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Abstract. We develop an analysis of the flow of harmonic H-structures with the strategy
introduced by Chen-Struwe for the harmonic map heat equation when the target does not
necessarily have negative sectional curvature, so the Eells-Sampson Theorem cannot apply.
In particular, this flow method enables us to find theoretical hypotheses under which the
existence of a torsion-free H-structure is guaranteed and conditions for which the flow must
blow up in finite time.
This extends results already known for some specific groups like U(n), G2 or Spin(7).
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1 Holonomy and geometric structures

Berger’s 1955 theorem gives the list of the seven possible holonomy groups
of an irreducible, non-symmetric, simply-connected Riemannian n-dimensional
manifold: SO(n) (the general case), U(5) (Kéhler), SU(%) (Calabi-Yau), Sp(%)
(Hyper-Kéhler), Sp(%)Sp(1) (Quaternionic-Kéhler), Go (n = 7), Spin(7) (n =
8); plus the group Spin(9) for n = 16, before it was removed by Alekseevskij [1].

Moreover, each case is characterised by the existence of a parallel (multi-)
tensor, with respect to the Levi-Civita connection of (M, g).

For SO(n), it is the unobstructed condition of a torsion-free connection,
the Kéahler case is equivalent to the existence of a parallel almost Hermitian
structure, etc.

For Go, the parallel three-form ¢ must, point-wise, be given in some frame
of T,M by

©p = e123 —61 A (645 —667) +62/\ (646 —657) +€3/\ (647—656),
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while for Spin(7), ® € A*(T*M) and the local model is

@, = 0128 _ Q0145 _ 0167 _ 0246 4 0357 _ 0347 _ 0356

+ 64567 _ 62367 _ 62345 _ 61357 + 61346 _ 61256 _ 61247

where
M2 — dz0 A dxt A da® A daP.

The significance of holonomy is twofold. First, it informs on the curvature tensor
as it must live in the holonomy Lie algebra and this implies for SU(%), Sp(%),
G2 and Spin(7) that the manifold is Ricci-flat.

On the other hand, manifolds with special holonomy are the cornerstone
of higher-dimensional Gauge Theory. For example, take n = 7 and Gg, then
a vector bundle E — M with connection V has curvature FVY € A2, so the
condition *FY = AFY (A € R) does not make sense anymore and we must
introduce a three-form to counterbalance the degrees. If chosen closed, it will
allow for Yang-Mills connections.

The disadvantage is that it is generally hard to construct manifolds with spe-
cial holonomy, as the problem is highly non-linear, especially when the defining
tensor determines the metric. For example, local solutions of Go-manifolds first
appear in 1984 [3], complete ones in 1986 [4] and compact constructions only as
late as 1996-2000 with Joyce [15, 16].

An alternative, softer and more topological in nature, is to consider H-
structures (H C SO(n)), which are reductions of the structure group and can
also be seen as sections of an ad-hoc twistor space constructed as the H-quotient
of the unitary frame bundle Pso(y)-

Locally, H-structures are described by (multi-) tensors given at each point
by a Euclidean prototype and stabilized by the group H.

It relies on a model (p,q)-tensor & € TP4(R™) on the Euclidean space,
stabilised by the group H = Stab({y) = {g € GL(n,R) : g.§p = &} under the
GL(n,R) right action

glo =61 Tg e, @ ®g e, 08T ® - @ gl (1)

On the manifold (M, g), an H-structure £ is a (multi-) tensor such that at
any point p € M there is a frame of T, M that identifies &, and &y (or several
&o’s in case of a multi-tensor).

In fact, this approach goes further than Berger’s list and includes new cases
such as almost contact structures (H = U(n) x Id C SO(2n + 1)), parallelisms
(i.e. global orthonormal frames for H = {1}) or unit vector fields (H = SO(n —
1) € SO(n)) and others of varying degrees of interest.
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Finally, one should add that H-structures with torsion, i.e. non-parallel, are
key ingredients in several theories of Mathematical Physics, for example the
models of Supersymmetric AdS4 compactifications of ITA supergravity of Liist
and Tsimpis [19]. This fact alone should be sufficient reason for their study.

2 Harmonic maps and harmonicity

For an abstract (smooth) map ¢ from a compact Riemannian manifold
(M, g) to (N, h), the Dirichlet energy is

1
B@) = [ 1dofv,
M
where the energy density %|d¢|2 is the trace of %gb*h. Critical points of E are
called harmonic maps [10] and the corresponding Euler-Lagrange equation is
the vanishing of the tension field

7(¢) = trace Vdg.

The energy functional is conformally invariant when dim M = 2 and harmonic
maps generalise harmonic functions (N = R), geodesics (dim M = 1), totally
geodesic maps (since Vd¢ = 0), minimal submanifolds (isometric immersions)
and holomorphic maps between Kéhler manifolds. Cf. [2, Chap. 3] for details
and examples.

The groundbreaking work of Eells and Sampson [10] did not just introduced
this notion but also proved the existence of a harmonic representative in each
homotopy class when the target has non-positive sectional curvature. One should
however keep in mind that if there only exists a single homotopy class, it will
contain the trivially-harmonic constant maps.

Perhaps, as important was the heat-flow method they employed which has
known a rich legacy, all the way to Hamilton’s Ricci flow and Perelman’s proof
of the Poincaré conjecture.

This method is perhaps just as compelling by its failure when the curvature
condition on the target is not met and the flow develops bubbles and explodes,
as is the case of the sphere S? to itself. This was superbly exploited by Sachs
and Uhlenbeck with a reparametrization process enabling to restart the flow
and accounting for the topological penalties in terms of energy quantization.

Paradoxically, for the two-sphere, these pitfalls of the heat flow can eas-
ily be circumvented by considering holomorphic maps and produce harmonic
representatives in each and every homotopy class.

The best-known situation where harmonic maps do not exist is for degree-
one maps from the two-torus to the two-sphere [11]. Indeed, such a map would
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have to be conformal, hence holomorphic, which is forbidden for degree one by
Riemann-Roch.

In higher dimensions, one of the most often encountered example is the Hopf
map from S? to S? and, as a Riemannian submersion with minimal fibres, it also
happens to be a harmonic morphism.

In spite of decades of work on harmonic maps, relatively little has been done
for sections, except perhaps for vector fields [7], and C. M. Wood was the first to
consider almost Hermitian structures as sections of the twistor space and study
them under the light of harmonicity [20].

The point here is not merely to compute the tension field of a particular
map but more precisely to consider the Dirichlet energy of sections and search
for its critical points among sections, in order to compare like with like.

On a philosophical level, there is no reason to limit this to the specific case
of almost Hermitian structures and any type of reduction of structures on a
Riemannian manifold can be the subjected to the same treatment.

The description of the infinitesimal variation of an H-structure £ relies on
the infinitesimal action of endomorphisms A € I'(End(7'M)) on TP4(TM)

d

Aol = — tA,
gl 3 A 9 0 dait dada
a o . , .
e ce *dxIs e Ja
+;6xil® ® 5 ® A*da’ @ - @ dw )
If A= (Aé) € gl(n,R) then
o P
i1..0p 'Lr 11...m...7,p 11 zp
(Aof)jqu - ZA ]1 ] Z ......
r=1
and for a multi-tensor £ = (&1, ...,&), we define

Aol = (Ao&,. ..., A0 &).

Cf. [12, Lemma 1.4] for more properties of the operator ©.
Assume H C SO(n) closed and connected so that the quotient SO(n)/H is
a normal homogeneous Riemannian manifold with the metric induced by the
canonical bi-invariant metric on SO(n) given by (A4, B) = —trace(AB). The
H-module decomposition
so(n) =hdm, (2)
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where m := b C so(n) is the orthogonal complement of b = Lie(H) with
respect to (-, ), is a reductive decomposition, i.e., it satisfies Adgo(,) (H)m C m.

Now suppose (M", g) admits a compatible H-structure @ C Fr(M, g). Since
(2) is reductive, the H-structure induces an orthogonal H-module decompo-
sition on the subbundle so(T'M) := Fr(M, g) Xso(n) 50(n) of skew-symmetric
endomorphisms in End(TM) =T*M ® T M:

so(TM) =bhg ®@mg, where (3)
ho:=Qxpgbh and mg:=Q xym.

From (3), we get a corresponding H-module decomposition on A?(T*M) ~
so(TM):

A% = Ag @ A%, with A% ~ ho and A2 ~ mg.
Write Qg = F(A%) and Q2 =T(A2), so
I'(End(TM)) ~Q° @ 53 & Qf @ Q7

where Q0 is the trivial submodule of ¥?(M) spanned by the Riemannian metric
and E% denotes the space of traceless symmetric bilinear forms, hence

1
= dimM(trace A)g+ Ao+ Ay + An.

Lemma 2.1. Let 0 € I'(Fr(M, g)/H) be a compatible H-structure:
(i) If§ e T(TP9(TM)) is stabilised under the action of H, then Qﬁ C ker(-0€).

(ii) If H = Stab(&,), so that o corresponds to a geometric structure § =
(&1, ..., &) modelled on &, then

Qg =ker(-0&) =ker(-0 &) N...Nker(- o &).

(iii) If H = Stabgo(n)(§o), so that o corresponds to a geometric structure §
modelled on &, which is compatible with g and volg, then

Of =ker(- 0 &) NQ°%.

Example 2.2. (1) When H = U(m) = Stabgo(am)(Jo), where J, is the
standard complex structure on R?", the complement m = u(m)+ = {4 €
so(n) : AJ, = —JoA} isirreducible, and for any compatible U(m)-structure
€ = J on (M?,g), using [12, Lemma (1.4)] we can compute, for all
A, B € Oy (M),

(Ao J,BoJ) = (A, J],[B,J]) = (2AJ, (~2)JB) = 4 trace(AJ.JB)
= 4(A, B).
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When H = Gy C SO(7), the complement m = A2 C s0(7) is irreducible,
and if ¢ is a Go-structure on M7 then [18, §2.2]

(Ao, Boyp) =6(A, B), VA BecQi(M).

When H = Spin(7) C SO(8), the complement m = A2 C s0(8) is irre-
ducible, and if ® is a Spin(7)-structure on M3 then [17, Proposition 2.5]:

(Ao® Bo®) =16(A,B), VA, BcQ%(M).

When H = {1} C SO(n) is the trivial subgroup, we have hh = {0} and
the reducible {1}-module m = so(n) splits completely into the trivial one-
dimensional representations generated by each element of the standard
basis of so(n). In this case,

Al =...= )‘dimso(n) =1

Indeed, a compatible {1}-structure is simply a global oriented orthonormal
frame £ = (&1,...,&,) of TM, and Ao & = (—A&,...,—AE,) for every
Ae Q% (M)=0%(M), so
(Aog,Bo&) =) (Ag, BE) = (A,B), VA,B e Q(M)=0M).
j=1

For H = SU(m) C SO(2m), m > 2, m is reducible and splits into two
non-trivial irreducible submodules m; and may, with Aj(m) # Aa(m). We
describe the group SU(m) with the standard coordinates (a:i, yi, )i:L---,m
on R?™, the canonical complex structure .J,, the Euclidean metric g, and
the fundamental 2-form wo:

o _ 0 g _ o)
Joger = gyp>  Jogr = ~oum
m m
go = 2 (da? @ da? + dy? @ dy?), and wo =} daP AdyP.
p=1 p=1

Then, SU(m) is the subgroup of GL(2m,R) preserving go, Jo (and wo)
and the complex volume form

Yo =dz' A AdZ™ € AZ(C™) .

So the model structure is §, = (Jo, Ys) and SU(m) = Stabg2m)(&o)-

Now m = su(m)* C s0(2m) is a reducible H-module, since

50(2m) = u(m) @ u(m)t = su(m) @ (J,) ® u(m)=,
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and we have the orthogonal decomposition of m into the irreducible sub-
modules

my = (J,) Cs0(2m) and my=u(m)t ={A €s0(2m): AJ, = —J,A}.
Direct computations show that

A =m2™ 1t and Ay =4+ 2™71 cf. [12] for details of the computations.

The fundamental object governing the behaviour of the covariant derivative
of an H-structure is the torsion T’

Lemma 2.3. Let § be a compatible H-structure, where H = Stabgg,)(€)-
Then

Vyé=Txof, YXeZ(M) (4)

where T € QY(M,m) denotes the torsion of the H-structure ¢. In particular,
there are constants ¢, ¢ > 0, depending only on (M, g) and H, such that

AT < |VEP < T

If furthermore there is ¢ > 0 such that (Ao &, Bo§) = ¢(A, B), for all A,B €
O2(M), ie. ifc=X =...= ) (e.g. if m is an irreducible H-module), then

Ve = |2, (5)
Example 2.4. (1) When H = U(m), Lemma 2.3 gives
VxJ = (Tx o J) = —[Tx, J] = 2T,
since T'x € Qﬁ(m)L ~{Aeso(M): AJ = —JA}. Thus, we have

1

In particular, |VJ|? = 4|T|?.

(2) When H = Gy and given a Go-structure ¢ on M, the space of 3-forms
decomposes into irreducible Go-modules Q3 = Q30Q2®Q3-. We know that
ker(-op) = 932 and, by dimension counting, - ¢ maps Q2 isomorphically
into Q3. Since Tx € 02, we see that Vx¢ € Q3 and |Vp|> = 6|T|%.
Because of this description of Q2 (M), it is common in Gg-geometry to
identify the intrinsic torsion 7' € Q!(M, A2) with the endomorphism Tj,,
defined by Tj.;; =: —%’ﬁmgomij. So |T|? = %|7’|2 and

1
Toa = 54 Vo¥ijkVaijk-

where 1 = ¢ is the 4-form dual to .
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(3) When H = Spin(7) C SO(8), a Spin(7)-structure ® on M® induces a
decomposition on the space of 4-forms into irreducible Spin(7)-submodules
0t = Q‘l1 ® Q‘% ® 937 @ Q%s. Then, arguing as in the previous example, - ®
maps 22 isomorphically into Q%, and (4) yields Vx® = Tx o ®, implying
that Vx® € Q% moreover

[V®[* =16|T?,
and 1
Tonsab = %(vmq)ajkl)q)bjkl-

The L?-norm of the torsion is precisely the vertical part of the energy density
of the map o into the ad-hoc twistor space and, with respect to a fixed metric on
M, taking variations through H-structures is identical to choosing an element
in Q2. This (vertical) Dirichlet energy functional on the space of H-structures
assigns to each H-structure ¢ the L%-norm of its torsion T, with respect to its
induced metric g:

B =5 [ [TPvol,. (")

We compute the general first variation of E(§):

Corollary 2.5. If {{(t)} is a smooth family of isometric H-structures, in-
ducing the fixed Riemannian metric g, with £(0) = £ and %hzog(t) =Co¢, for
C € Q2 then

d

o tZOE(g) = _ /M<div T, C)volg, (8)

where T is the torsion of the H-structure &.

This computation leads naturally to the next definition

Definition 2.6. Let (M™, g) be an oriented Riemannian n-manifold admitting
a compatible H-structure £&. We say that £ is harmonic when it has divergence-
free torsion:

divy T = 0.

Example 2.7. For H = U(m), a direct computation based on Equation (6)

yields
1
divy T = —Z[V*VJ, J].
To emulate the proof of Eells-Sampson for sections we introduce a tailor-

made parabolic equation which will evolve according to the gradient of steepest
descent, i.e. the vector field div T
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Definition 2.8. Let (M™, g) be an oriented Riemannian n-manifold admitting
a compatible H-structure. A family of compatible H-structures {{(t)}icr on
(M, g), parametrised by a non-degenerate interval I C R, is a solution to the
harmonic flow of H-structures (or harmonic H-flow for short) if the following
evolution equation holds for every t € I:

0

5 (t) =divT(t) 0 &(2), (HF)
where T'(t) denotes the torsion of £(¢). Given a compatible H-structure & on
(M™, g), a solution to the harmonic flow of H-structures with initial condition
(or starting at) & is a solution of (HF) defined for every ¢ € [0, 1), for some
0 < 79 < 00, and such that £(0) = &p.

3 The Heat flow

The ultimate objective of the heat flow of geometric structures is to pro-
vide conditions ensuring the existence of an absolute minimiser of the Dirichlet
energy and answer the question of torsion-free geometric structures in a given
homotopy class.

With a target of positive curvature, one cannot hope to apply Eells-Sampson’s
original proof and must turn to Chen-Struwe’s arguments. In the end, this ap-
proach leads to a threshold for the Dirichlet energy of the initial data under
which convergence will happen to a torsion-free solution. By contraposition,
this lower bound can also be used to obtain singularity results.

This method is based on a series of more or less technical results but first,
one should recall that short-time existence is an automatic consequence of the
harmonic map equation. The main equation we will work with is the Bochner
formula which essentially turns the heat flow equation, living in the pull-back
of the vertical space of the twistor space, i.e. the bundle associated with the
isotropic representation, into a scalar expression at the cost of becoming an
inequality.

The Shi-type estimates control, along the flow, the norms of the derivatives
of the torsion (basically the coderivatives of the geometric structure) in terms
of the torsion itself and the derivatives of the curvature.

Both these results are valid for a general group H C SO(n) (and even more
cf. [9]).

The cornerstone of the whole strategy is the Almost Monotonicity Formula
(AMF) for a time-dependent functional which integrates, over a geodesic ball,
the product of the energy density and the backward heat kernel with singularity
at the centre of the ball (along with localisation by a cut-off function).



138 E. Loubeau

This AMF will prompt the e-regularity of the heat flow which draws a point-
wise bound of the energy density from a bound on the integral of the function
involved in the AMF.

This opens the gates, not only for energy gap results but also for long-time
existence and finite-time singularity statements.

Indeed, by a refined treatment of the Bochner formula, due to Chen-Ding
[5], controlling the existence interval of the harmonic flow, one can prove that
if the energy density remains bounded over the maximal existence interval then
the flow exists for all time and converges to a harmonic solution.

On the other hand, if it explodes then the maximal existence-time must be
less than (the square-root of) the initial energy.

To conclude, bounds on the Dirichlet energy and L°°-norm of the initial data
exclude explosion of the energy density over the maximal existence interval,
hence force long-time existence and convergence toward a torsion-free solution.

Additionally, if no torsion-free H-structure exists in a given homotopy class
while the infimum of the Dirichlet energy is indeed zero, small enough initial
Dirichlet energy will make the flow develop a finite-time singularity.

Versions of these results for specific groups H can be found in [14, 8] but
note that groups like SU(n) are not covered by these results.

Assume (M™, g) to be an oriented Riemannian n-manifold of bounded geom-
etry. In §1 we saw that a compatible H-structure £ on (M", g) corresponds to a
section o of 7w : Fr(M, g)/H — M. Now, there is a natural isomorphism between
7 : Fr(M,g)/H — M and the associated bundle Fr(M,g) xso(m) SO(n)/H,
which, fibrewise, is an isometry with respect to the bi-invariant metric on SO(n).
The induced one-to-one correspondence between sections o € I'(Fr(M,g)/H)
and SO(n)-equivariant maps s : Fr(M, g) — SO(n)/H identifies solutions to the
harmonic section flow with SO(n)-equivariant solutions to the classical harmonic
map heat flow for maps Fr(M, g) — SO(n)/H, where the target space SO(n)/H
is considered with its normal homogeneous Riemannian manifold structure.

As the short-time existence of the heat flow of harmonic maps is a stan-
dard consequence of the ellipticity of the tension field and the harmonic H-
flow is merely the vertical part of the heat flow for harmonic maps from M to
Fr(M)/H, its short-time existence is assured.

Proposition 3.1 (Short time existence). Given any smooth compatible H-
structure & on (M", g), there is a maximal time 0 < 7(§y) < oo such that the
harmonic H-flow (HF) with initial condition §, admits a unique smooth solution
&(t) for t € [0, 7).

To be able to work with the heat flow equation (HF') and control its be-
haviour, one needs to transform it into a scalar equation. This is the role of the
Bochner formula.
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Lemma 3.2 (Bochner-type estimate). There is a uniform constant ¢ > 0,
depending only on (M,g) and H, such that if {{(¢)}ier is a solution to the
harmonic H-flow (HF) on B,(y) C (M, g), then

(0 — A)e(€) < e(e()® + 1),

where e(¢) denotes |T)?.

The influence of the geometry of the manifold on the higher derivatives of
a solution of (HF) is explained by the Shi-type estimates, originally established
for the Ricci flow [Shi].

Proposition 3.3 (Shi-type estimates). Let £ > 1 and {{(?)};c(0,—4) be a
solution of the harmonic H-flow (HF). Assume that there are constants B; such
that

IV/Rm| < Bjr™2, Vj > 0.

If |T| < k, then, for each m € N, there is a constant ¢,, = ¢, (M, g, H) such
that

1
IV™T| < empt ™2, Ve [O, 4] :
K

While the above results rely on general principles and are valid for any group
H C SO(n), henceforth we will assume the representation theoretical condition
(2.1):
Let H = Stabgo(y)(&s), where & is an element of a r-dimensional SO(n)-
submodule V' < @TP4(R"™), where V = Vi & ... @V}, with V; < TPo%(R").
We suppose that H is such that A\ = ... = A, i.e. there is ¢ > 0 such that

(Ao&,Bo€) =c(A,B), VYA,BeQ2(M). (9)

This condition is satisfied by U(m), Ge, Spin(7), the quaternion-Kéhler case
Sp(k)Sp(1) € SO(4k) [13] and the trivial subgroup case H = {1}. However,
this is not the case for SU(m).

An essential ingredient of the Chen-Struwe [6] scheme is the Almost Mono-
tonicity Formula. It controls the time-growth of a functional which only differs
from the Dirichlet energy by the insertion of the Euclidean backward heat kernel
localised around a given singularity.

Let rpr > 0 be a lower bound to the injectivity radius of (M™, g) such that
there is a uniform constant ¢ > 0 such that Vy € M, the components g;; in

normal coordinates x = (z!,...,2") on the geodesic ball B,,, (y) satisfy:
1
104 < 9ij <4035, (as bilinear forms)

|gij — 6ij| < clz|® and  [Okgis| < clzl,
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where |z| is the Euclidean distance in B,,,(0) C T,M = R". The constants
rypr > 0 and ¢ > 0 can be chosen to depend only on the injectivity radius and
the curvature of g.

Let {£(t)} be a solution to the harmonic H-flow (HF), with initial condition
£(0) = & and maximal interval of existence and uniqueness [0, 7), fix any 75 €
(0,7) and a cut-off function

¢ € C*(By,,(0)) with ¢|B(rM)/2(0) =1

Forallt € (0,79) and 0 < r < min{,/70/2, rar }, we define the following functions
associated to the energy functional &:

O) = (1= 1) [ TR (G0 (06 Vdet(g)d
\Il(r) - / 04 2 /n ‘T|2G(0770)¢2\/md$dt7

where, for any (x, %)) € R™ x R we denote by

Claan) 1) = (d(ty — 1)) "2 exp 1220
(m0i0) 1™ 4(to — 1)

the Euclidean backward heat kernel with singularity at (xo,ty). The quantities
©(t) and ¥(r) are invariant under parabolic rescaling, cf. [12].

Theorem 3.4. For any 79 — min{7,1} < t; < ta < 79 and N > 1, the
following almost-monotonicity formula holds:

1
@(tg) < ec(f(t2)—f(t1)) (@(tl) +c (NN/Q(EO =+ £/ Eo) + 12]V> (tQ — tl)) ,
n

where ¢ = ¢(M, g) > 0 is a constant, Ey denotes the energy of £(0) and f(t) =

~

f(mo —t) with
f(x) = —z(In(z) — 41n3(z) + 13In?(x) — 26 In(x) + 26).

Its proof relies on particular identities of the time-derivative and space-
gradient of this backward heat kernel, the Bianchi identity and a careful choice
of the function f.

Having a control over an integral quantity along (HF), we need to deduce
point-wise information from it, in the form of the e-regularity.

The following result along the harmonic H-flow generalises the case H =
U(m) in [14, Theorem 3.3].
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Theorem 3.5 (e-regularity). For any Ej € (0,00), there exists a constant
g0 > 0, depending only on (M™,g), H and Ey, such that if {£(¢)} is a solution
to the harmonic H-flow (HF) on B,,,(y) x [0,7) C M x [0,7), with 7 < %, and
initial energy bounded by Fjy, and fix any 79 € (0, 7).

If, for some 0 < R < min{eg, \/70/2},

\I/(R) < €p,

then

sup e(§) <4(6R)7?,
Psr(0,m0)

where the constant § > 0 depends only on (M", g) and H, and possibly on Ej
and min{1, R}.

The e-regularity and the Shi-type estimates imply an energy gap theorem
for harmonic H-structures by a relatively short contradiction argument.

Proposition 3.6 (Energy gap). There is a constant £y > 0, depending
only on (M™, g) and the group H, such that, if { is a compatible harmonic
H-structure whose Dirichlet energy satisfies E(¢) = || V¢ ||%2( ary < €0, then & is
actually torsion-free, i.e. V& = 0.

Proof. By contradiction, if there is () a sequence of harmonic H-structures
with D(&) — 0 but V& # 0 for all k, by the e-regularity and Shi-type estimates
applied to each & (as a static harmonic H-flow), for k > 1, |[V™¢| is uniformly
bounded, so (§) subconverges in the smooth topology to a torsion-free H-
structure . But since & is harmonic, |A&| < ¢|VE&|?, and since V& = 0, we
get

A& — )] < | V(& — 6|2

Integrating by parts gives

/ V(& — O < ellék — Ell=qany / Ve — 6.
M M

Since & — & in the smooth topology, the above yields V(& — &) = 0, i.e.
V&, =VE=0, for all k> 1. QED

To obtain long-time existence and convergence of the (HF), we will need
hypotheses to control both the L°°-norm and Dirichlet energy of the initial
data. That these two conditions must be packaged together is illustrated the
example of the seven-torus T” and the group Go.
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Example 3.7 (Finite-time singularity). Let M = T7 = S! x ... x S! be the
7-torus, endowed with the standard Ga-structure ¢, inducing the flat metric g..
Then the frame bundle Fr(T7, g,) is trivialised so

Fr(T7, g,)/Ga = T x RP.

Any Go-structure ¢ € [[po]] can be thought of as a map from T7 to RP” and the
torsion-free compatible Go-structures correspond to constant maps. Moreover,
the isometric homotopy class of ¢ is the (unrestricted) homotopy class of the
corresponding map.

We claim the existence of a smooth Ga-structure ¢ € [[¢o]] which coincides
with the constant map ¢, = yo € RP’ outside B(p,79), but whose isometric
homotopy class [¢] is nontrivial, [¢] # 0 = [po].

Considering a quotient map
q: (E(pa TO)? 8§(p’ TO)) - (877 -TO)

Recall that the set [87,RIP’7] of unrestricted homotopy classes of maps S7 —
RP7, can be identified with the quotient of 77(RP”, o) by the usual action of
71 (RP7, 50), i.e.
ST, RP7] = 77 (RP7, y) /71 (RP7, o).

But this action of m (RP") on 7, (RP") = Z is trivial when n is odd, so the set
[S7,RP7] is countably infinite. Choose a nontrivial element 0 # [f] € [S7, RP7],
f: (ST, z9) = (RP7, ), which in turn induces the Gy-structure @ : T7 — RP’
isometric to ¢, given by

o(z) = {%m =y, i €T\ B(p,r),
fla(x)), if z € Blp,ro).

Moreover, [¢] # 0 since
deg(@ : T” — RP7)vol(RP") = / p*vol = / (fog)*vol= / f*vol # 0.
T7 B(p,ro) S7

By Whitney’s approximation theorem, we then find a smooth map ¢ : T7 — RP7

which coincides with the constant map ¢, = yo € RP” outside B (p,70), and is

sufficiently C°-close to @ so that we still have [¢] # 0. This proves the claim.
Next, for each r € (0,70), let ¢, be the Go-structure on T7 defined by

(z) = ©o(z) =yo, ifxe T\ B(p,r),
% ¢ (20), ifx € B(p,ro) ~ B(0,70) C R,
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where the smooth map =z +— ¢ (@) is defined using the normal coordinates

giving the isometric identification B(p,ro) ~ B(0, 7). Note that ¢, is a smooth
Ga-structure on T7, isometric to ¢, and such that ¢, € [p] # 0 = [p,] and its
Dirichlet energy is

E(pr) = 15°r°E(p).

Therefore

inf E(@)=0.

BE]
On the other hand, since [¢] # 0, this class cannot contain a torsion-free Ga-
structure, which would correspond to a constant map from T7 to RP”.

Therefore, for small enough r < 1, the harmonic Go-flow starting at ¢, has

a finite-time singularity, as guaranteed by [12, Theorem G|, otherwise the flow
{e(t)} with »(0) = ¢, would exist for all time ¢ > 0, and, since r < 1 and
thus D(p,) < 1, it would follow that ¢(t) converges smoothly as ¢ — oo to a
Go-structure po € [pr] = [p] with divergence-free torsion, hence torsion-free by
the energy gap Proposition. It is also noteworthy that however much ¢, may
have arbitrarily small energy D(p,) — 0 as r — 0, the L*-norm of its torsion
is actually blowing-up:

IVl Lo (ary = Tor M IVl oo (B(pirg)) = 00 as 7 — 0.

This also exemplifies why a general result of long-time existence for the harmonic
flow under small initial energy should take into account the L°°-norm of the
initial torsion.

Theorem 3.8 (Long-time existence under small initial energy). For any
given constant k > 0, there exists a universal constant (k) > 0, such that, if &,
satisfies

(1) IVéollzee(ar) < K and

(ii) E(ﬁO) = %HT‘%Q(M) < 5(5)7

then the harmonic H-flow with initial condition &; exists for all time ¢ > 0 and
subconverges smoothly to a torsion-free H-structure as ¢ — co. Moreover, the
universal constant can be chosen of the form

1 n—2
= i * t ) )
£(k) = min {5 c <arc an 2/<;2> }

where €., ¢ > 0 are constants depending only on (M",g) and H.
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The proof depends on an explicit formula for the maximal time-interval of
existence and uniqueness, first proved by Chen and Ding [5, Lemma 2.1] and
[14, Lemma 3.3].

Lemma 3.9. Let 6 = 1/c¢ > 0, then, for any ¢y € [0,7),

1
to+ darctan — < 7, with &, =#e(tg),
260

and

() < €o + tanc(t — to)

S 1—egtanc(t —tg)

1
Vit € [to, to + 6 arctan > .
€o

In particular,

1 1
e(t) < 2ey+ o’ Vit € [to,to + d arctan 260] .

Then, this estimate, the AMF, e-regularity and energy gap theorems combine
into results on the existence and convergence under uniform bounded torsion,
and finite-time singularity under unbounded torsion.

Lemma 3.10 (Existence and convergence under uniformly bounded tor-
sion). Let {£(f)}[,r) be the maximal unique solution to the harmonic H-flow
(HF) with initial condition £(0) = &y, and suppose that

sup{e(t) : t € [0,7)} < 0.

Then 7 = oo, and the flow {£(¢)} subconverges smoothly when ¢ — co. More-
over, any such subsequential limit £, satisfies E({») < E(&p) and has divergence-
free torsion:

divT({x) = 0.
If furthermore E(&y) < &g, then any subsequential limit £, is torsion-free.

Lemma 3.11 (Finite-time singularity under unbounded torsion). There are
constants €1 > 0 and ¢; > 0, such that if {{(t)}(o) is the maximal unique
solution to the harmonic H-flow and

sup{e(t) : t € [0,7)} = o0,

if e = E(&) < €1, then

n—2

7 < ave.

We shall require the group H to satisfy the supplementary condition

h <§tTm> = cumy ([Tm,divT]), (10)
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for some constant ¢y € R depending only on H, where T is the torsion of any
solution {£(¢)} of the harmonic H-flow. The groups H = U(m), G, Spin(7),
Sp(k)Sp(1) or {1} satisfies (10) for some ¢y € R. Under this assumption, we
generalise results already known for H = Gg and Spin(7) and obtain long-time
existence under small initial torsion.

Theorem 3.12 (Long time existence under small initial torsion). For ev-
ery 0 > 0, there exists ¢ = (0, M", g, H) > 0 such that if [|[V&| o) < &,
then the harmonic H-flow starting from & exists for all time ¢t > 0 and con-
verges smoothly to a harmonic H-structure &.,, which furthermore satisfies
V&l Loo(ary < 6.

Put together with the energy gap theorem, this yields two stability results

Theorem 3.13 (Stability of torsion-free structures under the harmonic
flow).

(i) There is a constant kg = ko(M, g, H) > 0 such that, if £y is a compatible
H-structure satisfying ||[V&ol| o (ar) < ko, then the harmonic H-flow (HF)
starting at & exists for all t > 0 and converges smoothly to a torsion-free
H-structure £, as t — oo.

(i) If (M™,g) admits a compatible torsion-free H-structure &, then for every
0 > 0, there exists (6, M,g,H) > 0 such that, for any compatible H-
structure & with [|€o—&||c2(ar) < €, the harmonic H-flow (HF) with initial
condition &y exists for all ¢ > 0, satisfies the estimate [|& — &l ciay < 6
for all t > 0, and converges smoothly to a torsion-free H-structure £, as
t — o0.

This statement could be compared with the traditional direct method of the
calculus of variations where the main obstacle of the compacity of the minimising
sequence is replaced by its harmonicity.
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