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Abstract.

In this paper, we are interested in solvable complete Lie algebras, over the �eld K = R
or C, which admit a symplectic structure. Speci�cally, important classes are studied, and a
description of complete Lie Algebra with the dimension of nilradical less or equal than six,
which supported symplectic structure is given.
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Introduction

A �nite dimensional Lie algebra g is called a complete Lie algebra if its
center C(g) is trivial and all of its derivations are inner, i.e. Der(g) = ad(g).
This de�nition of complete Lie algebra was given by N. Jacobson in 1962 [7].
It is well known that semisimple Lie algebras, Borel subalgebras and parabolic
subalgebras of semisimple Lie algebras are complete Lie algebras. A general
theory on complete Lie algebras has been developed by D. J. Meng and S. P.
Wang in a series of papers [9],[10],[12],[11] and [14].

A symplectic Lie algebra (g, ω) is a Lie algebra with a skew-symmetric non-
degenerate bilinear form ω such that for any x, y, z ∈ g,

dω(x, y, z) := ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0, (1)

this is to say, ω is a non-degenerate 2-cocycle for the scalar cohomology of g.
We call ω a symplectic form of g. Note that in such case, g must be of even
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dimension. A fundamental example of symplectic Lie algebras are the Frobe-
nius Lie algebras, i.e. Lie algebras admitting a non-degenerate exact 2-form. To
our knowledge, the classi�cation of symplectic Lie algebras, up to sympectomor-
phism, only exist for dimensions less than four [15] and six-dimensional nilpotent
symplectic Lie algebras (see [8] and [5] for a more recent list). A classication of a
large subfamily of six-dimensional non-nilpotent solvable Lie algebras has been
made by Stursberg [3]. Some other special higher dimensional cases can be found,
for example symplectic �liform Lie algebras up to dimension ten [6] and for the
non-solvable case [1].

The study of symplectic Lie algebras is an active area of research. The char-
acterization problem of symplectic Lie algebras is still an open problem, even
though there are many interesting results on obstructions on a Lie algebra to
support a symplectic structure. Let us recall the following well-known results
[4].

(1) A semisimple Lie algebra (in particular if [g, g] = g) does not admit sym-
plectic structures.

(2) The direct sum of semisimple and solvable Lie algebras cannot be sym-
plectic.

(3) Unimodular symplectic Lie algebras are solvable.

(4) All symplectic Lie algebras of dimension four are solvable.

In the present paper, we examine symplectic structures within the framework
of complete Lie algebras.

The paper is organized as follows: In Section 2, we recapitulate speci�c �nd-
ings concerning solvable complete Lie algebras extensively documented in ex-
isting literature. In Section 3, due to the complexity inherent in investigating
solvable complete symplectic Lie algebras in their entirety, we opt to focus on
a subclass characterized by maximal rank. Initially, our examination centers on
the symplectic properties of complete solvable Lie algebras with commutative
nilradicals. Subsequently, we delve into the study of complete solvable Lie alge-
bras with �liform nilradicals. Finally, In Section 4, we determine the symplectic
structure for complete Lie algebra, if present, for various nilradicals less or equal
than six.

Notations: For {ei}1≤i≤n a basis of g, we denote by {ei}1≤i≤n the dual basis
on g∗ and ei,j the 2-form ei ∧ ej ∈ ∧2g∗. Set by 〈F 〉 := spanK{F} the Lie
subalgebra generated by the family F .
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1 Solvable complete Lie algebras

In this section we resume certain results about complete Lie algebras widely
documented in the literature.

Let n be a nilpotent Lie algebra and h an abelian subalgebra of Der(n). If
all elements of h are semisimple linear transformations of n, then h is called a
torus on n. Suppose h is a torus on n, clearly n is decomposed into a direct sum
of root spaces for h:

n = ⊕β∈h∗nβ,

where h∗ is the dual space of the vector space h and nβ = {x ∈ n : h.x =
β(h)x, h ∈ h}.

Let h be a maximal torus on n. One calls h-msg a minimal system of gener-
ators which consists of root vectors for h.

Lemma 1. [17] Let h be a maximal torus on n, {x1, ..., xn} an h-msg and
{β1, ..., βn} the corresponding roots, then {β1, ..., βn} is a basis for the vector
space h∗.

Lemma 2. [17] Let n be a nilpotent Lie algebra and h1 , h2 two maximal
tori on n. Then

dim h1 = dim h2 ≤ dim(n/[n, n]).

As all maximal tori on n are mutually conjugated, so the dimension of
amaximal torus on n is an invariant of n called the rank of n (denoted by
rank(n)). A nilpotent Lie algebra is called maximal rank nilpotent Lie alge-
bra if rank(n) = dim(n/[n, n]). If h is a maximal torus on a nilpotent Lie algebra
n, de�ne the bracket in h⊕ n , by [h1+n1, h2+n2] = h1(n2)−h2(n1)+ [n1, n2],
where hi ∈ h, ni ∈ n, i = 1, 2, then (h ⊕ n, [., .]) is a solvable Lie algebra which
will be denoted by hn n.

Theorem 1. [13] If g is a complete solvable Lie algebra, then it decomposes
as hnn, where n is the nilradical and h is a subalgebra isomorphic to a maximal
torus of n. Moreover, h is a Cartan subalgebra of g.

Theorem 2. [13] Let n be nilpotent Lie algebra of maximal rank and h be
a maximal torus on n. Then

g = hn n

is complete Lie algebra.

Theorem 3. [13] Let gi = hi n ni, i = 1, 2 be two solvable complete Lie
algebras with nilpotent radical ni, i = 1, 2. Then g1 is isomorphic to g2 if and
only if n1 is isomorphic to n2.
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Remark 1. Recall that a symplectic Lie algebra is reducible if it has an
isotropic ideal [2], in the contrary case the symplectic Lie algebra is called irre-

ducible. In the following proposition we show that any complete symplectic Lie
algebra is reducible.

Proposition 1. Let g a complete symplectic Lie algebra. Then g is re-
ducible.

Proof. If g is a irreducible symplectic Lie algebra it can be written as: g = hna.
Using [2, Theorem 3.16] and its proof, g has a basis B = {f1, · · · , f2h, e11, e12, · · · ,
em1 , e

m
2 } such that:

h =< f1, · · · , f2h > and a =< e11, e
1
2 > ⊕ · · ·⊕ < em1 , e

m
2 >, m ≥ 2h,

with:

[fi, e
k
1] = −λk(fi)ek2, and [fi, e

k
2] = λk(fi)e

k
1, λk ∈ h∗.

In fact, if g is irreducible then g admits an exterior derivation. Consider the
derivation d, de�ned as follow:

de11 = e11, de12 = e12.

Suppose that d is interior, then there exists x0 such that: d = adx0 , with

x0 =
2h∑
i=1

xifi +
m∑
k=1

xkek1 +
m∑
k=1

ykek2.

So, de11 = adx0e
1
1, then e

1
1 = [x0, e

1
1], i.e e

1
1 =

∑2h
i=1−λ1(fi)e12, which is impossi-

ble.
QED

2 Some solvable complete symplectic Lie algebras of

maximal rank

As the general study of the solvable complete symplectic Lie algebras is
di�cult, we choose to study a class of those Lie algebras, which are of maximal
rank. We choose �rst to study the symplectic structure of the complete solvable
Lie algebra with commutative nilradical, secondly we studied complete solvable
Lie algebra with �liform nilradical.
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2.1 Complete solvable Lie algebra with commutative nilradical

In what follows, we study the case where the Lie algebra n is commu-
tative. Let n = Kn we have Der(n) = End(Kn), so the maximal torus is
h = 〈E1,1, . . . , En,n〉 then Kn is maximal rank and g = h ⊕ Kn is complete
Lie algebra with commutative nilradical Kn. Let {e1, . . . , en} be a basis of Kn,
and en+i = Ei,i, the brackets of the Lie algebra g = hnKn are given by

[en+i, ei] = ei, 1 ≤ i ≤ n. (2)

Proposition 2. Any symplectic form over g = hnKn is symplectomorphe
to

ω0 =
n∑
i=1

ei,n+i + Z, (3)

with Z ∈ ∧2h∗ an arbitrary 2-form in h. Moreover ω0 is an exact 2-form if and
only if Z = 0.

Proof. An arbitrary 2-form in g has the expression

ω =
∑

1≤i<j≤n
ai,je

i,j + Z +
∑

1≤i,j≤n
ai,n+je

i,n+j ,

with Z ∈ ∧2h∗. On one side dω(en+i, ei, ej) = 0 implies that ai,j = 0, and on
the other hand dω(en+i, ei, en+j) = 0 implies that ai,n+j = 0 for i 6= j, the other
conditions of 2-cocycle are trivially veri�ed. Then any 2-cocycle in g is of the
form

ω =
n∑
i=1

ai,n+ie
i,n+i + Z.

Let us now show that ω is non-degenerate if and only if ai,n+i 6= 0 for all
1 ≤ i ≤ n, indeed we have

ωn = (

n∑
i=1

ai,n+ie
i,n+i +

∑
i<j

an+i,n+je
n+i,n+j)n

= (
n∑
i=1

ai,n+ie
i,n+i)n

= (a1,n+1 . . . an,2n)e
1 ∧ . . . ∧ e2n.

Now consider the Lie algebra automorphisms T given by T (ei) = 1
ai,n+i

ei ,

T (en+i) = en+i, for 1 ≤ i ≤ n. We have T ∗(ω) = ω0. QED

From Proposition 2, we get the following.

Corollary 1. Symplectic complete Lie algebra h n Kn has Kn as a La-
grangian ideal.
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2.2 Complete solvable Lie algebra with �liform nilradical

Filiform Lie algebra of rank 2: We have only two types of �liform Lie
algebras of rank 2: Ln and Qn.

Case Ln: Let Ln be the n-dimensional Lie algebra de�ned by

[e1, ei] = ei+1, i = 2, . . . , n− 1,

where B = {e1, . . . , en} is a basis of Ln. The maximal torus of Ln is spanned by
h1 and h2 with

h1(e1) = e1, h1(ei) = (i− 2)ei, 2 ≤ i ≤ n.
h2(e1) = 0, h2(ei) = ei, 2 ≤ i ≤ n.

Then Ln is maximal rank and any complete solvable Lie algebra with nilradical
Ln, up to isomorphism, is g = h⊕ Ln with

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[en+1, e1] = e1, [en+1, ei] = (i− 2)ei, 2 ≤ i ≤ n.
[en+2, ei] = ei, 2 ≤ i ≤ n.

where Ln = 〈e1, · · · , en〉 and h = 〈en+1, en+2〉.
Proposition 3. A complete solvable Lie algebra with nilradical the �liform

Lie algebra Ln is symplectic if and only if n = 4.

Proof. An arbitrary 2-form of g can be written as

ωn =
∑

1≤i<j≤n
ai,je

i,j+
∑

1≤i≤n
ai,n+1e

i,n+1+
∑

1≤i≤n
ai,n+2e

i,n+2+an+1,n+2e
n+1,n+2.

The condition 2-cocycle implies



dωn(e1, en+1, en+2) = −ωn(e1, en+2),
dωn(e1, ej , en+2) = ωn(ej+1, en+2)− ωn(ej , e1) 2 ≤ j ≤ n− 1,
dωn(e1, ej , en+1) = ωn(ej+1, en+1)− ωn((j − 2)ej , e1) + ωn(e1, ej) 2 ≤ j ≤ n− 1,
dωn(ei, en+1, en+2) = (2− i)ωn(ei, en+2) + ωn(ei, en+1) 2 ≤ i ≤ n,
dωn(ei, en+1, ej) = 2(2− i)ωn(ei, ej) 2 ≤ i 6= j ≤ n− 1,
dωn(ei, en+2, ej) = −2ωn(ei, ej) 2 ≤ i 6= j ≤ n− 1,
dωn(en, en+2, ej) = 2ωn(ej , en) 2 ≤ j ≤ n− 1,
dωn(e1, en, en+1) = nωn(e1, en),
dωn(ei, en+1, en) = (1− n)ωn(ei, en) 2 ≤ i ≤ n− 1,
dωn(e1, ei, ej) = ωn(ei+1, ej)− ωn(ej+1, ei) 2 ≤ i 6= j ≤ n− 1.

This system is equivalent to
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

a1,n+2 = 0,
aj+1,n+2 = a1,j 2 ≤ j ≤ n− 1,
aj+1,n+1 = (j − 1)a1,j 2 ≤ j ≤ n− 1,
ai,n+1 = (i− 2)ai,n+2 2 ≤ i ≤ n,
ai,j = 0 2 ≤ i 6= j ≤ n− 1,
aj,n = 0 2 ≤ i 6= j ≤ n− 1,
ai,n = 0 1 ≤ i ≤ n− 1,
ai+1,j = aj+1,i, 2 ≤ i 6= j ≤ n− 1.

The other conditions of 2-cocycle are trivially veri�ed. Then any 2-cocycle
for the scalar cohomology of g = h⊕ Ln has the following expression

ωn =

n−2∑
i=1

a1,i+1e
1,i+1−

n−2∑
i=1

a1,i+1(ie
i+2,n+1+ei+2,n+2)+a1,n+1e

1,n+1+a2,n+2e
2,n+2+an+1,n+2e

n+1,n+2,

M(ωn,B) =



0 −a1,2 · · · −a1,n−1 0 a1,n+1 0
a1,2 0 · · · 0 0 0 a2,n+2

a1,3 0 · · · 0 0 a1,2 a1,2

a1,4 0 · · · 0 0 2a1,3 a1,3

...
...

...
...

...
...

...
a1,n−1 0 · · · 0 0 (n− 3)a1,n−2 a1,n−2

0 0 · · · 0 0 (n− 2)a1,n−1 a1,n−1

−a1,n+1 0 · · · −(n− 3)a1,n−2 −(n− 2)a1,n−1 0 an+1,n+2

0 −a2,n+2 −a1,2 · · · −a1,n−1 −an+1,n+2 0


After a calculation of the determinant, we �nd for n = 4 det(M(ω4,B)) =

a
2

1,3

(
a21,2 − 2a1,3a2,6

)2
, and for n > 4,det(M(ωn,B)) = 0.

QED

Case Qn: Let Qn, with n = 2k + 1 be the n + 1-dimensional Lie algebra
de�ned by

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, en−i] = (−1)ien, 1 ≤ i ≤ k,

where {e0, e1 . . . , en} is a basis of Qn. The maximal torus of Qn is spanned
by h1 and h2 with

h1(e0) = e0, h1(en) = (n− 2)en h1(ei) = (i− 1)ei, 1 ≤ i ≤ n− 1.

h2(e0) = 0, h2(en) = 2en, h2(ei) = ei, 1 ≤ i ≤ n− 1.
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Then Qn is maximal rank and any complete solvable Lie algebra with nilradical
Qn, up to isomorphism, is g = h⊕Qn with

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, en−i] = (−1)ien, 1 ≤ i ≤ k,
[en+1, e0] = e0, [en+1, ei] = (i− 1)ei, [en+1, en] = (n− 2)en, 1 ≤ i ≤ n− 1,

[en+2, ei] = ei, [en+2, en] = 2en, 1 ≤ i ≤ n− 1.

where Qn = 〈e0, · · · , en〉 and h = 〈en+1, en+2〉, note that dim(g) = n + 3 =
2(k + 2).

Proposition 4. A complete solvable Lie algebra with nilradical the �liform
Lie algebra Qn is symplectic. Morever an exat 2-form is given by ωn = de0+den.

Proof. It su�ces to show that the exact 2-form ωn is non-degenerate. Let the ba-
sis {ei}0≤i≤n+2 be the dual basis of {ei}0≤i≤n+2. By the Maurer-Cartan equation
we have:

de0 = e0,n+1 and den =

k∑
i=1

(−1)ien−i,i + en−1,0 + (n− 2)en,n+1 + 2en,n+2.

Let An be the 2-form in (∧2g)∗ given by

An = e0,n+1 + en−1,0 + (n− 2)en,n+1 + 2en,n+2,

we have, A2
n = e0,n ∧ (−4en+1,n+2 + 2(n− 1)en−1,n+1 + 4en−1,n+2) and Ain = 0

for i > 2.

Let Bn be the 2-form in (∧2g)∗ given by

Bn =
k∑
i=1

(−1)ien−i,i,

we have, Bk
n = e1 ∧ . . . ∧ en−1 and Bk+1

n = Bk+2
n = 0.

Then ωn can be written as ωn = An +Bn, and it follows that

ωk+2
n =(An +Bn)

k+2

=A2
n ∧Bk

n

=4e0 ∧ e1 ∧ . . . ∧ en+2,

which proves that ωn is non-degenerate. QED
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3 Symplectic Complete Solvable Lie Algebra with nil-

radical ≤ 6

In this section we calculate the symplectic structure if it exists for the di�er-
ent nilradicals ≤ 6 given by the tables in [16]. We begin with an example, then
we give the tables emphasizing the nilradical, the brackets of the nilradical with
the torus, the symplectic structure if it exists and �nally the maximality of the
rank.

We will give the proof of the case n = n4,1, since all cases should be handled
in a similar way.

Let n = n4,1 =< e1, e2, e3, e4 >, we have: [e2, e4] = e1, [e3, e4] = e2.
Firstly, we must calculate the derivations Der(n). The basis {D1, ..., D7} is given
by: 

D1(e1) = e1, D1(e3) = −e3, D1(e4) = e4,
D2(e2) = e2, D2(e3) = 2e3, D2(e4) = −e4,
D3(e2) = e1, D3(e3) = e2,
D4(e3) = e1, D5(e4) = e1,
D6(e4) = e2, D7(e4) = e3.

We set h =< e5, e6 > such that: e5 = D1 and e6 = D2.
Now, we calculate the Lie brackets of g = hn n, which are:

[e2, e4] = e1, [e3, e4] = e2, [e5, e1] = e1, [e5, e3] = −e3, [e5, e4] = e4, [e6, e2] =
e2, [e6, e3] = 2e3, [e6, e4] = −e4.

An arbitrary 2−form of g can be written as:

ω =
∑

1≤i<j≤6
ai,je

i,j .

The condition of 2-cocycle gives:
a1,2 = 0, a1,3 = 0, a1,4 = 0,
a1,6 = 0, a2,3 = 0, a2,5 = 0,
a1,5 = −a2,4, a2,6 = −a3,4,
a3,6 = −2a3,5, a4,6 = −a4,5.

Hence: ω = −a2,4(e1,5− e2,4)−a3,4(e2,6− e3,4)−a4,6(e4,5− e4,6)+a3,5(e3,5−
2e3,6) + a5,6e

5,6.

In the following, the �rst column identi�es the nilradical, the second column
provides the brackets of the torus and nilradical, the third column speci�es the
symplectic structure if it exists, and �nally, in the forth column we verify whether
if the brackets are of maximal rank or not.
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3.1 Nilradical of dimension 3

We summarize the calculation of the dimension 3 in this table:

Nilradical Brackets of hn n Symplectic Maximal
structure rank

n3,1 [e1, e2] = e3, [e4, e1] = e1, [e4, e2] = e2, Dimension not even Y es
[e5, e2] = e2, [e5, e3] = e3

3.2 Nilradical of dimension 4

We summarize the calculation of the dimension 4 in this table:

Nilradical Brackets of hn n Symplectic Maximal
structure rank

n4,1 [e2, e4] = e1, [e3, e4] = e2 a2,4(e
1,5 − e2,4) + a3,4(e

2,6 − e3,4) Y es
[e5, e1] = e1, [e5, e3] = −e3, −a3,5(e3,5 − 2e3,6) + a4,6(e

4,5 − e4,6)
[e5, e4] = e4, [e6, e2] = e2, −a5,6e5,6
[e6, e3] = 2e3, [e6, e4] = −e4. Conditions : a2,4 6= 0, 2a3,5a2,4 6= a23,4

3.3 Nilradical of dimension 5

We summarize the calculation of the dimension 5 in this table:

Nilradical Brackets of hn n Symplectic Maximal
structure rank

n5,1 [e3, e5] = e1, [e4, e5] = e2, a3,5(e
1,6 − e3,5) + a4,5(e

2,7 − e4,5) Y es
[e6, e1] = e1, [e6, e4] = −e4, −a3, 8e3,8 + a4,8(e4, 6− e4, 7− e4, 8)
[e6, e5] = e5, [e7, e2] = e2, +a5,8(e

5,6 − e5,8)− a6,7e6,7 − a6,8e6,8
[e7, e4] = e4, [e8, e3] = e3, −a7,8e7,8
[e8, e4] = e4, [e8, e5] = −e5 Conditions : a4,5 6= 0, a3,5 6= 0,

a3,5a4,8 6= a3,8a4,5
n5,2 [e2, e5] = e1, [e3, e5] = e2, Dimension not even Y es

[e4, e5] = e3, [e6, e1] = e1
[e6, e3] = −3e3, [e6, e4] = −2e4
[e6, e5] = e5, [e7, e2] = e2
[e7, e3] = 2e3, [e7, e4] = 3e4
[e7, e5] = −e5
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n5,3 [e3, e4] = e2, [e3, e5] = e1, Dimension not even Y es
[e4, e5] = e3, [e6, e1] = e1
[e6, e3] =

1
3e3, [e6, e4] = −

1
3e4

[e6, e5] =
2
3e5, [e7, e2] = e2

[e7, e3] =
1
3e3, [e7, e4] =

2
3e4

[e7, e5] = − 1
3e5

n5,4 [e2, e4] = e1, [e3, e5] = e1 a3,5(e
1,6 − e2,4 − e3,5)− a2,8e2,8 No

[e6, e1] = e1, [e6, e4] = e4 −a3,7e3,7 + a4,8(e
4,6 − e4,8)+

[e6, e5] = e5, [e7, e3] = e3, +a5,7(e
5,6 − e5,7)− a6,7e6,7 − a6,8e6,8

[e7, e5] = −e5, [e8, e2] = e2, −a7,8e7,8
[e8, e4] = −e4, Conditions : a7,8 6= 0, a3,5 6= 0

n5,5 [e2, e5] = e1, [e3, e4] = e1, Dimension not even No
[e3, e5] = e2, [e6, e1] = e1 Maximal
[e6, e3] = −e3, [e6, e4] = 2e4,
[e6, e5] = e5, [e7, e2] = e2,
[e7, e3] = 2e3, [e7, e4] = −2e4
[e7, e5] = −e5

n5,6 [e2, e5] = e1, [e3, e4] = e1, −a3,4(−e1,6 + e2,5 + e3,4) No
[e3, e5] = e2, [e4, e5] = e3 +a2,6(−e2,6 + 5

4e
3,5)

[e6, e1] = e1, [e6, e2] =
4
5 .e2, +a3,6(−e3,6 + 5

3e
4,5)

[e6, e3] =
3
5e3, [e6, e4] =

2
5e4, −a4,6e4,6 − a5,6e5,6

[e6, e5] =
1
5e5 Conditions : a3,4 6= 0

3.4 Nilradical of dimension 6

We summarize the calculation of the dimension 6 in this table:

Nilradical Brackets of hn n Symplectic Maximal
structure rank

n6,1 [e1, e2] = e3, [e1, e3] = e4, Dimension not even Y es
[e1, e5] = e6, [e7, e1] = e1,
[e7, e3] = e3, [e7, e4] = 2e4,
[e7, e6] = e6, [e8, e2] = e2,
[e8, e3] = e3, [e8, e4] = e4,
[e9, e5] = e5, [e9, e6] = e6,
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n6,2 [e1, e2] = e3, [e1, e3] = e4, Never admits a symplectic Y es
[e1, e4] = e5, [e1, e5] = e6 structure
[e7, e1] = e1, [e7, e3] = e3,
[e7, e4] = 2e4, [e7, e5] = 3e5,
[e7, e6] = 4e6, [e8, e2] = e2,
[e8, e3] = e3, [e8, e4] = e4,
[e8, e5] = e5, [e8, e6] = e6

n6,3 [e1, e2] = e6, [e1, e3] = e4, Dimension not even Y es
[e2, e3] = e5, [e7, e1] = e1,
[e7, e4] = e4, [e7, e6] = e6,
[e8, e2] = e2, [e8, e5] = e5,
[e8, e6] = e6, [e9, e3] = e3,
[e9, e4] = e4, [e9, e5] = e5,

n6,4 [e1, e2] = e5, [e1, e3] = e6, Dimension not even No
[e2, e4] = e6, [e7, e1] = e1, Maximal
[e7, e4] = e4, [e7, e5] = e5,
[e7, e6] = e6, [e8, e2] = e2,
[e8, e4] = −e4, [e8, e5] = e5,
[e9, e3] = e3, [e9, e4] = e4,
[e9, e6] = e6

n6,5 [e1, e3] = e5, [e1, e4] = e6, a6,8(ae
1,3 + ae2,4 − ae5,7 − ae5,9 Y es

[e2, e3] = a ∗ e6, [e2, e4] = e5 −e6,8 − ae6,10) + a6,9(e
1,4 + ae2,3

[e7, e1] = e1, [e7, e2] = e2, −e5,8 − ae5,10 − e6,7 − e6,8)− a2,8(e1,7 + e2,8)
[e7, e5] = e5, [e7, e6] = e6, −a1,8(e1,8 + ae2,7)− a4,10(e3,9 + ae4,10)
[e8, e1] =

1
a .e2, [e8, e2] = e1, −a4,9(e4,9 + ae3,10)− a7,8e7,8 − a7,9e7,9

[e8, e5] = e6, [e8, e6] =
1
ae5, −a7,10e7,10 − a8,9e8,9 − a8,10e8,10 − a9,10e9,10

[e9, e3] = e3, [e9, e4] = e4,
[e9, e5] = e5, [e9, e6] = e6, Conditions : a 6= 0, a26,8 6= a26,9,
[e10, e3] = ae4, [e10, e4] = e3 aa7,8 + aa8,9 6= a7,10 + a9,10
[e10, e5] = ae6, [e10, e6] = e5

n6,6 [e1, e2] = e6, [e1, e3] = e4, a6,7(
1
3 .e

1,2 − e6,7) + a4,8(e
1,3 No

[e1, e4] = e5, [e2, e3] = e5 −e4,7 − e4,8) + a5,8(e
1,4 + e2,3

[e7, e1] = e1, [e7, e2] = 2e2 −2e5,7 − e5,8)− a1,7e1,7 − a2,7e2,7
[e7, e4] = e4, [e7, e5] = 2e5 −a3,8e3,8 − a7,8e7,8
[e7, e6] = 3e6, [e8, e3] = e3 Conditions : a6,7 6= 0, a5,8 6= 0
[e8, e4] = e4, [e8, e5] = e5
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n6,7 [e1, e3] = e4, [e1, e4] = e5, Dimension not even Y es
[e2, e3] = e6, [e7, e1] = e1
[e7, e4] = e4, [e7, e5] = 2e5
[e8, e2] = e2, [e8, e6] = e6
[e9, e3] = e3, [e9, e4] = e4
[e9, e5] = e5, [e9, e6] = e6

n6,8 [e1, e2] = e3 + e5, −a1,2e1,2 + a4,8(e
1,3 − 2e4,7 − e4,8) No

[e1, e3] = e4, [e2, e5] = e6 −a1,7e1,7 + a6,8(
1
2e

2,5 − 1
2e

6,7 − e6,8)
[e7, e1] = e1, [e7, e3] = e3 −a2, 8e2,8 + (a1,2 + a5,8)(e

3,7 + e3,8)
[e7, e4] = 2e4, [e7, e5] = e5 −a5,8(e5,7 + e5,8) + a7,8e7,8
[e7, e6] = e6, [e8, e2] = e2 Conditions : a6,8 6= 0, a4,8 6= 0
[e8, e3] = e3, [e8, e4] = e4
[e8, e5] = e5, [e8, e6] = 2e6

n6,9 [e1, e2] = e3, [e1, e3] = e4, a3,8(e
1,2 − e3,7 − e3,8)− a2,8e2,8 No

[e1, e5] = e6, [e2, e3] = e6 +a4,8(e
1,3 − 2e4,7 + e4,8)− a1,7e1,7

[e7, e1] = e1, [e7, e3] = e3, + 1
2a6,8(e

1,5 + e2,3 − e6,7 − e6,8)+
[e7, e4] = 2e4, [e7, e6] = e6, −a5,8e5,8 − a7,8e7,8
[e8, e2] = e2, [e8, e3] = e3, Conditions : a6,8 6= 0, a4,8 6= 0
[e8, e4] = e4, [e8, e5] = 2e5,
[e8, e6] = 2e6

n6,10 [e1, e2] = e3, [e1, e3] = e5, −a1,2(e1,2 − 2e3,7)− a1,8(e1,8 ∗ ae2,7) No
[e1, e4] = e6, [e2, e3] = a.e6, a6,8(ae

1,3 + ae2,4 − 3e5,7 − e6,8)
[e2, e4] = e5, +a5,8(e

1,4 + ae2,3 − e5,8 − 3e6,7)
[e7, e1] = e1, [e7, e2] = e2, −a2,8(e1,7 + e2,8)− a5,8(3e6,7 + e5,8)
[e7, e3] = 2e2, [e7, e4] = 2e4, −a4,7e4,7 − a7,8e7,8
[e7, e5] = 3e5, [e7, e6] = 3e6, Conditions : a 6= 0, aa26,8 6= a25,8
[e8, e1] =

1
ae2, [e8, e2] = e1,

[e8, e5] = e6, [e8, e6] =
1
ae5,

n6,11 [e1, e2] = e3, [e1, e3] = e4, a3,8(e
1,2 − e3,7 − e3,8)− a1,7e1,7 Y es

[e1, e4] = e5, [e2, e3] = e6, +a4,8(e
1,3 − 2e4,7 − e4,8)− a2,8e2,8

[e7, e1] = e1, [e7, e3] = e3, +a5,8(e
1,4 − 3e5,7 − e5,8)− a7,8e7,8

[e7, e4] = 2e4, [e7, e5] = 3e5, +a6,8(
1
2 .e

2,3 − 1
2 .e

6,7 − e6,8)
[e7, e6] = e6, [e8, e2] = e2, Conditions : a5,8 6= 0, a6,8 6= 0
[e8, e3] = e3, [e8, e4] = e4,
[e8, e5] = e5, [e8, e6] = 2e6,

n6,12 [e1, e3] = e4, [e1, e4] = e6, Dimension not even No
Nilradical [e2, e5] = e6,

[e7, e1] = e1, [e7, e4] = e4,
[e7, e5] = 2e5, [e7, e6] = 2e6, Maximal
[e8, e2] = e2, [e8, e5] = −e5,
[e9, e3] = e3, [e9, e4] = e4,
[e9, e5] = e5, [e9, e6] = e6
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n6,13 [e1, e2] = e5, [e1, e3] = e4, No
Nilradical [e1, e4] = e6, [e2, e5] = e6 a5,8(e

1,2 − e5,7 − e5,8)− a1,7e1,7 Maximal
[e7, e1] = e1, [e7, e3] = −e3, +a4,8(

1
2e

1,3 − e4,8) + a3,8(1/2.e
3,7 − e3,8)

[e7, e5] = e5, [e7, e6] = e6, + 1
2a6,8(e

1,4 + e2,5 − e6,7 − 2e6,8)
[e8, e2] = e2, [e8, e3] = 2e3, −a2,8e2,8 − a7,8e7,8
[e8, e4] = 2e4, [e8, e5] = e5, Conditions : a6,8 6= 0, a3,8a6,8 6= a24,8 Maximal
[e8, e6] = 2e6

n6,14 [e1, e3] = e4, [e1, e4] = e6, Dimension not even Y es
[e2, e3] = e5, [e2, e5] = a ∗ e6,
[e7, e1] = e1, [e7, e2] = e2,
[e7, e4] = e4, [e7, e5] = e5,
[e7, e6] = 2e6, [e8, e1] = − 1

ae2,
[e8, e2] = e1, [e8, e4] = − 1

ae5,
[e8, e5] = e4, [e9, e3] = e3,
[e9, e4] = e4, [e9, e5] = e5,
[e9, e6] = e6

n6,15 [e1, e2] = e3 + e5, [e1, e3] = e4, Dimension not even No
[e1, e4] = e6, [e2, e5] = e6
[e7, e1] = e1, [e7, e2] = 2e2,
[e7, e3] = 3e3, [e7, e4] = 4e4,
[e7, e5] = 3e5, [e7, e6] = 5e6,

n6,16 [e1, e3] = e4, [e1, e4] = e5, a4,8(e
1,3 − e4,7 − e4,8)− a1,7e1,7 No

[e1, e5] = e6, [e2, e3] = e5, +a5,8(e
1,4 + e2,3 − 2e5,7 − e5,8)

[e2, e4] = e6, [e7, e1] = e1 +a6,8(e
1,5 + e2,4 − 3e6,7 − e6,8)

[e7, e2] = 2e2, [e7, e4] = e4, −a2,7e2,7 − a3,8e3,8 − a7,8e7,8
[e7, e5] = 2e5, [e7, e6] = 3e6, Conditions :
[e8, e3] = e3, [e8, e4] = e4, a6,8 6= 0,
[e8, e5] = e5, [e8, e6] = e6, 3a3,8a

2
6,8 6= 3a4,8a5,8a6,8 + a35,8

n6,17 [e1, e2] = e3, [e1, e3] = e4, a3,8(e
1,2 − e7,3 − e3,8)− a1,7e1,7 No

[e1, e4] = e6, [e2, e5] = e6, +a6,8(e
1,4 + e2,5 − 3e6,7 − e6,8)

[e7, e1] = e1, [e7, e3] = e3, +a4,8(e
1,3 − 2e4,7 − e4,8)− a2,8e2,8

[e7, e4] = 2e4, [e7, e5] = 3e5, −a5,7e5,7 − a7,8e7,8
[e7, e6] = 3e6, [e8, e2] = e2, Conditions : a6,8 6= 0,
[e8, e3] = e3, [e8, e4] = e4, 2a3,8a6,8 6= a4,8
[e8, e6] = e6

n6,18 [e1, e2] = e3, [e1, e3] = e4, Never admits a symplectic Y es
[e1, e4] = e6, [e2, e3] = e5, structure
[e2, e5] = ae6
[e7, e1] = e1, [e7, e2] = e2,
[e7, e3] = 2e3, [e7, e4] = 3e4,
[e7, e5] = 3e5, [e7, e6] = 4e6,
[e8, e1] = − 1

ae2, [e8, e2] = e1,
[e8, e4] = − 1

ae5, [e8, e5] = e4,
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n6,19 [e1, e2] = e3, [e1, e3] = e4, Dimension not even No
[e1, e4] = e5, [e1, e5] = e6,
[e2, e3] = e6,
[e7, e1] = e1, [e7, e2] = 3e2,
[e7, e3] = 4e3, [e7, e4] = 5e4,
[e7, e5] = 6e5, [e7, e6] = 7e6,

n6,20 [e1, e2] = e3, [e1, e3] = e4, Dimension not even No
[e1, e4] = e5, [e1, e5] = e6,
[e2, e3] = e5, [e2, e4] = e6
[e7, e1] = e1, [e7, e2] = 2e2,
[e7, e3] = 3e3, [e7, e4] = 4e4,
[e7, e5] = 5e5, [e7, e6] = 6e6

n6,21 [e1, e2] = e3, [e1, e5] = e6, a3,8(e
1,2 − e3,7 − e3,8)− a1,7e1,7 No

[e2, e3] = e4, [e2, e4] = e5,
1
3a6,8(e

1,5 + e3,4 − 2e6,7 − 3e6,8)
[e3, e4] = e6,

1
2a4,8(e

2,3 − e4,7 − e4,8)− a2,8e2,8
[e7, e1] = e1, [e7, e3] = e3,

1
3a5,8(e

2,4 − e5,7 − e5,8)− a7,8e7,8
[e7, e4] = e4, [e7, e5] = e5, Conditions : a2,8a6,8 6= 8a3,8a5,8 + 3a24,8,
[e7, e6] = 2e6, [e8, e2] = e2, a6,8 6= 0
[e8, e3] = e3, [e8, e4] = 2e4,
[e8, e5] = 3e5, [e8, e6] = 3e6,

n6,22 [e1, e2] = e3, [e1, e3] = e5, Dimension not even No
[e1, e5] = e6, [e2, e3] = e4, Maximal
[e2, e4] = e5, [e3, e4] = e6
[e7, e1] = e1, [e7, e2] =

1
2e2,

[e7, e3] =
3
2e3, [e7, e4] = 2e4,

[e7, e5] =
5
2e5, [e7, e6] =

7
2e6
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