion (Item (4)). Based on the current project on the Lichnerowicz conformal
semi-Riemannian conjecture, in a homogeneous setting [3 4, [5], we get that if
Conf(K, g) is essential, then (K, g) is conformally flat. This happens rarely:

Theorem 2. Let K be a compact semisimple Lie group. Assume that Conf(K, g)
is essential. Then, up to a finite cover, K is SU(2) or SU(2) x SU(2) The con-
formal group is (up to finite cover) respectively: SO(1,3) and SO(4,4).

It would be really interesting to see if this result can be proved “alge-

braically”, that is without using the results on the homogeneous Lichnerowicz
conjecture.

1.2.6 Terminology: Supergroup extensions

In light of and it becomes natural to call a supergroup (or maybe
a supergroup extension) of K, a group G that contains K such that K acts freely
and transitively on some homogeneous space G/H.

The result mentioned in means exactly that a compact simple Lie
group has a maximal compact supergroup which is K x K (up to finite covers).
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As example, SLy(R) is a supergroup extension of SO(2), since SO(2) acts
simply transitively on the circle which is a homogenous space of SL(2,R). How-
ever, SL3(R) is not a supergroup of SO(2) since it can not act (non-trivially) on
the circle (it is know that the unique simple Lie groups acting non-trivially the
circle are covers of PSL(2,R)).

One general construction of supergroups goes as follows (for any K). Let
p: K — GL(F) be a representation, where F' is a finite dimensional subspace of
functions on K. In other words F' is a K-invariant finite dimensional subspace
in the space of all smooth functions on K (endowed with its usual action). Let
T be a circle in K, say given by a one parameter subgroup t — exp tu. Consider
the F' action on K, defined by f.k = kexp f(k)u € K. For f constant, we get
the T-action by the right on K. Combining with the left K-action, we get a
transitive action of the semi-direct product K x, F'.

A similar construction is available with T replaced by a higher dimension
torus T9.

This is an example of a supergroup which always exists. It is interesting to
see when this could preserve a semi-Riemannian metric? In fact, results of [I]
say essentially that all semi-Riemannian supergroups of a compact semi-simple
(non necessarily simple) group, are of this type.

2 Riemannian case

Theorem 3. [13] Let K be a connected compact simple Lie group. Let G
be a supergroup of K, that is G acts faithfully on K, and contains a copy of K
whose action identifies to the left action of K on itself. If G is connected and
compact, then a finite cover of G is a subgroup of K x K.

The K x K-action on K, by the usual rule (ky, ko)x = klxk‘gl, has as kernel
Z x 7, where Z is the center of K. Therefore, the theorem says that a supergroup
is contained in K x K/Z x Z.

Sketch of proof.

e Let H be the stabilizer of 1. Then G is naturally homeomorphic to the
product K x H. Indeed, ¢g.1 equals k¥ € K, and hence k~'g = h, for some
h € H. This coherently defines a bijective map g — (k, h), which is naturally
continuous.

e As a compact group, the universal cover of G decomposes as a direct
product of compact simple groups and an abelian group covering a toral factor.
Recall here that a compact group has a finite fundamental group exactly if it
is semi-simple. Since K is simple, it has no non-trivial homomorphism to an
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abelian group, and hence, its universal cover is contained in the product of
simple factors. If we change G accordingly, that is we remove the toral factor
from it, we do not change our problem, that is this new G is still a supergroup
of K. So, we will henceforth assume that GG is semi-simple.

e We have equality of homotopy groups: m;(G) = m;(K) x m;(H).

We deduce first that 71 (H) has a finite fundamental group and is thus semi-
simple.

At this stage, we can, and will, assume that all groups G, H and K are
simply connected (and hence in particular admit direct decompositions into
simple factors).

e Now, we recall that, for a simply connected simple Lie group, my = 1,
and w3 = Z. This was proved by R. Bott as a corollary of the main results of
[6]), and as application of Morse theory to the topology of Lie groups. We don’t
know if a direct proof is available.

Thus, for a simply connected compact semi-simple group, its m3-group is Z,
where d is the number of its simple factors.

Therefore, if G has d factors, then H has (d — 1) factors.

e Write G = G1 X...x Gy. If K projects trivially on some factor G;, then we
can remove this factor without changing our problem (that is we will still have
a supergroup of K). So assume K projects injectively in each G;, in particular
for any ¢, dimG; > dim K, and G; isomorphic to K, in case of equality of
dimensions.

e We have dim H = ¥ dim GG; —dim K. So, if dim G; > dim K, then dim G; +
dim H > dim G, which implies that G; N H # 1 (this happens at the Lie algebra
level, and then applies to groups too).

e Any non-trivial G; N H will be a non-trivial normal subgroup of H, and is
hence product of factors of H.

e Change notations and write G = A} X ... X A, X By X ... X By, where
dim A; > dim K, and B; is isomorphic to K, for any 1.

e Each A; N H is a product of factors of H.

e Consider the set 3 of factors H; of H that are contained in Ay x ... x A,.
There are at least a elements of . Their contribution in dim H is at most
Remember that H has d — 1 = a4+ b — 1 factors, so it remains at most b — 1
factors H; not in ¥. Any such H; projects non-trivially on some B;, and hence
is isomorphic to K. The total contribution of such factors in dim H is thus at
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most (b —1)dim K. But dimH = dimG — dim K = ¥dim 4; + (b — 1) dim K.
It follows that A1 x ... x A, is contained in H.

e Remember however that H is the isotropy of the G-action on K, and by
the faithfulness (tacit) hypothesis, H contains no normal subgroup of G. We
infer from all this, that all the G-factors are isomorphic to K and none of them
intersects non-trivially H. Say G = A¢, with A isomorphic to K

e H has (d—1) factors, all embed in A, but since dim H = dimG —dim A =
(d —1)dim A, each of these factors is isomorphic to A, that is H is isomorphic
to K1,

e To fix ideas, assume d = 3. So G = K?, and H = K? embeds in K3. This
consists in two copies of K in K3 which commutes. So their projections on each
factor of K3 commute. But such a projection is either {1} or K. It cannot be
K since K is not commutative. This implies these two copies cannot have same
non-trivial projection on a factor of K3. Hence at least one of these copies is a
factor of K3. But then, the isotropy H contains a normal subgroup of G which
contradicts faithfulness. This argument applies in a similar way to any situation
d > 3.

e It remains to consider the case d = 2, s0 G = K x K, and K and H embeds
“obliquely” in K x K, and so each of them is the graph of a homomorphism
K — K. The same applies to their Lie sub-algebras. They are graphs in £ @ ¢
of derivations dj,ds : £ — €. The intersection of these graphs consists of vectors
of the forms u @ di(u) € € @ ¢, such that di(u) = da(u). But di — da is a
derivation of £, and since ¢ is semi-simple, d; — ds = ad,,, for some w € ¢. In
particular d;(w) = da(w), and the two graphs have a non-trivial intersection.
This contradicts that fact that G equals K H which implies the sub-algebras of
K and H are transversal.

e All this implies that K is in fact a factor of G. So, all the other factors of
G commute with K, and thus their action consist in right multiplication, and
so, the G-action on K transits via K x K (up to a cover). O

3 Conformal Group, Proof of Theorem

Recall that Eins”? is the substratum of the flat conformal semi-Riemannian
geometry of signature (p, ¢). One model of it can be defined as follows. Consider
the pseudo-Euclidean space RP1:4+1 and ¢P+1.9+1 its light cone (the space of
isotropic vectors). Then, Eins?? is the quotient of the light cone by the radial
R*-action.

One sees in particular that Eins?? has the topology of SP x S9.
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The orthogonal group O(p+1, ¢+1) of RPT1:4+1 acts conformally on Eins??,
and in fact equals it full conformal group (for p + ¢ > 2).

A semi-Riemannian conformally flat manifold of signature (p, ¢) is modelled
on Eins”?, and conversely. In other words being conformally flat is equivalent of
having a (G, X)-structure, for X = Eins??, and G =0(p+1,¢+1). .

By the results of [3, 4], 5], if Conf (K, g) is essential, then (K, g) is conformally

flat. So, we have a developing map K — Eins??, where (p,q), ¢ > p, is the
signature of g.

Since semisimple, K has a finite fundamental group, so up to a cover, we
can assume K is simply connected.

The developing map is a local diffeomorphism, and K is compact and simply
connected, if follows that it is a covering, and that K is the universal cover of
Eins?. This implies that p # 1, since Eins™? has a non-compact universal cover,
and that d is a diffeomorphism, since Eins?”? is simply connected for p # 1.

So, from the topological viewpoint, K is a semi-simple Lie group diffeomor-
phic to SP x S p < q).

As recalled in Section [2] a semi-simple Lie group K satisfies mo(K) = 1, and
m3(K) # 0 [6]. In fact, m3(K) = Z*, where k is the number of simple factors of
K.

It follows that either (p, g) is either (0, 3) or p = 3 and ¢ > 3. Let us consider
the case p = 3,q > 3, the other case being easier to handle. Therefore, either
q > 3, and then K is simple, or ¢ = 3, and K has two simple factors.

(K, g) is conformally isomorphic to Eins”?, so its conformal group embeds in
O(p+1,q+1). In particular, the K-left action on itself gives a transitive action
on Eins”?, say via an embedding h : K — O(p + 1,4 + 1). Up to conjugacy, h
has values in the maximal compact subgroup O(p) x O(q). Write h = (h1, ha).

Assume g > 3, so w3(K) = Z (since diffeomorphic to SP x S7). Hence K
is simple. Necessarily, one of the homomorphisms hy or hs is trivial. But then
h(K) does not act transitively on S? x SY.

From this, we infer that ¢ = 3, and K has two simple factors. In this case
h = (h1,hs) maps K to SO(4) xSO(4). If K acts transitively on S?xS3, then none
of the h; is trivial. Recall here that up to finite cover SO(4) = SO(3) x SO(3). As
h(K) has exactly two simple factors, each of factors must be, up to finite covers,
SO(3). One can also see that, up to finite covers, h(K) is a product of two copies
of SO(3), each contained in one factor SO(4) (of the maximal compact). O

4 Non Riemannian case

Compact simply connected homogeneous semi-Riemannian manifolds were
studied in [I] (and also the unpublished [2] which becomes then part of [1]). The
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principal result is stated as follows:

Theorem 4. Let M be a connected and simply connected pseudo-Riemannian
homogeneous space of finite volume, G = lsom(M)°, and let H be the stabilizer
subgroup in G of a point in M. Let G = CR be a Levi decomposition, where R
1s the solvable radical of G. Then:

(1) M is compact.
(2) C is compact and acts transitively on M.

(8) R is abelian. Let A be the mazimal compact subgroup of R. Then A =
Z(G)°, the identity component of the center of G. More explicitly, R =
A XV where V= R" and V¢ = 0 (that is the C-representation has no
factor where it acts trivially).

(4) H is connected. If dim R > 0, then H = (H N C)E, where E and HNC
are normal subgroups in H, (H N C) N E is finite, and E is the graph
of a non-trivial homomorphism ¢ : R — K, where the restriction |4 is
injective.

4.1 Sketch

Let us give some hints on the proof of this result, especially the fact that G
has no non-compact semisimple factor (Item (2) in the Theorem). So G acts on
M transitively. For X in the Lie algebra g, let X be the associated vector field on
M. For x € M, we define a degenerate metric m(z) on g, using the pull back by
evaluation map X € g — X(x) € T, M, that is m(x)(X,Y) = g.(X(x),Y (z))
(g is the given semi-Riemannian metric on M). Let also h(z) be the Lie algebra
of the stabilizer of x. Observe that the Kernel of m(x) is exactly h(x). Like this,
one define maps m : M — Sym(g) and [ : M — L(g), where Sym(g) is the space
of quadratic forms on g and £(g) is the Grassmann of linear d-subspaces of g,
where d = dim h(x) (for any z).

The point is that m and [ are equivariant with respect to the action of G on
M, and its natural action of Sym(g) and L(g).

Let us assume here that M is compact (instead of the slightly more general
hypothesis M of finite volume as in the theorem).

The image Z = m(M) C Sym(g) is in particular invariant under the linear
G-action. So we are in a situation of a compact set Z in a linear space, say RY,
invariant by a subgroup G C GL(N,R). Let p(t) = ¢*4 be a one parameter group
in G. Then, for any z € Z, p(t)z is bounded when ¢ — oco. Assume A nilpotent,
then p(t) = 1 +tA+ (t2/2) A%+ ...+ (t/N!)AN. Clearly, p(t)z bounded, implies
A(z) = 0, that is p(t)z = z,Vt. If S a subgroup of G is generated by such one
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parameter groups, with A nilpotent, then S acts trivially on Z. This applies in
particular to the semi-simple factor of G of non-compact type, as well as to the
nilradical of G.

The case of the map [ is more complicated since it has values in a Grassmann
space V', which is compact. In this case, one uses another dynamical idea. Again
assuming A nilpotent, then a point v is recurrent if there is a sequence t, — oo,
such that p(t,)v — v. One concludes in this case that p(f)v = v. Since the
G-action on M preserves the semi-Riemannian measure, there is a G-invariant
measure with full support in the image of [. By Poincaré recurrence Theorem,
almost all points are recurrent. Therefore, we have the same conclusion that S
acts trivially on the image of [, once it is generated by one parameter groups
with nilpotent infinitesimal generator.

Let S be a semi-simple factor of non-compact type, and s its Lie algebra.
The last conclusion translates in terms of brackets to [s, h(z)] C h(x) (for any
x). By considering the projection m : g — s, one sees that if the projection of
h(x) is non-trivial, then this projection is an ideal of s. In particular, since there
are only finitely many ideals of s, we get a factor [ contained in the projection
of all h(z), Vx. By semi-simplicity, this gives [' = [, a subalgebra of g contained
in all the h(x), contradicting the faithfulness of the G-action. Therefore h(x) is
contained in ¢ + t, where ¢ is a compact semi-simple factor and v is the radical.

At the Lie group level, let G = S.C.R, then, for the isotropy H C C.R. So,
we have a well defined map M = G/H = (S.C.R)/H — S. By compactness of
M, S must be trivial. OJ

4.2 Simple case

Recall the result of [15]:

Theorem 5. [15] A left invariant semi-Riemannian metric on a compact
simple group, has a compact isometry group.

We will deduce this result from Theorem [4] without using neither [10} [7] nor
[13].

Proposition 1. If dim R > 0, then there is no simple subgroup K C G
which acts transitively on M.

Proof. Let Cy be the kernel of the representation of C' in V. This is a normal
subgroup of C and we have a splitting C' = CpC. From Proposition 9. 6 (see
also the proof of Lemma 10.3) of [I], we have that H C CyR. In particular if
Cy = 1, then H C R, but this is impossible since C' acts transitively on M,
unless H = R, which is also impossible since the G action is (tacitly!) assumed
to be faithful.
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Assume now that G contains a simple Lie group K acting transitively on
M. Then up to conjugacy, K is a subgroup of C, and by simplicity, it is either
in Cy or in Cf.

Assume K C (4. Consider G; = K x R. The isotropy Hy = G1 N H is
contained in R, since H C CyR. But K acts transitively on M, so the isotropy
Hq must be equal to R, which contradicts faithfulness.

Therefore K C Cy. Consider the direct product Go = K x R. So, on M, the
R-action commutes with the transitive action of K.

If the K-action on M is free, in which case M is identified to K acting by left
translation on itself, then R must act on the right via a homomorphism in K.
So the K x R-action extends to a K x K-action, and thus the isometry group is
compact. Finally, the case where the K-action on M is not free, works similarly,
with a slightly more complicated notations.

5 Non-simple examples

5.1 Riemannian Non-simple example

[14] Let L be any group. Embed it in L3 as A = {(z,z,1)/z € L}, and embed
L? as B = {(z,y,7)/l1,l2 € L}. Any element of L? can be uniquely decomposed
as a product of an element of A and an element of B. So L3 is acts on L3/A,
which is identified to B, and on L?/B which is identified to A. Observe however
that the L3-action on A is not faithful. The L3-action on B = L? is however
faithful and this supergroup of B = L? is not contained (up to covers) in B x B.

5.2 Non-Riemannian non-simple example

[ Let G = (SO(3) x R3) x T3, where SO(3) acts on R3 by the adjoint
representation (R? 2 s0(3)) and let ® : R?> — T3 be a homomorphism with
discrete kernel. Note V; (resp. V) the Lie algebra of R3 (resp. T3).

Put H = {(1,v,®(v)) | v € R?}. Its Lie sub-algebra is b = {(0,v, p(v)),v €
Vi}, where ¢ : Vi — Vj is the derivative of ®. Define a pseudo-product (,) on
g1 by:

- 50(3) and Vp @ V; are (totally) isotropic.

- if u € 50(3),v9 € Vo, v1 € v1, then (u,vg + v1) = K(u,v1 + ¢ (vg)), where
k is the Killing form of s0(3), and Vp and V) are identified to so(3).

One can check that the kernel of this product is exactly h, and that the
so defined product on g;/h has signature (3,3). Also, this product is Ad(H)-
invariant. All these properties are a particular case of the following general
construction. Let L any group, with [ its Lie algebra and [* its dual. Consider
the semi-direct product P = L x [*. Its Lie algebra as a vector space is p = [ [*.
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The paring of [ and its dual [*, that is k(z,a) = a(z),z € [,a € I*, determines
a pseudo-scalar product on p of signature (d,d), d = dim L, which is in fact
Ad(P)-invariant.

From this scalar product on g;/h, we get a Gi-invariant semi-Riemannian
metric of signature (3,3) on M; = G1/H. This M; is identified to SNO(B) x T3,

and thus obtain a G-invariant pseudo-Riemannian metric of signature (3, 3)
on the quotient M; = G1/H = 56(3) x T3. Here, M is a non-simply connected
manifold with a non-compact connected stabilizer.

In order to obtain a simply connected example, embed T? in a simply con-
nected compact semisimple group Cy, for example Cy = SNO(6), so that Gy is
embedded in G = (SO(3) x R3) x Cp.

The previously defined scalar product on g; can be extended to g as follows.
Choose t' C ¢p, as a T3-invariant supplementary subspace of the Lie algebra
of T2 in that of Cp, and endow it with a positive scalar product. Then, equip
g = g1 ®t, with the direct sum of scalar products. This is Ad(H )-invariant. We
therefore get M = G/H = SO(3) x Cy. Therefore SO(3) x SO(6) admits a left

invariant semi-Riemannian metric having a non-compact isometry group.

6 More results and questions

Let us end with the following questions, some of which are good exercises.

6.0.1 Finite isometry groups

For a compact homogeneous semi-Riemannian manifold, the isometry group
has finitely many connected components. Observe that all results here concern
the identity component. For instance, for a simple group K, with a left invariant
metric g, a priori, it might happen that the isotropy at the identity contains a
finite group acting by isometry that are not automorphisms?

6.0.2 Non-simple case

There is in fact in [I] more details about isometry groups of compact sim-
ply connected semi-Riemannian spaces, which might allow one to an optimal
classification of compact simply connected homogeneous semi-Riemannian man-
ifolds, in particular in the case where M is identified to a compact semi-simple
Lie group. Also Ozeki’s [14] and Koszul’s [11] results might be helpful in this
regard.
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6.0.3 Non-group case

Our proof of Proposition [I] applies also to semi-Riemannian homogeneous
spaces of simple groups, that is, manifolds M = K/P, where K is a compact
simple group. Their isometry group is compact.

6.0.4 Non semi-simple case

The conformal Theorem [2] generalizes, up to a slight modification, to the case
where K is compact but not necessarily semi-simple. So K is, up to a finite cover,
the product of a semi-simple by a torus. As example, we have SO(2) x SU(2)
whose conformal group is SO(2,4).

6.0.5 The non-compact Riemannian case

For a semi-simple group S endowed with a left invariant Riemannian metric
g, S is co-compact in Isom(.S, g). But if S contains no compact factor, then it is
cocompact only in groups of the form S x L, with L compact. In particular .S
cannot be co-compact in another different semi-simple group without compact
factors (see [9] for proofs)

6.0.6 The non-compact semi-Riemannian case

If S is simple non-compact, a semi-Riemannian left invariant metric can have
a large isometry group, say where S is not compact, the is the isotropy (at the
identity) is not compact. As example, the Killing form, determines a bi-invariant
metric, the identity component of its isometry group is S x.S, modulo the center.
Here, one can ask if it is a maximally symmetric metric as in Theorem
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