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Abstract. In this paper we first give an estimate on angles between initial vectors of geodesics
and trajectories of trajectory-harps, which are variations of geodesics associated with trajec-
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a Hadamard Ké&hler manifolds having single limit points.
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Introduction

In order to study Kahler manifolds from the Riemannian geometric point
of view, the second author investigates trajectories for Kahler magnetic fields,
which are constant multiples of Kahler forms. For magnetic fields on a Rieman-
nian manifold, which are closed 2-forms, see [I1], for example. He considers that
they play a similar role as of geodesics on general Riemannian manifolds. At
each point of a trajectory for a Kéhler magnetic field, its tangent and acceler-
ation vectors span a complex line, hence it is expected that studying trajecto-
ries gives more information than studying only geodesics on Kéhler manifolds.
Corresponding to geodesic triangles considered in Toponogov’s comparison the-
orem, the second author studied variations of geodesics associated with trajec-
tories which are called trajectory-harps. In [2, [4], he gave estimates on lengths
of geodesics segments of trajectory harps and on angles between geodesics and
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trajectories by comparing them with those of trajectory-harps on complex space
forms.

In this paper, we first add one more estimate on quantities of trajectory-
harps. We study angles between initial vectors of trajectories and those of
geodesics. Though it seems that these angles are closely related with angles be-
tween geodesics and trajectories at non-initial points. But as trajectory-harps
are variations of geodesics whose initial points stick to the initial point of tra-
jectories, the second author could not give estimates in previous papers, and
considered “zenith angles” in [3] instead. As an application of our new esti-
mate, we study asymptotic behaviors of unbounded trajectories on a Hadamard
Kahler manifold, a simply connected complete Kéhler manifold of nonpositive
curvature. When absolute values of sectional curvatures of planes tangent to a
trajectory-harp are not less than the square of geodesic curvature of the tra-
jectory half-line, it has limit point in the ideal boundary. In this paper, we
pay attention to trajectories which are unbounded in both directions and have
single limit points in the ideal boundary. Under an assumption on sectional
curvatures on trajectory-harps associated with such trajectories, we show that
they are parts of totally geodesic complex lines. Concerning our result, in [1], we
studied such trajectories on symmetric spaces of non-compact type, and showed
that the range of geodesic curvatures of such trajectories indicate the ranks of
underlying symmetric spaces. Our result is a partial extension to trajectories on
general Hadamard Kéahler manifolds.

1 Tarjectory-harps

Let (M,(, ),J) be a complete Kéhler manifold with complex structure .J
and Riemannian metric ( , ). We take a Kéhler magnetic field B, = kB (k €
R), which is a constant multiple of the Kéhler form B; on M. We say that
a smooth curve ~ parameterized by its arclength is a trajectory for B, if it
satisfies the differential equation V4 = kJ%. Since M is complete, it is defined
on a whole real line R. We suppose that a trajectory « : [0,7] — M satisfies
v(t) # v(0) for 0 < t < T. Precisely speaking, as we consider a part of a
trajectory, we need to say that - is a trajectory segment or trajectory half-
line according as T is finite or T is infinite. But for the sake of simplicity, we
usually call it a trajectory. We say that a smooth variation ., : [0,7] x R — M
of geodesics is a trajectory-harp associated with ~ if it satisfies the following
conditions:

i) ay(t,0) =~(0) for every t € [0,T],

ii) the curve s — (0, s) is the geodesic of initial vector (0),
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ili) when ¢ > 0, the curve s — a,(t,s) is the geodesic of unit speed joining
+(0) and (1)

We can define a trajectory-harp if the image v([0,7)) of the trajectory lies in
the ball centered at (0) whose radius is the minimum value of conjugate values
at v(0). We give some terminologies on trajectory-harps. We call the geodesic
segment joining v(0) and ~y(¢) in a trajectory-harp the string at v(t), and call
7 the arch of this trajectory-harp. We denote by ¢, (t) the length of the string
at y(t), and call it the string-length at v(t). We set 6() = (22 (¢, £,(t)), ¥(t))
and call it the string-cosine at (). It is known that the derivative of the string-
length coincides with the string-cosine, i.e. ££, = d, (see [2]). Given t; with
0 <to < T, weput HP,(to) = {a,(t,s) } 0<t<ty0<s<Ly(t)}, and call it
the harp-body at tp.

On a complex space form CM™(c) of constant holomorphic sectional curva-
ture ¢, which is a complex projective space CP"(c), a complex Euclidean space
C™ and a complex hyperbolic space CH"(c) acording as ¢ is positive, zero and
negative, for each trajectory v : [0,27/vk? + ¢) — CM"(c) for B, we can de-
fine its trajectory-harp. Here, we treat 27 /v/k2 + c as infinity when k2 + ¢ < 0.
We use such a convention through out of this paper. If we take two trajecto-
ries 1,2 for B, on CM"(c), then their trajectory-harps are congruent to each
other, that is, there is an isometry ¢ of CM"(c) satisfying o, (£, s) = @oa, (t, s).
Therefore, string-lengths and string-cosines for trajectory-harps associated with
trajectories for B,, on CM™(c) do not depend on trajectories. We hence denote
them as ¢ (t;¢) and 0,(t; ¢). The string-length /,;(¢; ¢) is given by the following
relation (see [2]): When ¢ > 0, it satisfies

Vi2 £ ¢ sin(Vela(t ¢)/2) = Ve sin(Vi2 + ¢ £/2),
when ¢ = 0, it satisfies
|i] £, (t;0) = 2sin(|x|t/2),
and when ¢ < 0, it satisfies

sinh(\/m&i(t; )/2)
lc|/(Je] — K2) sinh(v/|c] — K2 t/2), when |x| < /|c],
=< /Il t/2, when || = /]¢],

Vel/ (52 + ¢) sin(Vk2 + ¢ t/2), when || > +/]c|.
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The string-cosine d0,(t; ) is given by

Vel = K2 cosh(y/]c] — K2 t/2)
Vel cosh? (/1] — £ /2) — 2

2

de(t;c) = W’

VE? +c cos(VK?+c t/2)
\\/n2+ccosz(\//£2+ct/2)

, when k24 ¢ <0,

when k% 4+ ¢ =0,

, when 2 + ¢ > 0.

Since we have %E,{(t; ¢) = 0x(t; ¢), we see that £,(-; ¢) is monotone increasing in
the interval [0, 7/v/Kk% 4 ¢ ]. Clearly, we have ¢_,(t;¢) = £x(t;c) and 0_,(t;¢) =
6 (t;c). When k1 > kg > 0, we have £, (t;¢) < Ly, (t;¢) for t € (0,7/\/K¢ + ¢ |.

For trajectory-harps on a general Kéahler manifold M, we can compare string-
lengths and string-cosines and those on complex space forms. For a trajectory-
harp o, associated with a trajectory ~ : [0,7] — M for B, and a constant c,
we define T, (c) so that T,(c) = min{t,} if there is ¢, satisfying 0 < ¢, < T
and £+ (t.) = Lo(7/VE? +c;c), and set T(c) = T in other case. We denote
by 7.(:;¢) @ [0,€x(m/vVK*+c;c)] — R the inverse function of the function
le(+5¢) : [0,m/VK?+¢] — R. When k1 > kg > 0, we have &, (7, (s;¢);¢) <

Ois (Tig (55); ¢) for every s € (0,4, (7/+/ki + ¢;c)].

Proposition 1 ([2,[4]). Let v :[0,T] — M be a trajectory for a non-trivial
Kahler magnetic field B, on a complete Kdhler manifold M. We suppose that
sectional curvatures of planes tangent to the harp-body HP~(T) of the associated
trajectory-harp o, are not greater than a constant c. We then have the following:

(1) £4(t) > £e(t;c) for 0 <t <min{T,7/VK>+c };
(2) Oy(t) 2 0 (Tu(Ey(t);c)i ) for 0 <t < Ty(c);

(3) If £y (to) = Lk(to;c) at some to with 0 < tg < min{T,w/Vk?+c }, then
the harp-body HP-(to) is totally geodesic, totally complex and of constant
sectional curvature c.

2 Horocycle trajectories

Let M be a Hadamard Kahler manifold, which is a complete simply con-
nected Kéhler manifold of nonpositive sectional curvature. Since M is a Hada-
mard manifold, we can define its ideal boundary 0M as the set of all asymptotic
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classes of geodesic rays. With the cone topology on M = M U dM, this M is
a compactification of M (see [7]). There are many interesting results joining
geometries of ideal boundaries and of Hadamard manifolds (see [5, 8], for exam-
ple). We say that a smooth curve  parameterized by its arclength is unbounded
in both directions if both of the sets v([0,00)) and ~v((—o0,0]) are unbounded
in M. We set

7(00) = lim 5(t), y(—o0) = lim ~(t) € OM
if they exist. We call them the limit points of v. Such a curve + is said to be
a horocycle if its limit points coincide (i.e. y(c0) = v(—00)) and if it satisfies
(¥(t),c(0)) = 0 for each geodesic o satisfying o(0) = v(¢) and o(c0) = y(o0).
In particular, if we can take o so that its initial vector is parallel to J5(t) for
each ¢, we call it a holomorphic horocycle. On CH"(c), we know that

(1) a trajectory for B,, is unbounded in both directions if and only if |k| <
Vel

(2) when || < /|c|, it has two distinct points at infinity;

(3) when |k| = +/|c|, it is a holomorphic horocycle.

We take a trajectory half-line 7 : [0, 00) — M for B,.. We suppose that we can
define a trajectory-harp associated with v and that sectional curvatures of planes
tangent to its harp-body HP.(oco) are not greater than —r?. We here make
mention on this assumption a bit. If we suppose that we can define a trajectory-
harp associated with a trajectory-segment 7|[07T] and sectional curvatures of
planes tangent to HP.(T) are not greater than —«?, then we have limyr 0, ()
is strictly positive by Proposition [I} In particular, we can define a trajectory
harp associated with | 714, (1) by joining 7(0) and ~(t) by a unique geodesic
of unit speed, because we have y(t) # v(0) for every t with 0 <t < T + £,(T).
Thus, we can calculate sectional curvatures of planes tangent to its harp-body.
Therefore, our assumption is essentially made on sectional curvatures. Hence, for
the sake of simplicity, we just say that sectional curvatures of planes tangent to
its harp-body are not greater than —«2. Under this assumption, by Proposition
we find that the trajectory half-line v is unbounded. Moreover, by studying
initial vectors {%(t, 0) ‘ t > 0} of strings, we find that v has its limit points
~v(00) in the ideal boundary OM, and that the initial vector of the geodesic
joining v(0) and y(00) is lim;_0 8(%(75, 0) (see [3,19]). We call this geodesic the
limit string of this trajectory-harp.

We now study horocycle trajectories. For a smooth curve ~, we denote its
reversed curve t — y(—t) by yv~!. When « is a trajectory for B, then its
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reversed curve 7! is a trajectory for B_.. When we can define trajectory-

harps associated with 7| o) and with 77| o), we put HP~ = HP (0,00, (c0)U
HP A1 0) (00) and call it the total harp-body. If sectional curvatures of planes

tangent to the total harp-body HP. are not greater than —k2, then it has limit
points v(co0) and y(—o00) = v~ !(c0). We here study the case that they coincide
with each other.

Theorem 1. Let v be a trajectory for B, on a Hadamard Kdhler manifold
M. Suppose that sectional curvatures of planes tangent to the total harp-body
HP., are not greater than —k2. If the limit points of v coincide with each other,
then we have the following:

(1) v is a holomorphic horocycle;

(2) the total harp-body HP. is totally geodesic holomorphic and of constant
sectional curvature —k?2.

For a unit tangent vector v € U,M at a point p € M, we set S, = {eﬁev |
0 € R}. We say that v satisfies the xk-HC-condition if for every w € S, the
trajectory =y, for B, whose initial vector 4,,(0) is w satisfies v, (00) = Y (—00)
and sectional curvatures of planes tangent to its total harp-body #,, are not

greater than —r?.

Corollary 1. Let M be a Hadamard Kdahler manifold. If there exist a pos-
itive k and a unit tangent vector which satisfies the k-HC-condition, then M
contains a totally geodesic, totally complex CH'(—r?).

3 String-elevations of trajectory-harps

In this section, we study angles between initial vectors of strings and arches
of trajectory-harps. Let o, : [0,7] x R — M be a trajectory-harp associated
with a trajectory v : [0,7] — M on a Kahler manifold M. We set 7,(t) =

85: (t,0),%(0)), and call it the string-elevation of this trajectory-harp. For each
to (0 <ty < T),if we take the curve o(t) = v(to—t), it is a trajectory for B_, and
the curve s — (to, 0y (to) — s) is a string of the corresponding trajectory-harp
a. We hence have 7, (tg) = d5(t9). But we should note that their harp-bodies
HP~(to) and HP,(to) may not coincide with each other. Therefore, we prepare
an estimate on string-elevations in this section.

Lemma 1. The string-elevation n., for a trajectory v for B, satisfies n,(0) =
1, limyyo () = 0, limyyo ) (t) = —k*/4.

Proof. We note that we can extend the trajectory-harp smoothly as c. : (—€,T]x
R — M with some positive e. We hence extend the string-elevation as a func-
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tion 7, : (—¢, 7] — R. The first equality is trivial because %(0, 0) = 4(0) by
definition. Since . is a variation of geodesics of unit speed, the Jacobi field s —
85%(75, s) along the geodesic s — o (¢, s) satisfies ((V ooy 8%)( t,s), 8% (t,s)) =

0. In particular, we have 77 (0) = 0.
We shall check that 77(0) = ((Veay Voay 85&)(0 0),% 0,0)) coincides
ot ot

S

with —x?/4. As we have y(t) = oy (t,£,(t)) and () = d,(t), we get

5(0) = 2 (1, 6,(0)) + 6,0 502 (1, 4,(1),
Vii(0) = (Vs 2 (1, 6,0) ) + 26,(0) (Vs 52 ) (164 (1)

+ o (1 )880‘7 (t,6,(1)).

because s — «(t,s) is a geodesic for each ¢. Since . (t,0) = ~(0) we have
(Vaa7 8%)(0 0) = 0. Thus, by using V44 = £J7¥ and §,(0) = 1, 6,(0) = 0 (see
Lemma 1 in [2]), we find 2(V oa, da”’)(O 0) = xkJ¥(0). Since we have

ot

0= jt<(vaa7 a;”)(t 5), 8;‘”@ s)>

= (T Gt (T Vo 2100 G091

we obtain n//(0) = —?(|J5(0)[|?/4 = —K?/4. QED

Theorem 2. Let v :[0,T] — M be a trajectory for a Kdihler magnetic field
B, on a complete Kdahler manifold M. Suppose that we can define a trajectory-
harp o : [0,T] x R — M associated with v and that sectional curvatures of
planes tangent to its harp body HP(T') are not greater than a constant c. Then,
we have

Ty (t) > 6 (Tn (£y (t); c); C) and ny(t) > %&e (Tn (Ev(t)§ c); C)

for 0 <t < Ty(c). If ny(to) = 6x(m(ly(to);c);c) holds at some to with 0 <
to < T (c), then the harp-body HP (to) is totally geodesic, totally complex and of
constant sectional curvature c.

Proof. We study the differential 777 <(V oy 81; ) 0 > We take pos-

itive & with |k| < k. By Lemma I, for a SufﬁClently small posmve €, we have
ny(t) > 0s(t : ¢) and 85(¢ : )<777()<0f0r0<t<eWestudytheﬁrst
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inequality on 7,. We denote by Tj; the maximum positive number satisfying
T < T,(c) and that

0 < a(m/NV 4 ei), () 2 (s (6 (0 0)50)
hold for 0 < t < T;. When T; = T for all & with |k| < & < |k| + € for some
sufficiently small positive €/, we can get the first inequality. Hence we study
the case Ty < T. Let 4 : [0,7/V&%+c | = CM*(c) be a trajectory for B; on
CM*(c). We denote by d its associated trajectory-harp. We note that aa i (t, s)
is a Jacobi field along the geodesic s — o, (t,s) and that Haa” (, 4+ )H =
V/1—=108,(t)2, because §(t) = Bg‘t” (t,€4(t)) + 0,(t )ag;” (t,€4(t)). Since 85% also
has the same properties and 9, (Tu(S Do) c) is monotone decreasing with
respect to p, by Proposition [T}, we have for each ¢ with 0 < ¢ < T} the following:

20,6, = m < %1—6ﬁ<m<£v<t>;c>;c>2
< \/1—5 (a(l - Ha% C)’Ey(t))H'

As we have gt“’ (t,0) = 0 and 8(1“’ (t,0) = 0 because a,(t,0) = ~(0) and
és(t,0) = 4(0), by the assumptlon on sectional curvatures of planes tangent
to HP,(T'), Rauch’s comparison theorem on Jacobi fields shows that

(75 221 < (7 ) v

(see [6], for example). Since 85% is orthogonal to %, for 0 <t < Ty, we have

80@

(1) = (Vo 5 ) (£,0).4(0))
> T | (05 %) o

> /1= G (76, (D) 0); ) H(vaa a;;”)( «(65(1);0),0) |

= 0 (1a (4 (1); 0); ).

If we suppose y(T;) < li(m/V&%+c;c), then &% (7:(¢y(T3);c);c) < 0 and
ny(Tr) = i (7 (E (T%); ¢); ) by definition of T;. Hence, the above inequality
and Proposition [I] lead us to

d NN s (o o): e 57(75)
%&%(TR(EW(t%C)?C) _5/%(TN(€"/(t)7 )’ )X 5,%(7',%@7(25);6);6)

< O (e (64 ()5 0)5¢) <15 (2).
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Therefore, we obtain that £+ (t) < £;(7/VA? + ¢; ¢) and 1y (t) > 0z (7 (€4(t); ¢); ¢)
beyond 7. This contradictories to the definition of T;. We hence find that
0,(T;) = f;{(w/\/ﬁﬁ + ¢ c) holds. Letting & | |s|, we have limg, Tx = Ty(c),
and hence obtain 7, () > 6, (7 (£y(t); ¢); c) for 0 <t < T (c).

Once we get the inequality 7y(t) > 6, (7(£,(¢); ¢); ¢) for 0 <t < T,(c), the
above argument guarantees 7/, (t) > 46, (T (L(); ), ¢) for 0 < ¢ < T,(c) and
that the equality holds at some t; (0 < t; < T4(c)) if and only if n,(t1) =
(5,.C (TH<€7(t1); C), C) = (57(11,1).

Now we consider the case 1,(to) = 0, (7, ({4(t0); ¢), ¢) holds at some ty (0 <
to < Ty(c)). As we have

to
o) =1+ [ o)
0

to
Or (T (ly(t); ¢),c) = 1 + / %%(Tn(ﬁy(t);c),c) dt,

0

we find that 77 ( ) = & 45 (T (£4(2); ), c¢) for 0 < ¢ < to, which guarantees
8y () = 8 (T i), ¢) for all 0 < ¢ < ty. Thus we get the conclusion with the
aid of Proposmon l QED

Given a trajectory-harp ay : [0,7] x R — M, we call the length of the
curve [0,t0] > t — 85%(15,0) € UyyM in the unit tangent space at y(0) the
zenith angle of v at to (see [2]). In [9], we showed the existence of limit points of
unbounded trajectories by using zenith angles of trajectory-harps associated to
them. Trivially, the above angle is not smaller than cos™! Ny (to). We can study
limit points of unbounded trajectories also by using string-elevations.

We now apply Theorem [2] to prove Theorem [I}

Proof of Theoerm [l We take trajectory half-lines v : [0,00) — M for B, and
41 :[0,00) = M for B_,. Then their limit-strings are the geodesic o of unit
speed satisfying o(0) = «v(0) and o(c0) = y(00) = y(—00). We therefore have

. . . — . — T
Z(6(0),%(0)) = t]ggo cos ' (t) < tlgrolo cos ! O (T (U4 (t);0);¢) = 5
£(6(0), =%(0)) = tlgglo cos ™' -1(t) < lgglo cos ! 8, (Tu(ly-1(t);0)5¢) = =

with ¢ = —x? by Theorem |2} As we have

£(6(0),4(0)) + £(6(0), =7(0)) = £(%(0),=4(0)) =,
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we obtain
. 1 . -1 LN T
tl_u?C[}o cos” 1y (t) = tlgn cos™ ! 8 (T (€4 (2); 0);¢) = 5

: -1 : -1 o)) =
tlgélo cos” ny-1(t) = tlgcr)lo cos™ " 0x (T (£, -1 (£); ¢)5 ) = 5

which guarantees

d

1,(t) = i

5%(7'&(57(15);0);0) and 77/7_1(75) = %5N(TK(€7—1(75);C);C)

for ¢ > 0. Thus, the total harp-body HP. = HP.(00) U HP.,-1(c0) is totally
geodesic, totally complex and of constant sectional curvature c. In particular, we
find that (0) = sgn(x)J¥(0), where sgn(x) denotes the signature of x, and that
for an arbitrary ty, the geodesic o, joining v(t) and y(oco) lies on HP~. Since it
is the limit-string of the trajectory-harps associated with y(t+1tg) : [0,00) — M
and 7y(tp — t) : [0,00) — M, and every string of these trajectory-harps lies on
‘HP., by the same argument as above, we find that o4, and v cross orthogonally
at v(to). This completes the proof. QED

We here mention the case of bounded trajectories.

Remark 1. Let v be a trajectory for a Kiahler magnetic field B, on a
Kaéahler manifold whose sectional curvatures are not greater than a nonnega-
tive constant c. If 7(#/\//12 +c) = 7(—7[‘/\/%2 +c ), then it is closed and
HP,, (7r VK2 + ¢ ) UHP.,— (77/ VK2 +c¢ ) is totally geodesic, and sectional cur-
vatures of planes tangent to this body are c.

Remark 2. Let ¢ be a negative constant, and  be a trajectory for a Kahler
magnetic field B, with 2 > |c|. If y(n/VK?+c) = y(-7/VK*+c) and
sectional curvatures of planes tangent to the harp-body HP, (71'/ VK2 + c) U
HP 1 (77/ VK2 +c ) are not greater than c, then it is closed and the harp-body
is totally geodesic, and sectional curvatures of planes tangent to this body are
c.

4 Horocycle trajectories on products of complex hy-
perbolic spaces

Let S, denote the subset of the unit tangent space U,M of a Hadamard
Kahler manifold M which consists of unit tangent vectors satisfying k-HC con-
dition. It is natural to consider that if S, contains a standard sphere Sk at some
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point p € M, then M contains a totally geodesic CH"*(—~?) as a factor. Unfor-
tunately, to answer this problem, we need some more study. In this section, we
study trajectories on a product of complex hyperbolic spaces.

Let v be a trajectory for B, on a product of complex hyperbolic spaces
and a complex Euclidean space M = C™ x CH"(c1) X --- x CH™ (¢,). We
express v as v = (70,71, - - - » Yr), Where g lies on C™ and ~; lies on CH™i(¢;) for
i=1,...,r. As was pointed out in [I], it is a horocycle trajectory if and only if
1%l < |kl//]ei] for every i > 1 and |44, || = |kl /+/]ei, | for some do.

When « is a horocycle trajectory, if we denote by i1 < 49 < --+ < iy all the
indices of components satisfying ||4;,|| = |x|/4/[ci;|, then the point at infinity
of ~ coincide with one of the points at infinity of the geodesic of initial vector
(wo, ..., w,) with w; = J’yl(O)/(Z] 15i,]) when i = i; and w; = 0 when i # i;
for all j. Thus we have the following.

Proposition 2. Let v = (v0,71,---,7%) be a trajectory for B, (k #0) on a
product M = C™ x CH™ (¢1) x --- x CH" (¢,). It is a holomorphic horocycle
trajectory if and only if we have indices i1, ..., (1 <y <ig < -+ < i <7)
satisfying ||yi; || = |sl/+/lci;| for j = 1,....k and ||[%| = 0 for i # i;. In

particular, we have n2( IJ et ﬁ) -1.
i i

We directly compute the string-length and the string-cosine for a holo-
morphic horocycle trajectory v = (y1,...,7) for a non-trivial B, on M =
CH™(¢1) x---xCH" (¢,) whose velocity vector satisfies ||¥;(t)|| = |&|/+/|ci| for
i=1,...,r. By putting a; = |k|/+/|ci|, the curve 7; defined by 4;(u) = v;(u/a;)
is a horocycle trajectory for Bsgn(ﬁ) JaT on CH"™(c;). Hence, the string length

?; of 7, is given by

Gi(u) = £ e (wici) = (2/+/]ei] ) sinh ™ (/]ei] u/2).

Since we have |k| = 1/\/ﬁ + -4+ 1, we obtain

ler|

06,0 = V{G@ty + - + {ira,)?
— 1 1 sinh~! t
_2\/101r+ ey <2¢|ci|+"'+|ci|)

1
=/ 1 (t; T T >
L1 g Tt 1T

leql ler|

We denote by @& and §; the trajectory-harp and the string-cosine associated
with 4;. Then the trajectory-harp o, = (aq, ..., q,) associated with v is given
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by

ay(t;s) = (071 (alt, ezic(t;) s), e, Qe (art, KZiC(L;;) s)) .

Since we have

. Od; 2
6Z = Ni 9 ) L1 - 9
() = (Fu(w: G (i) ) = =g
we obtain
: doy; "L liait) -
5,(t) = Z<%(t), j (t,&(t))> =S a f((t)) 5i(ait)
=1 =1
282 ZT: 1 2 2
VK2 +4 o il K2t2 + 4 _\/ 2 "y
1 1
ol Tt e

and 7,(t) = 0,(t).

5 An estimate of string-elevations from above

In section 4, we gave an estimate of string-elevations from below. We now
give a corresponding estimate from above under the condition that sectional
curvatures are bounded from below.

Let v : [0,T] — M be a trajectory for B, on a Kéhler manifold M. We say
that the trajectory-harp o, : [0,7] x R — M associated with v is holomorphic
at the origin if the initial tangent vector ag%(t, 0) of each string is contained in
the complex subspace of T’y M spanned by §(0) for 0 < ¢ < T Similarly, we

say o, is holomorphic at the arch if %(t,fv(t)) is contained in the complex
subspace of T, ;)M spanned by ¥(t) for 0 < ¢ < T'. It is likely that one of these
conditions shows the other. But for now, we cannot say any more about their
relationship. In [I0], Shi and the second author gave estimates on string-lengths
and string-cosines. We set

R, =sup{t | 0,(7) >0 for 0 < 7 < t},
C, =sup{t | £,(1) < 05(0) for 0 <7 < t}.
Here, cf(o) denotes the minimum conjugate value of v(0) along geodesics tangent

to the harp-body HP.(T). Since we have ¢, (t) < t, when sectional curvatures
of planes tangent to HP~(T') are not less than a constant ¢, then C, > 7/\/c.
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Proposition 3 ([10]). Let v : [0,T] — M be a trajectory for a non-trivial
Kahler magnetic field B, on a complete Kdahler manifold M. We suppose that its
corresponding trajectory-harp is holomorphic at the arch and that sectional cur-
vatures of planes tangent to the harp-body HP~(T) of the associated trajectory-
harp o are not less than a constant c. We then have the following:

(1) £4(t) < Liu(t;c) and 64(t) < 6k (Ti(L4(t); ¢);¢) for 0 <t < min{R,, Cy};

(2) If £4(to) = £x(to; c) at some ty with 0 < tg < min{R,,C,}, then the harp-
body HP~(to) is totally geodesic, totally complex and of constant curvature
c.

By using this result we give an estimate of string-elevations from above.

Theorem 3. Let v : [0,T] — M be a trajectory for By. Suppose that we
can define a trajectory-harp o, : [0,T] x R — M associated with ~. If o is
holomorphic at the origin and at the arch, and if sectional curvatures of planes
tangent to its harp body HP(T) are not less than a constant ¢, then, we have

(1) < 0l (000 ) amd o (6) < S5 (relty (1))

for 0 < t < min{R,,Cy}. If ny(to) = 6x(7(¢y(to); ¢);c) holds at some to,
then the harp-body HP(ty) is totally geodesic, totally complex and of constant
sectional curvature c.

Proof. Our proof goes through almost the same as of Theorem [2] by taking
positive & so that & < |k|. Since the trajectory-harp . is holomorphic at the
origin, we find that V sa., %L;(t, 0) is contained in the complex subspace spanned

Js
by 4(0). Therefore we have

10 = 1= 02 [ (Vom0 ) 1,00

s

2
< —\/1 — 0s (12 (6y(t); 0);¢) H (Vasj BT )(T,g(f’y(t);c),O)H
= 0% (7i (4 (t); 0), ).
By using this, we can get our result by the same argument as of the proof of
Theorem [2 QED
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