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Abstract. This paper extends the classical theory of Jacobi operators to statistical manifolds,
integrating concepts from differential and information geometry. We analyze the commutation
properties of statistical Jacobi operators and establish their implications for the geometry of
statistical hypersurfaces. By generalizing results on commuting curvature operators, we derive
new insights into the structure of statistical manifolds. Our findings contribute to a deeper
understanding of the interplay between curvature, shape operators, and statistical connections.
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Introduction

Jacobi operators play a fundamental role in differential geometry by charac-
terizing the behavior of geodesics under curvature influences. Their extension to
statistical manifolds provides a novel framework for analyzing geometric struc-
tures arising in probability theory, information geometry, and optimization. The
pioneering work of Amari [1] established the foundations of statistical manifolds,
introducing the concept of dual connections that encode statistical dependencies
geometrically. They enable deeper insights into machine learning, probability,
and information theory, extending classical differential geometry into the realm
of statistical inference., provide a natural framework for analyzing statistical
models using differential geometry. The interplay between the curvature struc-
ture of statistical manifolds and classical geometric operators is crucial in fields
such as machine learning, probability theory, and mathematical physics. By ex-
tending Jacobi operator results to statistical manifolds, we gain deeper insights
into their structure and potential applications. This work is motivated by pre-
vious research on commuting curvature operators, particularly the studies of
Tsankov and Brozos-Vázquez and Gilkey, who examined classical Jacobi op-
erators. We aim to generalize these results to statistical settings, showing that
the commutativity of statistical Jacobi operators provides strong curvature con-
straints on the underlying manifold.
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For a Riemannian curvature tensor R, Jacobi curvature operator JX , which acts
on a tangent vector V is defined as:

JX(V ) = R(V,X,X).

Brozos-Vázquez and Gilkey ([2]) established conditions under which commuting
Jacobi operators imply constant sectional curvature. In the work of Tsankov [7]
it is shown that if the classical Jacobi curvature operators JX and JY commute
on a hypersurfaceMn for all orthonormal pairs (X,Y ) and all points p ∈ Mn,
then Mn must have constant sectional curvature.
A statistical manifold (M, g,∇) consists of a Riemannian metric g and a torsion-
free affine connection ∇, with a dual connection ∇∗ satisfying

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗XZ).

The curvature tensors R and R* associated with ∇ and ∇∗ satisfy:

R(X,Y ) +R∗(X,Y ) = 2R0(X,Y ) + 2[K,K](X,Y ),

R(X,Y )−R∗(X,Y ) = 2dK[(X,Y ),

where R0 denotes the classical Riemannian curvature tensor, [K,K] encodes
affine deformation effects, and dK[ captures the differential of the shape oper-
ator.
Recent advances have connected dually flat statistical manifolds to optimiza-
tion algorithms, Fisher-Rao geometry, and deep learning architectures, making
curvature properties highly relevant in both theoretical and applied machine
learning contexts. A dually flat manifold is a special type of statistical mani-
fold characterized by the existence of a pair of dual affine connections, ∇ and
∇∗, that are both flat, i.e., their respective curvature tensors vanish (R = 0
and R∗ = 0). These manifolds play a central role in information geometry, as
they naturally arise in contexts such as exponential families and Bregman di-
vergences. A key feature of dually flat manifolds is the existence of a globally
defined potential function, ψ, such that the Riemannian metric g can be ex-

pressed as the Hessian of ψ, gij = ∂2ψ
∂θi∂θj

, in the ∇-flat coordinate system. The
dual coordinate system, associated with ∇∗, is related to the gradient of ψ, facil-
itating a dualistic structure that supports the study of optimization, statistical
inference, and divergence measures in a geometrically consistent framework.
We will show that equality of dual statistical Jacobi operators implies that the
ambient manifold is conjugate symmetric, which is on the other hand general-
ization of dually flat.
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Opozda ([6]) introduced the notion of sectional curvature for statistical struc-
tures, paving the way for further exploration. For examining statistical hyper-
surfaces in holomorphic statistical manifolds, we will use Opozda’s definition. In
[4], the nonexistence of hypersurfaces satisfying AX = αX and A∗X = βX is
shown. Motivated by this result, in [5], the case with three constant eigenvalues
is studied, and the information on holomorphic sectional curvature is obtained.
We relate this result with commutativity of Jacobi operators condition, and
show that two cases for holomorphic sectional curvature c are possible: c = 0
and c < 0. Our objective is to examine statistical Jacobi operators defined as:

JX(V ) = R(V,X,X), J∗X(V ) = R∗(V,X,X).

We establish conditions under which these operators commute and explore
their implications for the geometry of statistical hypersurfaces.
Our results provide a foundation for further exploration in multiple directions,
particularly in the intersection of differential geometry, machine learning, and
information theory. The connection between commuting statistical Jacobi oper-
ators and recent advances in optimization algorithms, neural network architec-
tures, and statistical inference opens new avenues for research.
Structure of the paper is the following. Section 2 presents necessary background
concepts and definitions related to statistical manifolds. Section 3 introduces
statistical Jacobi operators and their commutativity properties. Section 4 dis-
cusses applications and open questions, including implications for optimization
and machine learning.

1 Preliminaries

Given a Riemannian n-dimensional manifold (M, g) with Levi-Civita con-
nection ∇0, a symmetric TM -valued (0,2)-tensor K : TM2 → TM defines a
torsionless connection ∇:

∇XY = ∇0
XY +K(X,Y ),

where K(X,Y ) = K(X,Y ).

The connection is statistical if the (0,3)-tensor defined by the contraction
with the metric,

C(X,Y, Z) := g(K(X,Y ), Z),

is symmetric in all three variables.
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Then K is totally symmetric, and the dual connection ∇∗, called the conju-
gate connection, is given by:

∇∗XY = ∇0
XY −K(X,Y ).

The following relations hold:

∇Xg(Y, Z) = −2C(X,Y, Z) = −∇∗Xg(Y,Z),

K(X,Y ) =
1

2
(∇XY −∇∗XY ),

∇0
XY =

1

2
(∇XY +∇∗XY ),

The curvature tensors for connections ∇ and ∇∗ are respectively given by:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and
R∗(X,Y )Z = ∇∗X∇∗Y Z −∇∗Y∇∗XZ −∇∗[X,Y ]Z.

We define the following tensors:

R(X,Y, Z,W ) = g(R(X,Y )W,Z)

and
R∗(X,Y, Z,W ) = g(R∗(X,Y )W,Z)

Associated to K is the tensor [K,K] : TM2 → L(TM ;TM) defined by

[K,K](X,Y )Z := [KX ,KY ](Z),

and K[ : TM → L(TM ;TM) defined by musical isomorphism

K[(X)(Y ) = K(X,Y ) = KXY.

Thus dK[ (with respect to∇0) is the L(TM ;TM)-valued 2-form on M given
by

dK[(X,Y ) = ∇0
XK

[(Y )−∇0
YK

[(X).

The curvature tensors R and R∗ of a pair of dual statistical connections
(∇,∇∗) on (M, g) satisfy the following relations:

R(X,Y ) +R∗(X,Y ) = 2R0(X,Y ) + 2[K,K](X,Y );

R(X,Y )−R∗(X,Y ) = 2∇0
XK(Y, ·)− 2∇0

YK(X, ·) = 2dK[(X,Y );



Commuting statistical Jacobi operators 185

R(X,Y, Z,W ) = −R∗(X,Y,W,Z).

In particular, we may conclude:

R = R0 + [K,K] + dK[;

R∗ = R0 + [K,K]− dK[.

The curvatures R, R∗ and [K,K] satisfy the following:

R(X,Y, Z,W ) = −R(Y,X,Z,W );

R(X,Y, Z,W ) +R(W,X,Z, Y ) +R(Y,W,Z,X) = 0;

R(X,Y, Z,W ) = −R∗(X,Y,W,Z);

[K,K](X,Y, Z,W ) = −[K,K](Y,X,Z,W );

[K,K](X,Y, Z,W ) + [K,K](W,X,Z, Y ) + [K,K](Y,W,Z,X) = 0;

[K,K](X,Y, Z,W ) = −[K,K](X,Y,W,Z).

Definition 1. (M, g,∇) is called a statistical manifold if:

(1) ∇ is torsion-free, and

(2) (∇Xg)(Y,Z) = (∇Y g)(X,Z) for X,Y, Z ∈ Γ(TM).

∇∗ is called the dual connection of ∇ with respect to g if

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗XZ), X, Y, Z ∈ Γ(TM).

We remark that if (M, g,∇) is a statistical manifold, so is (M, g,∇∗).
Definition 2. Let (M, g,∇) be a statistical manifold. For X,Y, Z, V ∈

Γ(TM), we define

S(X,Y )Z :=
1

2
{R(X,Y )Z +R∗(X,Y )Z}

and

S(X,Y, Z, V ) := g(S(X,Y )Z, V ).
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Definition 3. A statistical manifold (M, g,∇) is said to be of constant
curvature c ∈ R if

S(X,Y )Z = c (g(Y, Z)X − g(X,Z)Y ) , X, Y, Z ∈ Γ(TM),

where R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

A statistical manifold (M,∇, g) is of constant curvature c if and only if
(M,∇∗, g) is of constant curvature c.

Definition 4.

Let (M, g, J) be a Kähler manifold and ∇ an affine connection on M . The
manifold (M, g,∇, J) is called a holomorphic statistical manifold if:

(1) (M, g,∇) is a statistical manifold, and

(2) ω := g(·, J ·) is a ∇-parallel 2-form on M .

We remark that for X,Y ∈ Γ(TM), ∇X(JY ) = J∇∗XY holds in the holo-
morphic statistical manifolds case.

Definition 5. A holomorphic statistical manifold (M, g,∇, J) is said to be
of constant holomorphic sectional curvature c if

S(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y

+ g(JY, Z)JX − g(JX,Z)JY + 2g(X, JY )JZ}

for X,Y, Z ∈ Γ(TM).

Statistical hypersurfaces. Let (M, g,∇, J) be a 2m-dimensional holomor-
phic statistical manifold and let M be a hypersurface of M . With ξ we denote
a unit normal vector field of M . By U we denote a structure (tangent) vector
field, defined by

Jξ = −U.

For X ∈ Γ(TM), we have the following decomposition:

JX = PX + u(X)ξ.

Here, P is an endomorphism acting on TM and u is one-form on M that satisfy:

P 2X = −X + u(X)U ;

g(X,U) = u(X), g(U,U) = 1;

PU = 0, u(PX) = 0.
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The shape operators of M are defined by ([8]):

g(AVX,Y ) = g(h∗(X,Y ), V ) g(A∗VX,Y ) = g(h(X,Y ), V ),

X, Y ∈ Γ(TM), V ∈ Γ⊥(TM).
The Gauss and Weingarten equations are given by:

∇XY = ∇XY + h(X,Y ),

and

∇Xξ = −AX + s(X)ξ,

respectively.
Their dual equations are:

∇∗XY = ∇∗XY + h∗(X,Y ),

and

∇∗Xξ = −A∗X + s∗(X)ξ.

One-forms s and s∗ satisfy

s(X) = −s∗(X).

When an ambient manifold is of constant holomorphic sectional curvature c,
the Gauss equation is:

S(X,Y )Z =
1

2
{g(A∗Y, Z)AX − g(A∗X,Z)AY + g(AY,Z)A∗X

− g(AX,Z)A∗Y }+
c

4
{g(Y, Z)X − g(X,Z)Y

+ g(PY,Z)PX − g(PX,Z)PY + 2g(X,PY )PZ}.

2 Statistical Jacobi operators

Let (M, g,∇) be a statistical manifold.

Definition 6. On a statistical manifold M , K-Jacobi operator is defined
by:

JK(X,Y ) := [K,K](Y,X)X.

Definition 7. On M , a statistical Jacobi operator is defined as:

J (X,Y ) := R(Y,X)X = R0(Y,X)X+∇0
YK(X,X)−∇0

XK(Y,X) +JK(X,Y ).

Following ideas of [3] (Lemma 2.2), we can prove the following two assertions.
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Proposition 1. A statistical manifold (M, g,∇) is conjugate symmetric if
and only if J = J ∗.

Proof. From the assumption that J = J ∗, it follows

R(Z,X, Y,W ) +R(Z, Y,X,W ) = R∗(Z,X, Y,W ) +R∗(Z, Y,X,W ).

By (1), this is equivalent to

−R∗(Z,X,W, Y )−R∗(Z, Y,W,X) = −R(Z,X,W, Y )−R(Z, Y,W,X).

Combining this equation with

R(Z,X,W, Y )−R∗(Z,X,W, Y ) = R∗(Z,W,X, Y )−R(Z,W,X, Y ),

we conclude

R∗(Z,W,X, Y )−R∗(Z, Y,W,X) = R(Z,W,X, Y )−R(Z, Y,W,X).

Now, since R(Z,W,X, Y ) = −R∗(Z,W, Y,X) = R∗(W,Z, Y,X), we conclude

R∗(Z,W,X, Y ) +R∗(Y,W,Z,X) = −R(Z, Y,W,X),

because of the first Bianchi identity.
Finally, since R∗(Z,W,X, Y ) = −R(Z,W, Y,X) = R(W,Z, Y,X), we have the
assertion.
The opposite direction is obvious. QED

Proposition 2. For a statistical Jacobi operator J and for a K-Jacobi
operator JK , the following holds.

(1) J = 0 if and only if R = 0.

(2) JK = 0 if and only if [K,K] = 0.

Definition 8. We define a statistical Jacobi curvature operator with respect
to S as:

J SX(Y ) := S(Y,X,X).

In the following let M be a hypersurface of dimension ≥ 3 in a holomorphic
statistical manifold M of constant holomorphic sectional curvature c whose
shape operators satisfy

AU = αU, AV = βV, A∗X = γX,

for all X ∈ Γ(TM), V ∈ U⊥, α 6= β. In [5] we have shown the next assertion.
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Lemma 1. Let α, β, γ ∈ R with α 6= β. Then one of the following holds:

� c = 0, A∗ = 0, DXξ = 0, β = 0,

� c = 0, A∗ = 0, DV ξ = 0 for V ∈ U⊥, β = 0,

� c = 2γ(β − α) 6= 0, β = γ, DXξ = 0,

� c = 2γ(β − α) 6= 0, α = γ,DXξ = 0,

� c = 2γ(β − α) 6= 0, β = γ, DV ξ = 0 for V ∈ U⊥.

Proposition 3. Let onM the condition J SU J SX = J SXJ SU holds for X ∈ U⊥.
Let the eigenvalues satisfy βγ 6= 0. Then one of the following holds:

(1) c = 0;

a. α = 0;

b. α = −β;
c. α = γ.

(2) c = −βγ;

a. α = −β
2 ;

b. α =
γ±
√
γ2+2c
2 and c < 0, |γ| >

√
−2c.

Proof. For Z ∈ Γ(TM), using the commutativity assumption, we obtain

c

4
γAZ − c

4
βγg(Z,X)X − α2

4
(γα+ βγ +

c

2
)g(Z,U)U − αγ

4
(αγ + βγ)g(Z,U)U

+
c

8
βγZ +

c2

16
Z − c2

16
g(Z,X)X +

3c2

16
g(Z,PX)PX − c

8
γαg(Z,U)U

= −1

2
γ2α2g(Z,U)U − 1

2
αγ2βg(Z,U)U +

c

8
γAZ − c

4
αγg(Z,U)U.

We replace Z = PX in this equation, and obtain

c

4
βγPX +

c2

4
PX = 0,

from which we conclude c = 0 or c = −γβ.
On the other hand, if we replace Z = U , we obtain

−α
3γ

4
− βγα2

8
+
α2

γ2
− β2γ2

16
= 0,
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or

(α+
β

2
)
γ

4
(−α2 + γα− γβ

2
) = 0.

From this we conclude α = −β
2 or α =

γ±
√
γ2+2c
2 and c < 0. In the special case

when γ2 = −2c, we conclude that α, β, γ are constants and α = γ
2 = β, which

is not possible. Therefore, γ2 > −2c, i.e. |γ| >
√
−2c. QED

Proposition 4. Let α, β, γ ∈ R with α 6= β. Let J SXJ SY = J SY J SX for
X,Y ∈ U⊥. Then c = −βγ.

Proof. We assume that J SXJ SY (Z) = J SY J SX(Z) for X and Y in U⊥ and
Z ∈ Γ(TM). Using the Definition 8 and eigenvalues assumption, we obtain

(β2γ2 +
c

2
βγ +

c2

16
)g(Z,X)g(X,Y )Y − (

3c

4
βγ +

3c2

16
)g(Z,PX)g(PX, Y )Y

− (
3c

4
βγ +

3c2

16
)g(Z,X)g(X,PY )PY +

9c2

16
g(Z,PX)g(PX,PY )PY

= (β2γ2 +
c

2
βγ +

c2

16
)g(Z, Y )g(X,Y )X − (

3c

4
βγ +

3c2

16
)g(Z,PY )g(PY,X)X

+ (
3c

4
βγ +

3c2

16
)g(Z, Y )g(PY,X)PX − 9c2

16
g(Z,PY )g(P 2Y,X)PX.

Now, we replace Z by PX and multiply the obtained equation by X. The result
is

(c+ βγ)2g(PX, Y )g(X,Y ) = 0.

From this we conclude c = −βγ. QED

Theorem 1. Let α, β, γ ∈ R with α 6= β. Let J SXJ SY = J SY J SX for X,Y ∈
U⊥. Then one of the following holds:

� c = 0, A∗ = 0, DXξ = 0, β = 0,

� c = 0, A∗ = 0, DV ξ = 0 for V ∈ U⊥, β = 0,

� c < 0, α = ±3
2

√
−c, β = γ = ±

√
−c, DXξ = 0,

� c < 0, α = γ = ±
√
−3

2c, β = ±
√
−2

3c, DXξ = 0,

� c < 0, α = ±3
2

√
−c, β = γ = ±

√
−c, DV ξ = 0 for V ∈ U⊥.
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Proof. The theorem follows from Lemma 1 and Propositon 4. QED

Theorem 2. Let α, β, γ ∈ R with α 6= β, βγ 6= 0. Let J SU J SX = J SXJ SU for

X ∈ U⊥. Then c < 0, c =
−γ2±γ

√
γ2+2c

3 , α =
γ±
√
γ2+2c
2 , β = 2

3α, |γ| >
√
−2c.

Proof. The theorem follows from Lemma 1 and Propositon 3. QED

3 Conclusion and open problems

We have introduced the notion of commuting statistical Jacobi operators,
extending classical results by incorporating statistical manifold structures. This
refinement provides new insights into the interplay between curvature and sta-
tistical geometry, offering a broader framework for understanding geometric con-
straints in information geometry and related fields, and established conditions
under which these operators provide constraints on the geometry of statistical
hypersurfaces. Our results extend classical findings in Riemannian geometry to
statistical settings, highlighting new structural properties of statistical curva-
ture.
We give some open problems for future research:

(1) How do commuting statistical Jacobi operators impact optimization tech-
niques in machine learning?

(2) What role do these operators play in defining new statistical divergences?

(3) Can computational algorithms be developed to efficiently verify commu-
tativity conditions in practical applications?
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