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1 Introduction

This article is written based on the talk delivered at the Second Interna-
tional Conference on Differential Geometry ICDG-FEZ’2024. The talk was to
report some recent results on linear and nonlinear potential theory and their
applications in conformal geometry.

The subject of conformal geometry here in many ways is developed from
theories of analysis and geometry in 2 dimensions. We know that the integral
of the Gauss curvature directly gives the Euler number from the Gauss-Bonnet.
Perhaps it is slightly less well known that the differential equation about Gauss
curvature facilitated the differential geometric approach to the uniformization
theorem for Riemann surfaces. The theory of supharmonic functions and the
Gauss curvature equation in 2 dimensions became essential to the theory of
open surfaces [17]. The study of Gauss curvature equation also led to the dif-
ferential geometric approach to the Teichmüller theory of Riemann surfaces
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[39]. Indeed the Gauss curvature equation has been shown to be the powerful
analytic tool to study the theory of conformal structure on surfaces. Another
seminal achievement is exemplified by the works on the isospectral problems in
2 dimensions in [32, 33, 34].

To emulate these remarkable achievements in 2 dimensions to higher di-
mensions, one way is to look for analogs of the Gauss curvature equation and
analytic tools to study these geometric differential equations. In this article we
will review some well known results and report some recent developments.

We will start in Section 2 with the introduction of generalizations of the
Gauss curvature equation in general dimensions systematically. Particularly we
will introduce a family of p-Laplace equations about Ricci curvature tensor as
quasilinear generalizations of the Gauss curvature equation. The introduction of
superharmonic as well as p-superharmonic functions paves the way to the uses
of linear and nonlinear potential theories.

In Section 3 we will review motivations in the study of geometric differ-
ential equations in conformal geometry. In higher dimensions, it started with
the Yamabe problem [37]. The Yamabe problem is to search for constant scalar
curvature metrics in the hope to find the extension of uniformization theorem
in higher dimensions. From this perspective, we want to provide an overview of
current research on geometric differential equations in conformal geometry.

In Section 4 and 5, we will focus on our recent work on applications of
potential theory in the study of singular solutions of differential equations that
are analogs of the Gauss curvature equation in higher dimensions. We then will
report analogs of Huber theorem [17, 27, 28] in higher dimensions, and other
geometric and topological consequences in conformal geometry [29, 25, 26].

2 Partial differential equations in conformal geome-
try

Let us first quickly introduce curvature on Riemannian manifolds. In a local
coordinate (U, φ) on a Riemannian manifold (Mn, g),

x = (x1, x2, · · ·xn) : Ω ⊂ Rn → U ⊂Mn,

the Riemannian metric and Christoffel symbols are

gij = g(∂xi , ∂xj ) and Γkij =
1

2
gkl(∂xigjl + ∂xjgil − ∂xlgij).

Therefore the Levi-Civita covariant differentiation is given as

∇∂xi∂xj = Γkij∂xk
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and Riemann curvature tensor is

R l
ijk = −∂xiΓljk + ∂xjΓ

l
ik − ΓmjkΓ

l
mi + ΓmikΓ

l
mj .

Then Ricci curvature tensor and (Ricci) scalar curvature are

Rik = gjlRijkl = R j
ijk and R = gikRik = R i

i .

In conformal geometry one often encounters the Schouten curvature tensor

Aik =
1

n− 2
(Rik −

1

2(n− 1)
Rgik) (1)

and uses the notation J = gikAik = R
2(n−1) .

2.1 Semilinear equations and superharmonic functions

In dimension 2, let R1212 = K. Then the celebrated Gauss curvature equa-
tion is

−∆u+K = Ke2uge
2u. (2)

In dimensions greater than 2, the scalar curvature equation is

P2u =
n− 2

4(n− 1)
R
u

4
n−2 g

u
n+2
n−2 (3)

where P2 = −∆ + n−2
4(n−1)R is the conformal Laplacian. (3) is often referred as

the Yamabe equation and has been extensively studied in connection to the well
known Yamabe probelm in conformal geometry.

One may recall that the Paneitz operator is

P4 = ∆2 + div(4A · ∇ − (n− 2)J∇) +
n− 4

2
Q4

and the associated Q-curvature is

Q4 = −∆J +
n

2
J2 − 2|A|2.

The Q-equation is
P4u+Q4 = (Q4)e2uge

4u (4)

in dimension 4 and

P4u =
n− 4

2
(Q4)

u
4

n−4 g
u
n+4
n−4 (5)

in dimensions higher than 4. In fact, there are higher order analogs, the so-called
GJMS operators P2k and corresponding curvature Q2k (cf. [7, 8, 11]). They all
satisfy the following characteristic properties.
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� The conformal covariance:

(P2k)
u

4
n−2k g

(φ) = u−
n+2k
n−2k (P2k)g(u · φ)

� On Euclidean space, P2k = (−∆)k, which is the leading order term in
general.

� The associated scalar curvature of higher order isQ2k = P2k(1) when 2k < n.

And

Pnu+Qn = (Qn)e2uge
nu when n is even and

P2ku = (Q2k)
u

4
n−2k g

u
n+2k
n−2k when 2k < n.

Moreover there are fractional analogs coming from the scattering theory of
Poincré-Einstein manifolds (cf. [12, 14]). Let (Mn, [g]) be the conformal in-
finity of a Poincaré-Einstein manifold (Xn+1, g+), where [g] stands for the class
of conformal metrics on Mn. For a representative g, the regularized scattering
operator (Pα)g of order α ∈ (0, n] and the associated nonlocal ”curvature”

(Qα)g = (Pα)g1

of order α behave similarly

(Pn)gu+ (Qn)g = (Qn)e2uge
nu when α = n is odd, and

(Pα)gu = (Qα)
u

4
n−α g

u
n+α
n−α for α ∈ (0, n).

Pα is the family of fractional powers of Laplacians that includes GJMS operators
P2k (cf. [12, 9, 35, 36, 14, 10]).

We will consider solutions to the equation

(−∆)
α
2 u = µ on Euclidean space Rn (6)

or

Pαu = µ on Mn in general

for a nonnegative Radon measure µ as generalized superharmonic functions and
appeal to the linear potential theory in our study of the asymptotic behavior
near singularities.
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2.2 p-Laplace equations and p-superharmonic functions

Here, we want to call the attention to the intermediate Schouten curvature
tensor (cf. [25, 26])

A(p) = (p− 2)A+ J g (7)

for p ∈ (1,∞). For ḡ = u
4(p−1)
n−p g and p 6= n,

A
(p)
ḡ = A(p)−2(p− 1)

n− p

[
∆u

u
g + (p− 2)

D2u

u

]
+

2(p− 1)

n− p
[(1− (n+ p− 4)

p− 1

n− p
)
|∇u|2

u2
g

+(p− 2)(1 +
2(p− 1)

n− p
)
∇u⊗∇u

u2
].

(8)

Multiplying u|∇u|p−2 ui
|∇u|

uj
|∇u| to and summing up on both sides, we arrive at

the p-Laplace equations in conformal geometry

−∆pu+
n− p

2(p− 1)
S(p)(∇u)u =

n− p
2(p− 1)

(S(p)(∇u))ḡu
q (9)

where

S(p)(∇u) = |∇u|p−2A(p)(∇u), q =
2p(p− 1)

n− p
+ 1,

and A(p)(∇u) is the A(p) curvature in the direction ∇u. When p = n, we realize
A(n) = Ric, and the n-Laplace equation is

−∆nφ+ |∇φ|n−2Ric(∇φ) = (|∇φ|n−2Ric(∇φ))ḡe
nφ (10)

where ḡ = e2φg. Recall
∆pu = div(|∇u|p−2∇u).

For p = n = 2, (10) goes back to the Gauss curvature equation

−∆φ+K = Kḡe
2φ,

where ḡ = e2φg. For p = 2 and n ≥ 3, the intermediate Schouten curvature goes
back to the scalar curvature and the p-Laplace equation (9) goes back to the
scalar curvature equation

−∆u+
n− 2

4(n− 1)
Ru =

n− 2

4(n− 1)
Rḡu

n+2
n−2 ,

where ḡ = u
4

n−2 g. For p > n, the p-Laplace equation (9) for the intermediate

Schouten curvature is still valid for ḡ = u
− 4(p−1)

p−n g and q = −2p(p−1)
p−n + 1 < 0.
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And, when taking p→∞, we arrive at the infinite Laplace equation on Schouten
curvature A

−∆∞u−
1

2
|∇u|2A(∇u)u = −1

2
(|∇u|2A(∇u))ḡu

−7 (11)

for ḡ = u−4 g. Recall ∆∞u = uijuiuj .
We will consider solutions to the equation

−∆pu = µ (12)

for a nonnegative Radon measure µ as p-superharmonic functions and appeal
to nonlinear potential theory in our study of the asymptotic behavior near
singularities.

3 Motivating problems in conformal geometry

3.1 Motivations from the surface theory

Much of the developments in conformal geometry have been motivated by
the tremendous success in the study of surfaces. We want to start with the
uniformization theorem (Klein 1883 Poincaré 1882 Koebe 1907), which states,
the universal covering of a closed Riemann surface is conformally equivalent to
one of the three: D2, R2, S2.

By the differential-geometric approach, this is to say that, on a closed Rie-
mannian surface (M2, g), there is a conformal metric e2ug whose Gauss curva-
ture is constant. Equivalently, one solves

−∆u+K = κe2u

for κ = −1, 0, 1.
On the theory of open surfaces, there is the important theorem, proved by

Huber in [17], which states, if a complete noncompact surface (M, g) satisfies∫
M
K−dµg < +∞,

then it is conformally equivalent to a compact Riemann surface with finitely
many points removed. Here K− = max{−K, 0} is the negative part of Gaussian
curvature K and dµg is the volume form of the metric g. Analytically this
includes the statement:

Theorem. Let the conformal metric ḡ = e2ug on Ω \ S be geodesically
complete near S. Suppose that

∫
Ω\S(K−dvol)ḡ < ∞. Then S consists of at

most finitely many points.



Potential theory and applications in conformal geometry 153

3.2 Interplays of analysis and conformal geometry in higher di-
mensions

There have been many interesting work to establish theorems of Huber-type
in higher dimensions. To motivate, we want to make two remarks. First, in two
dimensions, open surfaces are well understood topologically. However, in higher
dimensions, the topology as well as the local and global conformal structure
become much more complicated. Secondly, in higher dimensions, Ricci curvature
tensor is genuinely no longer a scalar. Therefore, for applications in geometry,
we will focus on locally conformally flat manifolds, particularly those whose
development maps are injective.

One may focus on locally conformally flat manifolds as they are more closely
related to theories of surfaces. Suppose that (Mn, g) is a locally conformally flat
manifold and that the conformal immersion from a covering (M̃n, g̃) to (Sn, gS)
is injective.

M̃n Sn

Mn

φ

π

Then, on φ(M̃n) ⊂ Sn, there is a complete conformal metric (φ−1)∗g̃ =
e2ugS. One is interested in the size of Sn \ φ(M̃n), or specifically, the Hausdorff
dimension of Sn \φ(M̃n). We want to confirm that, in these situations, there are
strong correlations between the Hausdorff dimension of Sn\φ(M̃n), the topology
of Mn, and the curvature of the metric g. Specifically, we will introduce notions
of the positivity of curvature tensors and their impact to the homology groups
and homotopy groups.

One way to measure the positivity of curvature and derive topological con-
sequences is to consider (scalar) curvatures of higher order and nonlinear na-
ture and the associated curvature equations like the semilinear and quasilinear
equations mentioned in the previous section in the spirit of the uniformization
theorem on surfaces. The Yamabe problem and its generalizations have been in-
troduced and generated huge interest, which has been one of the most significant
and influential subjects in geometric analysis and geometric partial differential
equations. We believe the newly introduced p-Laplace equations in conformal
geometry will add fuel and contribute further developments.

For instance, as a way to gauge the positivity of Ricci curvature tensor, we
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propose here to use the cones

A(p) = {λ ∈ Rn : min
k
{(p− 2)λk +

n∑
i=1

λi} ≥ 0} (13)

for p ∈ (1,∞) to describe the positivity of the intermediate Schouten curvature
tensor A(p) when {λi} stands for the eigenvalues of the Schouten curvature
tensor A.

To illustrate how effective this approach can lead to vanishing theorems on
topology, we recall the cones

R(r) = {λ ∈ Rn : min{(n− r)
r∑

k=1

λik + r
n∑

k=r+1

λik} ≥ 0} (14)

introduced for dealing with the terms in the Bochner formula on r-forms on
locally conformally flat n-manifolds, where min is taken for all possible re-
arrangements {λi1 , λi2 , · · · , λin} of (λ1, λ2, · · · , λn). We observe that

Lemma 1. ([25])

A(p) ⊂ A(q) for 2 ≤ q < p <∞

R(s) ⊂ R(r) for 0 < s ≤ r ≤ n

2
and

A(p) ⊂ R(r) for
n− p

2
+ 1 ≤ r ≤ n

2
.

Obviously A(2) = R(n
2

) is the baseline.

Consequently, we obtain

Theorem 1. ([25]) Let (Mn, g) be a compact locally conformally flat man-
ifold with A(p) ≥ 0 for p ∈ [2, n). Suppose that the scalar curvature is positive
somewhere on Mn. Then, for n−p

2 +1 ≤ k ≤ n+p
2 −1, the Betti numbers βk = 0,

unless (M̃n, g)
isometric∼ Hk × Sn−k.

The proof uses The Bochner formula on r-forms (cf. [13, 31])

∆ω = ∇∗∇ω +R(ω)

R(ω) = ((n− r)
r∑
i=1

λi + r
n∑

i=r+1

λi)ω

for ω = ω1 ∧ ω2 · · · ∧ ωr and {ωk} is the orthonormal basis under which the
Schouten curvature tensorA is diagonalized on locally conformally flat n-manifolds.

In the light of (9), we therefore want to use asymptotic behavior p-superharmonic
functions to estimate the size of singularities and derive consequences on the
homotopy groups when assuming A(p) ≥ 0 for p ∈ [2,∞).
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4 Linear potentials and applications in conformal ge-
ometry

In this section, we give an exposition of our recent work on linear potential
theory in conformal geometry. We apply linear potential theory to study partial
differential equations arising from conformal geometry and, in particular, the
problems related to the dimension of the boundary of a domain that admits
certain complete conformal metric.

4.1 Riesz potential, capacity, and thin set

Let Ω be a bounded open subset in the Euclidean space Rn. Then, for x ∈ Ω,
let

Rα,Ωµ (x) =


∫

Ω

1

|x− y|n−α
dµ(y) when α ∈ (1, n)∫

Ω
log

D

|x− y|
dµ(y) when α = n

(15)

for a Radon measure µ on Ω, where D is the diameter of Ω. Let E be a subset
in Ω and Ω be a bounded open subset in Rn. For α ∈ (1, n], we define the Riesz
capacity by

CαL(E,Ω) = inf{µ(Ω) :
µ ≥ 0 Radon measure on Ω

Rα,Ωµ (x) ≥ 1 for all x ∈ E
}. (16)

The following basic properties are easy to prove (cf. [30])

Lemma 2. Let CαL be the Riesz capacity defined as in (16) for α ∈ (1, n].
Then

(1) CαL is nondecreasing in E, that is

CαL(E1,Ω) ≤ CαL(E2,Ω)

when E1 ⊂ E2 ⊂ Ω ⊂ Rn.

(2) CαL is countably subadditive, that is

CαL(∪∞i=1Ei,Ω) ≤
∞∑
i=1

CαL(Ei,Ω)

for subsets Ei ⊂ Ω.
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(3) For a positive number λ, let

Aλ = {λx : x ∈ A}

for any subset A of Rn. Then, for α ∈ (1, n],

CαL(Eλ,Ωλ) = λn−αCαL(E,Ω).

(4) Suppose
Φ : Ω→ Ω

is a contractive map, that is

|Φ(x)− Φ(y)| ≤ |x− y|

for all x, y ∈ Ω. Then, for α ∈ (1, n],

CαL(Φ(E),Ω) ≤ CαL(E,Ω)

for any subset E ⊂ Ω.

(5) For α ∈ (1, n],
CαL(∂B1(0), B2(0)) = c(n, α)

for some positive constant c(n, α).

Thin sets with respect to the Riesz capacity CαL are defined through dyadic
annuli:

ωδi (p) = {x ∈ Rn : |x− p| ∈ [2−iδ, 2−i+1δ]}
Ωδ
i (p) = {x ∈ Rn : |x− p| ∈ (2−i−1δ, 2−i+2δ)}.

Definition 1. Let E be a subset in the Euclidean space Rn and p ∈ Rn.
The subset E is said to be α-thin with respect to the Riesz capacity CαL at the
point p for α ∈ (1, n) if∑

i≥1

CαL(E
⋂
ωδi (p),Ω

δ
i (p))

CαL(∂B2−iδ(p), B2−i+1δ(p))
<∞

for some small δ > 0. The subset E is said to be n-thin at p if∑
i≥1

iCnL(E
⋂
ωδi (p),Ω

δ
i (p)) <∞

for some small δ > 0.

A simple and important fact (see also [30]) is

Lemma 3. Let E be a subset in the Euclidean space Rn and p ∈ Rn. Suppose
that E is α-thin at the point p for α ∈ (1, n]. Then there is always a ray from p
that avoids E at least within some small ball at p.
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4.2 Singularities of superharmonic functions under the fine topol-
ogy

What we want to derive is the asymptotic behavior of superharmonic func-
tions near singularities outside thin sets.

Theorem 2. Suppose µ be a finite nonnegative Radon measure on a bounded
domain Ω ⊂ Rn. Then, for p ∈ Ω, where Rα,Ωµ (p) =∞, there is a subset A that
is α-thin at p such that

lim
x→p and x∈Rn\A

Rα,Ωµ (x)

|x− p|α−n
= µ({p}).

for α ∈ (1, n) and

lim
x→p and x∈Rn\A

Rn,Ωµ (x)

log 1
|x−p|

= µ({p})

for α = n.

To obtain the Hausdorff dimension estimates we use the help from the fol-
lowing

Lemma 4. ([22]) Let µ be a nonnegative Radon measure on a complete
Riemannian manifold (Mn, g) and let

G∞d = {x ∈Mn : lim sup
r→0

r−dµ(Br(x)) = +∞}

for any d ∈ [0, n]. Then

Hd(G∞d ) = 0

where Hd is the Hausdorff measure of dimension d.

Consequently we have

Theorem 3. ([29] Suppose that µ is a finite nonnegative Radon measure
on a bounded domain Ω ⊂ Rn. Let S be a compact subset in Ω such that its
Hausdorff dimension is greater than d, where d < n − α and α ∈ (1, n). Then
there is a point p ∈ S and a subset E that is α-thin at p such that

Rα,Ωµ (x) ≤ C

|x− p|n−α−d

for some constant C and all x ∈ Bδ(p) \ E for some small δ > 0.
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4.3 Consequences in conformal geometry

We first derive the Hausdorff dimension estimates from the scalar curvature
equation (3).

Theorem 4. ([29]) Let S be a compact subset and D be a bounded open

neighborhood of S. Suppose that ḡ = u
4

n−2 g is a conformal metric on D \ S and
is geodesically complete near S. Then the Hausdorff dimension

dimH(S) ≤ n− 2

2
,

provided that R−[ḡ] ∈ L
2n
n+2 (D \ S, ḡ)

⋂
Lp(D \ S, ḡ) for some p > n/2.

Obviously the integrability condition holds if R ≥ 0. Therefore this improves
some early result of Schoen-Yau 1988 ([38]). Using (5) we have

Theorem 5. [29] Let S be a compact subset and D be a bounded open

neighborhood of S. Suppose that ḡ = u
4

n−4 g is a conformal metric on D \S with
nonnegative scalar curvature and is geodesically complete near S. And suppose
also that

(Q−4 )ḡ ∈ L
2n
n+4 (D \ S, ḡ).

Then

dimH(S) ≤ n− 4

2
.

We also were able to show a Huber’s type theorem in dimension 4.

Theorem 6. [28]) Let S be a compact subset and D be a bounded open
neighborhood of S. Suppose that ḡ = e2ug is a conformal metric on D \ S with
nonnegative scalar curvature and is geodesically complete near S. And suppose
that ∫

D
(Q−4 dvol)ḡ <∞.

Then S consists of at most finitely many points.

This can be compared with some early result of Chang-Q-Yang 2000 ([6]).

5 Nonlinear potentials and applications

In this section we give an exposition of our recent work on nonlinear potential
theory in conformal geometry. We apply nonlinear potential theory to study
p-Laplace equations arising from conformal geometry and, in particular, the
problems related to the asymptotic behavior near and the size of singularities
in conformal geometry.
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5.1 Wolff potentials, p-superharmonic functions, and their sin-
gular behavior

Let us first give the definitions of p-harmonic and p-superharmonic functions.
In this section we always assume 1 < p < n unless specified otherwise. Let us
recall again what is the p-Laplace operator

∆pu = div(|∇u|p−2∇u).

Definition 2. ([24, Definition 2.5]) We say that u ∈ W 1,p
loc (Ω) is a weak

solution of the p-harmonic equation in Ω, if∫
〈|∇u|p−2∇u,∇η〉dx = 0

for each η ∈ C∞0 (Ω). If, in addition, u is continuous, we then say u is a p-
harmonic function.

Definition 3. ([24, Definiton 5.1]) A function v : Ω → (−∞,∞] is called
p-superharmonic in Ω, if

� v is lower semi-continuous in Ω;

� v 6≡ ∞ in Ω;

� for each domain D ⊂⊂ Ω the comparison principle holds, that is, if h ∈
C(D̄) is p-harmonic in D and h|∂D ≤ v|∂D, then h ≤ v in D.

As stated in [18, Theorem 2.1], for u to be a p-superharmonic function in Ω,
there is a nonnegative Radon measure µ in Ω such that

−∆pu = µ. (17)

For more about p-superharmonic functions and nonlinear potential theory,
we refer to [19, 16, 15, 1, 24] and references therein. The most important tool
is the following Wolff potential

Wµ
1,p(x, r) =

∫ r

0
(
µ(B(x, t))

tn−p
)

1
p−1

dt

t
(18)

for any nonnegative Radon measure µ and p ∈ (1, n]. The fundamental estimate
for the use of the Wolff potential in the study of p-superharmonic functions is
as follows:
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Theorem 7. ([19, Theorem 1.6]) Suppose that u is a nonnegative p-super-
harmonic function satisfying (17) for a nonnegative finite Radon measure µ in
B(x, 3r). Then

c1W
µ
1,p(x, r) ≤ u(x) ≤ c2( inf

B(x,r)
u+Wµ

1,p(x, 2r)) (19)

for some constants c1(n, p) and c2(n, p) for p ∈ (1, n].

To introduce nonlinear potential theory and present the results on asymp-
totic behavior of the Wolff potentials at singularities we first recall some defini-
tions and basics.

Definition 4. ([19, Section 3.1]) For a compact subset K of a domain Ω in
Rn, we define

capp(K,Ω) = inf{
∫

Ω
|∇u|pdx : u ∈ C∞0 (Ω) and u ≥ 1 on K}. (20)

Then p-capacity for arbitrary subset E of Ω is

capp(E,Ω) = inf
open G⊃E & G⊂Ω

sup
compact K⊂G

capp(K,Ω). (21)

Analogously, the capacity capp shares the same basic properties in Lemma
2 as the Riesz capacity does (cf. [16, 1, 25]). The notions of thinness in the
potential theory are vitally important. The readers are referred to [2, 3, 15, 19,
27, 29, 28] for detailed discussions and references therein. To study the singular
behavior of p-superharmonic functions, like [27, Definition 3.1] (see also [30,
Section 2.5]), we propose a thinness that is less restrictive than that by the
Wiener type integral when p ∈ (2, n). Recall the dyadic annuli are

ωi(x0) = {x ∈ Rn : 2−i ≤ |x− x0| ≤ 2−i+1};
Ωi(x0) = {x ∈ Rn : 2−i−1 ≤ |x− x0| ≤ 2−i+2}.

Definition 5. A set E ⊂ Rn is said to be p-thin for singular behavior for
p ∈ (1, n) at x0 ∈ Rn if

∞∑
i=1

capp(E ∩ ωi(x0),Ωi(x0))

capp(∂B(x0, 2−i), B(x0, 2−i+1))
< +∞. (22)

Meanwhile a set E is said to be n-thin at x0 ∈ Rn if

∞∑
i=1

in−1 capn(E ∩ ωi(x0),Ωi(x0)) < +∞. (23)
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Notice that these thin sets are with respect to the p-capacity capp in contrast
to the ones with respect to the Riesz capacity in Definition 1. Like Lemma 3,
the most important fact about p-thinness for singular behavior to us due to
Lemma 2 is the following

Lemma 5. Let E be a subset in the Euclidean space Rn and x0 ∈ Rn be a
point. Suppose that E is p-thin for singular behavior at the point x0 for p ∈ (1, n].
Then there is a ray from x0 that avoids E at least within some small ball at x0.

The key estimates on the Wolff potential are the following

Theorem 8. ([25, 26]) Suppose µ is a nonnegative finite Radon measure
in Ω. Assume that, for a point x0 ∈ Ω and some number m ∈ (0, n− p),

µ(B(x0, t)) ≤ Ctm (24)

for all t ∈ (0, 3r0) with B(x0, 3r0) ⊂ Ω. Then, for ε > 0, there are a subset
E ⊂ Ω, which is p-thin for singular behavior at x0, and a constant C > 0 such
that

Wµ
1,p(x, r0) ≤ C|x− x0|−

n−p−m+ε
p−1 for all x ∈ Ω \ E (25)

for p ∈ [2, n).

And

Theorem 9. ([25, 26]) Let µ be a nonnegative finite Radon measure in Ω
and B(x0, 3r0) ⊂ Ω. Then there is a subset E that is p-thin for the singular
behavior at x0 such that

lim
x→x0 and x/∈E

|x− x0|
n−p
p−1Wµ

1,p(x, r0) =
p− 1

n− p
µ({x0})

1
p−1

for p ∈ (1, n). Similarly, there is a subset E that is n-thin for the singular
behavior at x0 such that

lim
x→x0 and x/∈E

Wµ
1,n(x, r0)

log 1
|x−x0|

= µ({x0})
1

n−1 .

It turns out the notion of thinness indeed facilitates the fine topology (cf.
[19, 30]) in the following context, which gives the equivalent analytic definition
of thinness.

Theorem 10. ([25, 26]) Suppose that E is a subset that is p-thin for the
singular behavior at the origin according to Definition 5 for p ∈ (1, n]. And
suppose that the origin is in Ē \ E. Then, when p ∈ (1, n), there is a Radon
measure µ in a neighborhood of the origin such that, for some fixed r0 > 0,

lim
x→0 and x∈E

|x|
n−p
p−1Wµ

1,p(x, r0) =∞.
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Similarly, when p = n, there is a Radon measure µ in a neighborhood of the
origin such that, for some fixed r0 > 0,

lim
x→0 and x∈E

Wµ
1,n(x, r0)

log 1
|x|

=∞.

In fact, we use Theorem 7 to derive the estimates for p-superharmonic func-
tions. From Theorem 9, we have

Theorem 11. ([26]) Suppose that u is a nonnagetive p-superharmonic func-
tion in Ω ⊂ Rn satisfying

−∆pu = µ in Ω

for a nonnegative finite Radon measure µ on Ω and p ∈ (1, n]. Then, for x0 ∈ Ω,
there is a subset E that is p-thin for singular behavior at x0 such that

lim
x→x0 and x/∈E

u(x)

Gp(x, x0)
= m =


p− 1

n− p
(
µ({0})
|Sn−1|

)
1
p−1 when p ∈ (1, n)

(
µ({0})
|Sn−1|

)
1

n−1 when p = n

, (26)

where

Gp(x, x0) =

{
|x− x0|−

n−p
p−1 when p ∈ (1, n)

− log |x− x0| when p = n
. (27)

Moreover u(x) ≥ mGp(x, x0) − c0 for some c0 and all x in a neighborhood of
x0.

From Theorem 10, we have

Theorem 12. ([26]) Suppose that E is a subset that is p-thin for the singu-
lar behavior at the origin according to Definition 5 for p ∈ (1, n]. And suppose
that the origin is in Ē \ E. Then, when p ∈ (1, n), there is a p-superharmonic
function u in a neighborhood of the origin such that

lim
x→0 and x∈E

|x|
n−p
p−1 u(x) =∞.

Similarly, when p = n, there is a n-superharmonic function u in a neighborhood
of the origin such that

lim
x→0 and x∈E

u(x)

log 1
|x|

=∞.
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5.2 Consequences in conformal geometry

In this subsection we will use the p-Laplace equation (9) and Theorem 8
to derive the consequence of the curvature condition A(p) ≥ 0. In the light of
Lemma 4 from Subsection 4.2, we apply Theorem 8 to prove

Theorem 13. ([25, 26]) Suppose that S is a compact subset of a bounded
domain Ω ⊂ Rn. And suppose that there is a metric ḡ on Ω \ S such that

� it is conformal to the Euclidean metric gE;

� it is geodesically complete near S.

Assume that A(p)[ḡ] ≥ 0 for some p ∈ [2, n). Then

dimH(S) ≤ n− p
2

for p ∈ [2, n).

As a consequence,

Theorem 14. ([25]) Suppose that S is a closed subset of the sphere Sn. And
suppose that there is a metric ḡ on Sn\S that is conformal to the standard round
metric gS. Assume that it is geodesically complete near S and that A(p)[ḡ] ≥ 0
for some p ∈ [2, n). Then

dimH(S) ≤ n− p
2

.

Historically, in [5, 27, 28], n-Laplace equations and applications in hyper-
surfaces and conformal geometry were first investigated in connection to find
Huber’s type theorems in general dimensions. The study of asymptotic behavior
of n-superharmonic functions at singularities was also carried out by using on
nonlinear potential theory in [25, 26] (cf. Theorem 11 in previous section).

Theorem 15. ([28]) For n ≥ 3, let D be a bounded domain in the Euclidean
space (Rn, |dx|2) and let S ⊂ D be a subset which is closed in Rn. Suppose that,
on D\S, there is a conformal metric g = e2v|dx|2 satisfying

lim
x→S

v(x) = +∞ and Ric−g |∇v|n−2e2v ∈ L1(D\S, |dx|2).

Then S is a finite point set.

One consequence of Theorem 15 is the following corollary.

Corollary 1. ([28]) For n ≥ 3, let Ω be a domain in the standard unit
round sphere (Sn, gS). Suppose that, on Ω, there is a complete conformal metric
g = e2ugS satisfying either Ricg is nonnegative outside a compact subset or

(1) Ric−g ∈ L1(Ω, g) ∩ L∞(Ω, g)
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(2) Rg ∈ L∞(Ω, g) and |∇gRg| ∈ L∞(Ω, g).

Then ∂Ω = Sn \ Ω is a finite point set.

5.3 Applications to fully nonlinear elliptic equations

In this subsection we collect some corollaries of Theorem 11 on the solutions
to fully nonlinear elliptic equations. It is interesting to compare the intermediate
positivity cones A(p) with those in the study of fully nonlinear equations. Recall

Γk = {λ = {(λ1, λ2, · · · , λn) ∈ Rn : σ1(λ) ≥ 0, σ2(λ) ≥ 0, · · · , σk(λ) ≥ 0}

for k = 1, 2, · · · , n, where σl is the elementary symmetric functions for l =
1, 2, · · · , n. It is easily seen that A(2) = Γ1 and A(p) approaches Γn as p → ∞.
Hence, for any positive cone Γ between Γ1 and Γn, we may consider

pΓ = max{p : Γ ⊂ A(p)}. (28)

pΓ is useful when one uses p-superharmonic functions to study solutions to a
class of fully nonlinear elliptic equations. We first realize

Lemma 6. ([25, 26]) Suppose that u is nonnegative and that u ∈ C2(Ω\S)
for a compact subset S of a bounded domain Ω in Rn. And suppose limx→S u(x) =
+∞. Assume -λ(D2u(x)) ∈ Γ for pΓ ∈ (1, n]. Then u is a pΓ-superharmonic
function in Ω.

We remark that, from the proof of [27, Lemma 3.2 and 3.3] (see also [4,
Proposition 1.1] when S is an isolated point), it is easily seen that −∆pΓu is
a Radon measure under even somewhat weaker assumptions. Consequently, we
have

Corollary 2. ([25, 26]) Suppose that u is nonnegative and that u ∈ C2(Ω \
S) for a compact subset S of a bounded domain Ω in Rn. And suppose limx→S u(x) =
+∞. Assume -λ(D2u(x)) ∈ Γ for pΓ ∈ (1, n]. Then S is of Hausdorff dimension
not greater than n− pΓ and, for x0 ∈ S, there are a subset E that is pΓ-thin for
the singular behavior at x0 and a nonnegative number m such that

lim
x→x0 and x/∈E

u(x)

GpΓ(x, x0)
= m.

Moreover u(x) ≥ mGpΓ(x, x0)− c0 in some neighborhood of x0.

It seems surprising that we have a rather effective way to calculate pΓ for a
cone associated with a homogeneous, symmetric, convex function of n-variables.

Lemma 7. ([25, 26]) Suppose that Γ is a cone given by a homogeneous,
symmetric, convex function F (λ) on Rn. Let (−n−1

p−1 , 1, 1, · · · , 1) ∈ ∂Γ = {λ ∈
Rn : F (λ) = 0}. Then Γ ⊂ A(p) and pΓ = p.
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Consequently, we can calculate pΓk easily.

Corollary 3. ([25, 26]) For the positive cone Γk, we have

pΓk =
n(k − 1)

n− k
+ 2 ∈ [2, n] (29)

for 1 ≤ k ≤ n
2 .

Proof. This simply is because

σk(−
n− k
k

, 1, 1, · · · , 1) = −n− k
k

(
k − 1

n− 1

)
+

(
k

n− 1

)
= 0.

QED

Remarkably, we are able to derive an asymptotic estimates that extends [23,
Theorem 3.6] significantly.

Corollary 4. ([25, 26]) Suppose that u is nonnegative and that u ∈ C2(Ω \
S) for a compact subset S inside a bounded domain Ω in Rn. And suppose
limx→S u(x) = +∞. Assume −λ(D2u(x)) ∈ Γk for 1 ≤ k ≤ n

2 . Then S is of
Hausdorff dimension not greater than n−pΓ and, for x0 ∈ S, there are a subset
E that is pΓk-thin for the singular behavior at x0 and a nonnegative number m
such that

lim
x→x0 and x/∈E

u(x)

Gk(x, x0)
= m.

Moreover u(x) ≥ mGk(x, x0)− c0 in some neighborhood of x0, where

Gk(x, x0) =

 |x− x0|2−
n
k when 1 ≤ k < n

2

− log |x− x0| when k =
n

2

.

In general it takes a lot more to rule out the thin set E in the above two
corollaries, even for isolated singularities (cf. [20, 21, 40, 23]).
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