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Abstract. In this article, we explore a distinguished class of complex manifolds known as
dθ-exact locally conformally Kähler (LCK) manifolds. These manifolds are characterized by
the property that their fundamental 2-form ω can be expressed as ω = dθα, where α is a 1-form
on M and dθ = d + θ∧. We establish a key result: if the 1-form α is holomorphic, then the
Morse-Novikov cohomology H∗

θ (M) vanishes. Furthermore, we provide sufficient conditions
under which a dθ-exact LCK manifold admits a Vaisman structure. This work deepens the
understanding of the interplay between geometric structures, cohomological properties, and
special classes of LCK manifolds.
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1 Introduction and main results

A Hermitian manifold (M,J, g) is called a locally conformally Kähler
(LCK) manifold if it admits a closed 1-form θ, known as the Lee form,
such that the fundamental 2-form ω(., .) := g(J., .) satisfies the integrability
condition:

dω = θ ∧ ω.

LCK manifolds were introduced by I. Vaisman in the late 1970’s as part of
an effort to extend fundamental results from Kähler geometry to a broader class
of manifolds. However, it soon became evident that many classical properties
of Kähler geometry hold in the LCK setting only within certain restricted sub-
classes. A particularly notable example is the Vaisman manifold [7], an LCK
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manifold in which the Lee form remains parallel with respect to the Levi-Civita
connection. These manifolds exhibit a version of the Hodge decomposition the-
orem for their cohomology groups, making them structurally closer to Kähler
manifolds. Despite their importance, Vaisman structures are not stable under
small deformations, limiting their applicability in the broader framework of LCK
geometry.

To overcome this limitation, Ornea and Verbitsky introduced the class of
LCK manifolds with potential [6], which encompasses Vaisman manifolds
as a special case. This class remains stable under small deformations and allows
embeddings into Hopf manifolds, significantly broadening the framework of LCK
geometry.

For any LCK manifold, there exists an associated cohomology class known
as the Morse-Novikov class [ω]MN , defined with respect to the well-known
Morse-Novikov differential dθ := d−θ∧·, where d is the exterior derivative.
This leads to the Morse-Novikov cohomology, associated with the cochain
complex (Ω∗(M), dθ). Ornea and Verbitsky conjectured that if [ω]MN = 0, then
M admits an LCK structure with potential. This conjecture was closely related
to a twisted version of the ∂θ∂̄θ-lemma, analogous to its counterpart in Kähler
geometry. However, Goto refuted this conjecture [10], demonstrating that LCK
manifolds with potential form a strict subclass of LCK manifolds.

The conjecture and its refutation led to the identification of a new subclass:
dθ-exact LCK manifolds, where the fundamental 2-form satisfies ω = dθα,
for some 1-form α on M . These manifolds are of particular interest as they
retain certain structural properties that merit further investigation. Notably,
the subclasses of Vaisman manifolds, LCK manifolds with potential, and exact
LCK manifolds are distinct and generally do not coincide.

In this paper, we provide sufficient conditions under which an exact LCK
structure is Vaisman. In particular, we prove the following result which estab-
lishes a connection between curvature conditions and the Vaisman property in
the context of exact LCK manifolds.

Theorem 1. Let (M,J, ω) be a compact exact LCK manifold with ω = dθα.
If the Ricci curvature is non-negative and vanishes in the direction of α, then
the LCK structure must be Vaisman.

Finally, we prove that the Morse-Novikov cohomology of a compact exact
LCK manifold with a holomorphic 1-form vanishes. This result is closely related
to the geometric structure of the manifold.

Theorem 2. Let (M,J, ω) be a compact exact LCK manifold with ω = dθα,
where dθ = d + θ∧. If the 1-form α is holomorphic, then the Morse-Novikov
cohomology vanishes:

H∗θ (M) = {0}.
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2 Preliminaries

In this section, we recall the foundational concepts and results necessary for
understanding the main results of this paper. We begin with the definition of
locally conformally Kähler (LCK) manifolds and their equivalent characteriza-
tions, followed by a discussion of Morse-Novikov cohomology and its properties.
Finally, we introduce Vaisman manifolds and exact LCK manifolds, which are
central to our work.

2.1 Locally Conformally Kähler Manifolds

A Hermitian manifold (M,J, g) consists of a smooth manifold M endowed
with an almost complex structure J and a Hermitian metric g compatible with
J . The associated fundamental 2-form ω is defined by:

ω(X,Y ) = g(JX, Y ) for all vector fields X,Y on M.

Definition 1. A Hermitian manifold (M,J, g) is called a locally confor-
mally Kähler (LCK) manifold if there exists a closed 1-form θ, called the
Lee form, such that:

dω = θ ∧ ω.

This condition is equivalent to the existence of a Kähler structure on the
universal cover M̃ of M that is conformally equivalent to the pullback of ω.
Specifically, there exists a smooth function f : M̃ → R such that the metric
g̃ = e−f ω̃ is Kähler, where ω̃ is the pullback of ω to M̃ .

Locally, an LCK manifold can be described as follows. Let {Ui}i∈I be an
open cover of M , and let θi be the restriction of θ to Ui. If dθi = dfi ∧ ωi for
some smooth functions fi : Ui → R, then the local 1-forms dfi glue together to
form a globally defined closed 1-form θ on M . Conversely, if θ is a closed 1-form
on M , then by the Poincaré lemma, there exists an open cover {Ui}i∈I and
smooth functions fi : Ui → R such that θ = dfi on Ui. The condition dω = θ∧ω
implies that dωi = dfi ∧ ωi on Ui. Multiplying by e−fi , we obtain:

d
(
e−fiωi

)
= 0,

which shows that e−fig is a Kähler metric on Ui. This justifies the name ”lo-
cally conformally Kähler,” as the manifold resembles a Kähler manifold up to
a conformal factor in local charts.
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2.2 Morse-Novikov Cohomology

Let M be a compact differentiable manifold, and let θ be a closed 1-form on
M . The Morse-Novikov differential dθ is defined as:

dθ = d− θ ∧ ·,

where d is the exterior derivative. Since θ is closed, then d2θ = 0, defining a
cochain complex:

0 −→ Ω0(M)
dθ−→ Ω1(M)

dθ−→ · · · dθ−→ Ωn(M) −→ 0.

The cohomology of this complex, denoted by:

Hk
θ (M) :=

ker(dθ : Ωk(M)→ Ωk+1(M))

im(dθ : Ωk−1(M)→ Ωk(M))
,

is called the twisted cohomology (or Morse-Novikov cohomology or Lich-
nerowicz cohomology) associated to the de Rham cohomology class [θ]dR. Im-
portantly, H∗θ (M) depends only on the de Rham cohomology class of θ.

If M is orientable, a version of Poincaré duality holds for Morse-Novikov
cohomology:

Hk
θ (M)∗ ∼= Hn−k

−θ (M),

where n = dimRM .

Remark 1. For an LCK manifold (M,J, g) with Lee form θ, the condition
dθω = 0 defines a cohomology class called the Morse-Novikov class [ω]θ ∈
H2
θ (M).

2.3 Vaisman Manifolds

A special subclass of LCK manifolds is that of Vaisman manifolds. An
LCK manifold (M,J, g) is called Vaisman if its Lee form θ is parallel with
respect to the Levi-Civita connection of g, i.e., ∇θ = 0. Vaisman manifolds
exhibit several properties analogous to those of Kähler manifolds, including a
version of the Hodge decomposition theorem for their cohomology groups.

Vaisman manifolds are also characterized by the existence of a distinguished
vector field A = θ#, called the Lee vector field, which satisfies:

θ(X) = g(A,X) for all vector fields X on M.

This vector field plays a crucial role in the geometry of Vaisman manifolds.
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For Vaisman manifolds the Morse-Novikov cohomology vanishes (cf.
[2]), i.e.,

H∗θ (M) = {0}.

This vanishing result is a consequence of the parallelism of the Lee form θ.

Moroianu in [5] provides the following characterization of compact Vaisman
manifolds of non-Kähler type:

Lemma 1. Let (M,J, g, θ) be a compact, connected LCK manifold of com-
plex dimension n > 2, of non-Kähler type. If M admits a non-trivial parallel
vector field X, then g is Vaisman and θ# = X.

2.4 Exact LCK Manifolds

An LCK manifold (M,J, g) is called exact if its fundamental 2-form ω can
be expressed as:

ω = dθα

for some 1-form α on M . Exact LCK manifolds form an important subclass of
LCK manifolds, as they exhibit special cohomological and geometric properties.
In particular, the vanishing of the Morse-Novikov cohomology H∗θ (M) is closely
related to the exactness of ω.

The property of being dθ-exact is conformally invariant, that is, if ω is dθ-
exact, then so is any conformal multiple of ω. This follows from the fact that
dθω = 0 defines the Morse-Novikov class [ω]θ, and for exact LCK manifolds,
this class vanishes.

The existence of exact LCK metrics on a compact complex manifold is
constrained by geometric obstructions. In particular, when (M,J) contains a
smooth compact complex submanifold Z of Kähler type with either dimC Z > 1
or Z ∼= P1, the manifold M cannot admit exact LCK metrics [8].

Hopf manifolds provide fundamental examples of strict LCK geometry,
which are Exact. For λ ∈ C with |λ| 6= 1, the quotient CHn

λ = (Cn \ {0})/〈z 7→
λz〉 is a compact LCK manifold (diffeomorphic to S1 × S2n−1) that cannot
be Kähler, as evidenced by its odd first Betti number b1 = 1. The induced
Boothby metric h = |z|−2

∑
dzj ⊗ dz̄j makes CHn

λ a Vaisman manifold with
parallel Lee form θ = −d log |z|2, yielding vanishing Morse-Novikov cohomology
H∗θ (CHn

λ ) = 0 [2].

3 Proof of Main Results

In this section, we prove the main results of this paper. We begin by estab-
lishing the relationship between holomorphic 1-forms and conformal vector fields
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on exact LCK manifolds. We then prove a key result characterizing Vaisman
manifolds under certain curvature conditions. Finally, we explore the vanish-
ing of Morse-Novikov cohomology for exact LCK manifolds with holomorphic
1-forms.

We start by studying the properties of conformal vector fields on exact LCK
manifolds. Specifically, we show that under certain conditions, the vector field
dual to a holomorphic 1-form is conformal.

Proposition 1. Given an LCK structure (ω, θ) on an LCK manifold, sup-
pose that ω = dθα. Then, Jα# is a conformal vector field with potential function
f = θ(Jα#)− 1.

Proof: To show that Jα# is a conformal vector field, we need to check that
the Lie derivative of the metric g with respect to Jα# is proportional to g.

We know that
LJα#ω = d(ιJα#ω) + ιJα#dω. (1)

Since ω = dθα, we have dω = θ ∧ ω, thus

ιJα#dω = (ιJα#θ)ω − θ ∧ (ιJα#ω).

Substituting into 1 and taking into account that ιJα#ω = −α, we get

LJα#ω =d(ιJα#ω) + (ιJα#θ)ω − θ ∧ (ιJα#ω)

=θ(Jα#)ω − dα+ θ ∧ α = θ(Jα#)ω − dθα
=θ(Jα#)ω − ω = fω,

where f = θ(Jα#)− 1.
Thus, Jα# is a conformal vector field, as required.

Next, we establish the equivalence of several conditions for an exact LCK
manifold to be Vaisman. These conditions involve the relationship between the
Lee form and the holomorphic 1-form.

Theorem 3. Let (M,J, θ, α) be a compact exact LCK manifold. Then the
following are equivalent:

(1) M is a Vaisman manifold,

(2) α = −Jθ, where J ◦ θ := −θ ◦ J ,

(3) dcα = 0, where dc := J ◦ d ◦ J−1 = −J ◦ d ◦ J .

Proof: 1) =⇒ 2): If M is Vaisman, then θ is parallel and has constant
norm. After rescaling, we can assume ‖θ‖ = 1. Then it is easy to check that

ιθ#ω = Jθ and ιθ#dω = ιθ#(θ ∧ ω) = ω − θ ∧ Jθ.
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So, by Cartan’s formula for the Lie derivatives, we have

0 = Lθ#ω = dJθ + ω − θ ∧ Jθ.

Thus

ω = (−dJθ + θ ∧ Jθ) .

Since ω = dθα, we have:

dθ(α+ Jθ) = 0.

Since on a compact Vaisman manifold H∗θ (M) = 0, then α = −Jθ.
2) =⇒ 3): Trivial.

3) =⇒ 1): Since Jα# is a conformal vector field and dJα = 0, then ∇Jα
is symmetric. Thus, ∇Jα = 0, and by Lemma 1, M is Vaisman.

Let (M, g) be a compact oriented Riemannian manifold and α, β ∈ Ωp(M).
Following [1, §3.7] and denoting by ∗ the Hodge star operator, we consider the
L2-inner product on Ωp(M):

〈·, ·〉 : Ωp(M)× Ωp(M)→ R, 〈α, β〉 :=

∫
M
α ∧ ∗β ,

which satisfies the following fundamental identities:

(1) (Adjoint relation) 〈dα, β〉 = 〈α, δβ〉, for all α ∈ Ωp−1(M), β ∈ Ωp(M),
where δ denotes the co-differential;

(2) (Contraction duality) 〈ιXα, β〉 = 〈α,X[ ∧ β〉, for all X ∈ X(M), α ∈
Ωp+1(M) and β ∈ Ωp(M), where X[ denotes the 1-form on M dual to X
by g ;

(3) (Lie derivative adjoint) 〈LXα, β〉 = 〈α,L∗Xβ〉, for all α, β ∈ Ωp(M) where
L∗X = δLX[ + LX[δ.

Here, Lβ(α) := β ∧ α, for any differential form β on M . The commutation
[LX , d] = 0 implies their adjoints satisfy:

δL∗X = L∗Xδ .

A direct computation yields the key identity:

(LX + L∗X)α = (δξ)α+

p∑
r=1

gjk(LXg)kirαi1...îr...ipdx
i1 ∧ · · · ∧ dxip . (2)
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In the special case where X is Killing, this simplifies to:

LX + L∗X = 0 on Ω•(M) .

It is known from [4] that any conformal vector field on a compact LCK
manifold must necessarily be Killing with respect to the Gauduchon metric. We
now examine this property in the specific case of exact LCK manifolds with
holomorphic forms:

Lemma 2. Let (M,J, ω) be a compact exact LCK manifold with ω = dθα,
where α is a holomorphic 1-form. Then the vector field Jα# is Killing with
respect to the Gauduchon metric g.

Proof: Since α is holomorphic, then by Proposition 1, A := Jα# is a con-
formal vector field with potential θ(A)−1, where the dualilty is with respect to
the Gauduchon metric g.

From ([1]) A is conformal if and only if

LXθ + L∗Xθ = (1− 2

n
)δη.θ.

Since L∗X commute with δ, we have

δLXθ = (1− 2

n
)δ(δη.θ).

But LXθ = dιAθ and δ(δη.θ) = δη.δθ − g(θ, dδη)), then

δ(dιAθ) = −(1− 2

n
)g(θ, d(δη)).

Hence

〈δLXθ, ιAθ〉 = −(1− 2

n
)〈g(θ, d(δη)), ιAθ〉,

or equivalently

〈LXθ,LXθ〉 = −(1− 2

n
)

∫
M
g(θ, d(δη))θ(A)dv,

i.e.

‖LXθ‖2 = −(1− 2

n
)

∫
M
g(δθ, δη)θ(A)dv = 0.

Thus LXθ = 0.
On the other hand, we have θ(A) − 1 = − 2

nδη, this show that d(δη) = 0,
that is δη is constant. Since∫

M
δηdv = 〈1, δη〉 = 〈d1, η〉 = 0,

we deduce that δη = 0, so A is a Killing vector field with respect to the Gaudu-
chon metric g and θ(A) = 1.
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The following commutation relations were previously established for LCK
manifolds with parallel Lee form θ [2]. We now generalize these results to the
broader class of exact LCK manifolds:

Proposition 2. Let (M,J, ω) be a compact exact LCK manifold with ω =
dθα. For the vector field A = α# dual to α, the following operator identities
hold:

(1) LA = ιAdθ + dθιA + Id,

(2) δLA = LAδ,

(3) dθLA = LAdθ,

(4) δθLA = LAδθ, where δθ is the adjoint operator of dθ.

Proof:

(1) Starting with the interior product of the twisted differential:

ιAdθ = ιA(d− Lθ) = ιAd− ιALθ = LA − dιA − ιALθ.

But, for any α ∈ Ωk(M), we have

ιA(Lθα) = ιA(θ ∧ α) = θ(A)α− θ ∧ ιAα = α− Lθ(ιAα)

(since θ(A) = 1). Substituting back yields:

ιAdθ = LA − dιA − (Id−LθιA) = LA − dθιA − Id .

Rearranging gives the claimed decomposition:

LA = ιAdθ + dθιA + Id

(2) Using the Killing property L∗A = −LA, we get by adjoint properties

δLA = −δL∗A = −L∗Aδ = LAδ.

(3) We have
LAdθ = LAd− LALθ = dLA − LALθ.

But, for any α ∈ Ωk(M), we have

LA(Lθα) = LA(θ ∧ α) = LAθ ∧ α+ θ ∧ LAα = Lθ(LAα),

since LAθ = 0. Thus:

LAdθ = dLA − LθLA = dθLA.
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(4) Using the adjoint property again:

δθLA = −δθL∗A = −L∗Aδθ = LAδθ.

Now, we are in a position to prove Theorems 1 and 2.
Proof of Theorem 1: Since α is holomorphic, then by Proposition 1 Jα#

is a non-vanishing conformal vector field on M . Applying the Goldberg formula
[1, page 114] to η := Jα, we obtain

〈∆η +

(
1− 2

n

)
dδη −Qη, η〉 = 0,

where Q denotes the Ricci operator. Developing this, we get

〈dδη + δdη, η〉+

(
1− 2

n

)
〈dδη, η〉 = 〈Qη, η〉.

Simplifying further, we obtain

〈δη, δη〉+ 〈dη, dη〉+

(
1− 2

n

)
〈δη, δη〉 = 〈Qη, η〉.

Thus

〈dη, dη〉+ 2

(
1− 1

n

)
〈δη, δη〉 = 〈Qη, η〉.

If Q is non-negative and 〈Qη, η〉 = 0, we must have δη = dη = 0. Since η# is
conformal, this implies∇η# = 0, and by lemma 1, we conclude that θ = η = Jα.

Proof of Theorem 2: Since α is holomorphic, Jα is also holomorphic and,
by Proposition 1, A = (Jα)# is conformal vector field. Thus, by Lemma 2, it is
Killing with respect to the Gauduchon metric, and θ(A) = 1.

Since H∗θ (M) is conformally invariant, we work with the Gauduchon metric.
By the twisted Hodge decomposition theorem, we get

Ωk(M) = Hkθ (M)⊕ dθ
(

Ωk−1(M)
)
⊕ δθ

(
Ωk+1(M)

)
.

Let α ∈ Hkθ (M). Then dθα = 0 and δθα = 0. Since A is Killing, LAα = 0. It
follows from the first identity of Proposition 2 that

LAα = dθ(ιAα) + α.

Hence, α = 0 and Hk
θ (M) ∼= Hkθ (M) = {0}.



On exact LCK manifolds 179

References

[1] S.I. Goldberg, Curvature and Homology, Academic Press, 2011.
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