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Abstract. In this paper we first give an estimate on angles between initial vectors of geodesics
and trajectories of trajectory-harps, which are variations of geodesics associated with trajec-
tories for Kähler magnetic fields. As an application we investigate unbounded trajectories on
a Hadamard Kähler manifolds having single limit points.
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Introduction

In order to study Kähler manifolds from the Riemannian geometric point
of view, the second author investigates trajectories for Kähler magnetic fields,
which are constant multiples of Kähler forms. For magnetic fields on a Rieman-
nian manifold, which are closed 2-forms, see [11], for example. He considers that
they play a similar role as of geodesics on general Riemannian manifolds. At
each point of a trajectory for a Kähler magnetic field, its tangent and acceler-
ation vectors span a complex line, hence it is expected that studying trajecto-
ries gives more information than studying only geodesics on Kähler manifolds.
Corresponding to geodesic triangles considered in Toponogov’s comparison the-
orem, the second author studied variations of geodesics associated with trajec-
tories which are called trajectory-harps. In [2, 4], he gave estimates on lengths
of geodesics segments of trajectory harps and on angles between geodesics and
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trajectories by comparing them with those of trajectory-harps on complex space
forms.

In this paper, we first add one more estimate on quantities of trajectory-
harps. We study angles between initial vectors of trajectories and those of
geodesics. Though it seems that these angles are closely related with angles be-
tween geodesics and trajectories at non-initial points. But as trajectory-harps
are variations of geodesics whose initial points stick to the initial point of tra-
jectories, the second author could not give estimates in previous papers, and
considered “zenith angles” in [3] instead. As an application of our new esti-
mate, we study asymptotic behaviors of unbounded trajectories on a Hadamard
Kähler manifold, a simply connected complete Kähler manifold of nonpositive
curvature. When absolute values of sectional curvatures of planes tangent to a
trajectory-harp are not less than the square of geodesic curvature of the tra-
jectory half-line, it has limit point in the ideal boundary. In this paper, we
pay attention to trajectories which are unbounded in both directions and have
single limit points in the ideal boundary. Under an assumption on sectional
curvatures on trajectory-harps associated with such trajectories, we show that
they are parts of totally geodesic complex lines. Concerning our result, in [1], we
studied such trajectories on symmetric spaces of non-compact type, and showed
that the range of geodesic curvatures of such trajectories indicate the ranks of
underlying symmetric spaces. Our result is a partial extension to trajectories on
general Hadamard Kähler manifolds.

1 Tarjectory-harps

Let (M, 〈 , 〉, J) be a complete Kähler manifold with complex structure J
and Riemannian metric 〈 , 〉. We take a Kähler magnetic field Bκ = κBJ (κ ∈
R), which is a constant multiple of the Kähler form BJ on M . We say that
a smooth curve γ parameterized by its arclength is a trajectory for Bκ if it
satisfies the differential equation ∇γ̇ γ̇ = κJγ̇. Since M is complete, it is defined
on a whole real line R. We suppose that a trajectory γ : [0, T ] → M satisfies
γ(t) 6= γ(0) for 0 < t ≤ T . Precisely speaking, as we consider a part of a
trajectory, we need to say that γ is a trajectory segment or trajectory half-
line according as T is finite or T is infinite. But for the sake of simplicity, we
usually call it a trajectory. We say that a smooth variation αγ : [0, T ]×R→M
of geodesics is a trajectory-harp associated with γ if it satisfies the following
conditions:

i) αγ(t, 0) = γ(0) for every t ∈ [0, T ],

ii) the curve s 7→ αγ(0, s) is the geodesic of initial vector γ̇(0),
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iii) when t > 0, the curve s 7→ αγ(t, s) is the geodesic of unit speed joining
γ(0) and γ(t).

We can define a trajectory-harp if the image γ([0, T )) of the trajectory lies in
the ball centered at γ(0) whose radius is the minimum value of conjugate values
at γ(0). We give some terminologies on trajectory-harps. We call the geodesic
segment joining γ(0) and γ(t) in a trajectory-harp the string at γ(t), and call
γ the arch of this trajectory-harp. We denote by `γ(t) the length of the string

at γ(t), and call it the string-length at γ(t). We set δγ(t) = 〈∂αγ∂s
(
t, `γ(t)

)
, γ̇(t)〉

and call it the string-cosine at γ(t). It is known that the derivative of the string-
length coincides with the string-cosine, i.e. d

dt`γ = δγ (see [2]). Given t0 with
0 < t0 ≤ T , we put HPγ(t0) =

{
αγ(t, s)

∣∣ 0 ≤ t ≤ t0, 0 ≤ s ≤ `γ(t)
}

, and call it
the harp-body at t0.

On a complex space form CMn(c) of constant holomorphic sectional curva-
ture c, which is a complex projective space CPn(c), a complex Euclidean space
Cn and a complex hyperbolic space CHn(c) acording as c is positive, zero and
negative, for each trajectory γ : [0, 2π/

√
κ2 + c )→ CMn(c) for Bκ, we can de-

fine its trajectory-harp. Here, we treat 2π/
√
κ2 + c as infinity when κ2 + c ≤ 0.

We use such a convention through out of this paper. If we take two trajecto-
ries γ1, γ2 for Bκ on CMn(c), then their trajectory-harps are congruent to each
other, that is, there is an isometry ϕ of CMn(c) satisfying αγ2(t, s) = ϕ◦αγ1(t, s).
Therefore, string-lengths and string-cosines for trajectory-harps associated with
trajectories for Bκ on CMn(c) do not depend on trajectories. We hence denote
them as `κ(t; c) and δκ(t; c). The string-length `κ(t; c) is given by the following
relation (see [2]): When c > 0, it satisfies√

κ2 + c sin
(√
c `κ(t; c)/2

)
=
√
c sin

(√
κ2 + c t/2

)
,

when c = 0, it satisfies

|κ| `κ(t; 0) = 2 sin
(
|κ|t/2

)
,

and when c < 0, it satisfies

sinh
(√
|c| `κ(t; c)/2

)

=


√
|c|/(|c| − κ2) sinh

(√
|c| − κ2 t/2

)
, when |κ| <

√
|c|,√

|c| t/2, when |κ| =
√
|c|,√

|c|/(κ2 + c) sin
(√
κ2 + c t/2

)
, when |κ| >

√
|c|.
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The string-cosine δκ(t; c) is given by

δκ(t; c) =



√
|c| − κ2 cosh

(√
|c| − κ2 t/2

)√
|c| cosh2

(√
|c| − κ2 t/2

)
− κ2

, when κ2 + c < 0,

2√
|c|t2 + 4

, when κ2 + c = 0,

√
κ2 + c cos

(√
κ2 + c t/2

)√
κ2 + c cos2

(√
κ2 + c t/2

) , when κ2 + c > 0.

Since we have d
dt`κ(t; c) = δκ(t; c), we see that `κ(·; c) is monotone increasing in

the interval [0, π/
√
κ2 + c ]. Clearly, we have `−κ(t; c) = `κ(t; c) and δ−κ(t; c) =

δκ(t; c). When κ1 > κ2 > 0, we have `κ1(t; c) < `κ2(t; c) for t ∈
(
0, π/

√
κ 2
1 + c

]
.

For trajectory-harps on a general Kähler manifoldM , we can compare string-
lengths and string-cosines and those on complex space forms. For a trajectory-
harp αγ associated with a trajectory γ : [0, T ] → M for Bκ and a constant c,
we define Tγ(c) so that Tγ(c) = min{t∗} if there is t∗ satisfying 0 < t∗ ≤ T
and `γ(t∗) = `κ

(
π/
√
κ2 + c ; c

)
, and set Tγ(c) = T in other case. We denote

by τκ(·; c) :
[
0, `κ(π/

√
κ2 + c ; c)

]
→ R the inverse function of the function

`κ(·; c) :
[
0, π/

√
κ2 + c

]
→ R. When κ1 > κ2 > 0, we have δκ1

(
τκ1(s; c); c

)
<

δκ2
(
τκ2(s; c); c

)
for every s ∈

(
0, `κ1

(
π/
√
κ 2
1 + c ; c

)]
.

Proposition 1 ([2, 4]). Let γ : [0, T ]→M be a trajectory for a non-trivial
Kähler magnetic field Bκ on a complete Kähler manifold M . We suppose that
sectional curvatures of planes tangent to the harp-body HPγ(T ) of the associated
trajectory-harp αγ are not greater than a constant c. We then have the following:

(1) `γ(t) ≥ `κ(t; c) for 0 ≤ t ≤ min{T, π/
√
κ2 + c };

(2) δγ(t) ≥ δκ
(
τκ(`γ(t); c); c

)
for 0 ≤ t ≤ Tγ(c);

(3) If `γ(t0) = `κ(t0; c) at some t0 with 0 < t0 ≤ min{T, π/
√
κ2 + c }, then

the harp-body HPγ(t0) is totally geodesic, totally complex and of constant
sectional curvature c.

2 Horocycle trajectories

Let M be a Hadamard Kähler manifold, which is a complete simply con-
nected Kähler manifold of nonpositive sectional curvature. Since M is a Hada-
mard manifold, we can define its ideal boundary ∂M as the set of all asymptotic
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classes of geodesic rays. With the cone topology on M = M ∪ ∂M , this M is
a compactification of M (see [7]). There are many interesting results joining
geometries of ideal boundaries and of Hadamard manifolds (see [5, 8], for exam-
ple). We say that a smooth curve γ parameterized by its arclength is unbounded
in both directions if both of the sets γ([0,∞)) and γ((−∞, 0]) are unbounded
in M . We set

γ(∞) = lim
t→∞

γ(t), γ(−∞) = lim
t→−∞

γ(t) ∈ ∂M

if they exist. We call them the limit points of γ. Such a curve γ is said to be
a horocycle if its limit points coincide (i.e. γ(∞) = γ(−∞)) and if it satisfies
〈γ̇(t), σ̇(0)〉 = 0 for each geodesic σ satisfying σ(0) = γ(t) and σ(∞) = γ(∞).
In particular, if we can take σ so that its initial vector is parallel to Jγ̇(t) for
each t, we call it a holomorphic horocycle. On CHn(c), we know that

(1) a trajectory for Bκ is unbounded in both directions if and only if |κ| ≤√
|c|;

(2) when |κ| <
√
|c| , it has two distinct points at infinity;

(3) when |κ| =
√
|c| , it is a holomorphic horocycle.

We take a trajectory half-line γ : [0,∞)→M for Bκ. We suppose that we can
define a trajectory-harp associated with γ and that sectional curvatures of planes
tangent to its harp-body HPγ(∞) are not greater than −κ2. We here make
mention on this assumption a bit. If we suppose that we can define a trajectory-
harp associated with a trajectory-segment γ|[0,T ] and sectional curvatures of
planes tangent to HPγ(T ) are not greater than −κ2, then we have limt↑T δγ(t)
is strictly positive by Proposition 1. In particular, we can define a trajectory
harp associated with γ|[0,T+`γ(T )] by joining γ(0) and γ(t) by a unique geodesic
of unit speed, because we have γ(t) 6= γ(0) for every t with 0 < t ≤ T + `γ(T ).
Thus, we can calculate sectional curvatures of planes tangent to its harp-body.
Therefore, our assumption is essentially made on sectional curvatures. Hence, for
the sake of simplicity, we just say that sectional curvatures of planes tangent to
its harp-body are not greater than −κ2. Under this assumption, by Proposition
1, we find that the trajectory half-line γ is unbounded. Moreover, by studying
initial vectors

{∂αγ
∂s (t, 0)

∣∣ t ≥ 0
}

of strings, we find that γ has its limit points
γ(∞) in the ideal boundary ∂M , and that the initial vector of the geodesic

joining γ(0) and γ(∞) is limt→∞
∂αγ
∂s (t, 0) (see [3, 9]). We call this geodesic the

limit string of this trajectory-harp.
We now study horocycle trajectories. For a smooth curve γ, we denote its

reversed curve t 7→ γ(−t) by γ−1. When γ is a trajectory for Bκ, then its
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reversed curve γ−1 is a trajectory for B−κ. When we can define trajectory-
harps associated with γ|[0,∞) and with γ−1|[0,∞), we put HPγ = HPγ|[0,∞)

(∞)∪
HPγ−1|[0,∞)

(∞) and call it the total harp-body. If sectional curvatures of planes

tangent to the total harp-body HPγ are not greater than −κ2, then it has limit
points γ(∞) and γ(−∞) = γ−1(∞). We here study the case that they coincide
with each other.

Theorem 1. Let γ be a trajectory for Bκ on a Hadamard Kähler manifold
M . Suppose that sectional curvatures of planes tangent to the total harp-body
HPγ are not greater than −κ2. If the limit points of γ coincide with each other,
then we have the following:

(1) γ is a holomorphic horocycle;

(2) the total harp-body HPγ is totally geodesic holomorphic and of constant
sectional curvature −κ2.

For a unit tangent vector v ∈ UpM at a point p ∈M , we set Sv = {e
√
−1θv |

θ ∈ R}. We say that v satisfies the κ-HC-condition if for every w ∈ Sv the
trajectory γw for Bκ whose initial vector γ̇w(0) is w satisfies γw(∞) = γw(−∞)
and sectional curvatures of planes tangent to its total harp-body Hγw are not
greater than −κ2.

Corollary 1. Let M be a Hadamard Kähler manifold. If there exist a pos-
itive κ and a unit tangent vector which satisfies the κ-HC-condition, then M
contains a totally geodesic, totally complex CH1(−κ2).

3 String-elevations of trajectory-harps

In this section, we study angles between initial vectors of strings and arches
of trajectory-harps. Let αγ : [0, T ] × R → M be a trajectory-harp associated
with a trajectory γ : [0, T ] → M on a Kähler manifold M . We set ηγ(t) =〈∂αγ
∂s (t, 0), γ̇(0)

〉
, and call it the string-elevation of this trajectory-harp. For each

t0 (0 < t0 ≤ T ), if we take the curve σ(t) = γ(t0−t), it is a trajectory for B−κ and
the curve s 7→ αγ

(
t0, `γ(t0)− s

)
is a string of the corresponding trajectory-harp

ασ. We hence have ηγ(t0) = δσ(t0). But we should note that their harp-bodies
HPγ(t0) and HPσ(t0) may not coincide with each other. Therefore, we prepare
an estimate on string-elevations in this section.

Lemma 1. The string-elevation ηγ for a trajectory γ for Bκ satisfies ηγ(0) =
1, limt↓0 η

′
γ(t) = 0, limt↓0 η

′′
γ(t) = −κ2/4.

Proof. We note that we can extend the trajectory-harp smoothly as αγ : (−ε, T ]×
R → M with some positive ε. We hence extend the string-elevation as a func-
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tion ηγ : (−ε, T ] → R. The first equality is trivial because
∂αγ
∂s (0, 0) = γ̇(0) by

definition. Since αγ is a variation of geodesics of unit speed, the Jacobi field s 7→
∂αγ
∂t (t, s) along the geodesic s 7→ αγ(t, s) satisfies

〈(
∇ ∂αγ

∂s

∂αγ
∂t

)
(t, s),

∂αγ
∂s (t, s)

〉
=

0. In particular, we have η′γ(0) = 0.

We shall check that η′′γ(0) =
〈(
∇ ∂αγ

∂t

∇ ∂αγ
∂t

∂αγ
∂s

)
(0, 0),

∂αγ
∂s (0, 0)

〉
coincides

with −κ2/4. As we have γ(t) = αγ
(
t, `γ(t)

)
and `′γ(t) = δγ(t), we get

γ̇(t) =
∂αγ
∂t

(
t, `γ(t)

)
+ δγ(t)

∂αγ
∂s

(
t, `γ(t)

)
,

∇γ̇ γ̇(t) =
(
∇ ∂αγ

∂t

∂αγ
∂t

(
t, `γ(t)

))
+ 2δγ(t)

(
∇ ∂αγ

∂t

∂αγ
∂s

)(
t, `γ(t)

)
+ δ′γ(t)

∂αγ
∂s

(
t, `γ(t)

)
,

because s 7→ α(t, s) is a geodesic for each t. Since αγ(t, 0) = γ(0) we have(
∇ ∂αγ

∂t

∂αγ
∂t

)
(0, 0) = 0. Thus, by using ∇γ̇ γ̇ = κJγ̇ and δγ(0) = 1, δ′γ(0) = 0 (see

Lemma 1 in [2]), we find 2
(
∇ ∂αγ

∂t

∂αγ
∂s

)
(0, 0) = κJγ̇(0). Since we have

0 =
d

dt

〈(
∇ ∂αγ

∂s

∂αγ
∂t

)
(t, s),

∂αγ
∂s

(t, s)
〉

=
∥∥∥(∇ ∂αγ

∂t

∂αγ
∂s

)
(t, s)

∥∥∥2 +
〈(
∇ ∂αγ

∂t

∇ ∂αγ
∂t

∂αγ
∂s

)
(t, s),

∂αγ
∂s

(t, s)
〉
,

we obtain η′′γ(0) = −κ2‖Jγ̇(0)‖2/4 = −κ2/4. QED

Theorem 2. Let γ : [0, T ]→M be a trajectory for a Kähler magnetic field
Bκ on a complete Kähler manifold M . Suppose that we can define a trajectory-
harp αγ : [0, T ] × R → M associated with γ and that sectional curvatures of
planes tangent to its harp body HP(T ) are not greater than a constant c. Then,
we have

ηγ(t) ≥ δκ
(
τκ(`γ(t); c); c

)
and η′γ(t) ≥ d

dt
δκ
(
τκ(`γ(t); c); c

)
for 0 ≤ t ≤ Tγ(c). If ηγ(t0) = δκ

(
τκ(`γ(t0); c); c

)
holds at some t0 with 0 <

t0 ≤ Tγ(c), then the harp-body HP(t0) is totally geodesic, totally complex and of
constant sectional curvature c.

Proof. We study the differential η′γ(t) =
〈(
∇ ∂αγ

∂s

∂αγ
∂t

)
(t, 0), γ̇(0)

〉
. We take pos-

itive κ̂ with |κ| < κ̂. By Lemma 1, for a sufficiently small positive ε, we have
ηγ(t) > δκ̂(t : c) and δ′κ̂(t : c) < η′γ(t) < 0 for 0 < t < ε. We study the first
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inequality on ηγ . We denote by Tκ̂ the maximum positive number satisfying
Tκ̂ ≤ Tγ(c) and that

`γ(t) ≤ `κ̂
(
π/
√
κ̂2 + c ; c

)
, ηγ(t) ≥ δκ̂

(
τκ̂
(
`γ(t); c

)
; c
)

hold for 0 ≤ t ≤ Tκ̂. When Tκ̂ = T for all κ̂ with |κ| < κ̂ < |κ| + ε′ for some
sufficiently small positive ε′, we can get the first inequality. Hence we study
the case Tκ̂ < T . Let γ̂ :

[
0, π/

√
κ̂2 + c

]
→ CM1(c) be a trajectory for Bκ̂ on

CM1(c). We denote by α̂γ̂ its associated trajectory-harp. We note that
∂αγ
∂t (t, s)

is a Jacobi field along the geodesic s 7→ αγ(t, s) and that
∥∥∂αγ
∂t

(
t, `γ(t)

)∥∥ =√
1− δγ(t)2 , because γ̇(t) =

∂αγ
∂t

(
t, `γ(t)

)
+ δγ(t)

∂αγ
∂s

(
t, `γ(t)

)
. Since

∂α̂γ̂
∂t also

has the same properties and δµ
(
τµ(s : c) : c

)
is monotone decreasing with

respect to µ, by Proposition 1, we have for each t with 0 < t ≤ Tκ̂ the following:∥∥∥∂αγ
∂t

(
t, `γ(t)

)∥∥∥ =
√

1− δγ(t)2 ≤
√

1− δκ
(
τκ(`γ(t); c); c

)2
<

√
1− δκ̂

(
τκ̂(`γ(t); c); c

)2
=
∥∥∥∂α̂κ̂
∂t

(
τκ̂(`γ(t); c), `γ(t)

)∥∥∥.
As we have

∂αγ
∂t (t, 0) = 0 and

∂α̂γ̂
∂t (t, 0) = 0 because αγ(t, 0) = γ(0) and

α̂γ̂(t, 0) = γ̂(0), by the assumption on sectional curvatures of planes tangent
to HPγ(T ), Rauch’s comparison theorem on Jacobi fields shows that∥∥∥(∇ ∂αγ

∂s

∂αγ
∂t

)
(t, 0)

∥∥∥ < ∥∥∥(∇ ∂α̂γ̂
∂s

∂α̂γ̂
∂t

)(
τκ̂(`γ(t); c), 0

)∥∥∥
(see [6], for example). Since

∂αγ
∂t is orthogonal to

∂αγ
∂s , for 0 ≤ t ≤ Tκ̂, we have

η′γ(t) =
〈(
∇ ∂αγ

∂s

∂αγ
∂t

)
(t, 0), γ̇(0)

〉
≥ −

√
1− ηγ(t)2

∥∥∥(∇ ∂αγ
∂s

∂αγ
∂t

)
(t, 0)

∥∥∥
> −

√
1− δκ̂

(
τκ̂(`γ(t); c); c

)2 ∥∥∥(∇ ∂α̂γ̂
∂s

∂α̂γ̂
∂t

)(
τκ̂(`γ(t); c), 0

)∥∥∥
= δ′κ̂

(
τκ̂(`γ(t); c), c

)
.

If we suppose `γ(Tκ̂) < `κ̂
(
π/
√
κ̂2 + c; c

)
, then δ′κ̂

(
τκ̂(`γ(Tκ̂); c); c

)
< 0 and

ηγ(Tκ̂) = δκ̂
(
τκ̂
(
`γ(Tκ̂); c

)
; c
)

by definition of Tκ̂. Hence, the above inequality
and Proposition 1 lead us to

d

dt
δκ̂
(
τκ̂(`γ(t); c); c

)
= δ′κ̂

(
τκ̂(`γ(t); c); c

)
× δγ(t)

δκ̂
(
τκ̂(`γ(t); c); c

)
< δ′κ̂

(
τκ̂(`γ(t); c); c

)
< η′γ(t).
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Therefore, we obtain that `γ(t) < `κ̂
(
π/
√
κ̂2 + c; c

)
and ηγ(t) ≥ δκ̂

(
τκ̂
(
`γ(t); c

)
; c
)

beyond Tκ̂. This contradictories to the definition of Tκ̂. We hence find that
`γ(Tκ̂) = `κ̂

(
π/
√
κ̂2 + c; c

)
holds. Letting κ̂ ↓ |κ|, we have limκ̂↓κ Tκ̂ = Tγ(c),

and hence obtain ηγ(t) ≥ δκ
(
τκ(`γ(t); c); c

)
for 0 ≤ t ≤ Tγ(c).

Once we get the inequality ηγ(t) ≥ δκ
(
τκ(`γ(t); c); c

)
for 0 ≤ t ≤ Tγ(c), the

above argument guarantees η′γ(t) ≥ d
dtδκ

(
τκ(`γ(t); c), c

)
for 0 ≤ t ≤ Tγ(c) and

that the equality holds at some t1 (0 < t1 ≤ Tγ(c)) if and only if ηγ(t1) =
δκ
(
τκ(`γ(t1); c), c

)
= δγ(t1).

Now we consider the case ηγ(t0) = δκ
(
τκ(`γ(t0); c), c

)
holds at some t0 (0 <

t0 ≤ Tγ(c)). As we have

ηγ(t0) = 1 +

∫ t0

0
η′γ(t) dt,

δκ
(
τκ(`γ(t0); c), c

)
= 1 +

∫ t0

0

d

dt
δκ
(
τκ(`γ(t); c), c

)
dt,

we find that η′γ(t) = d
dtδκ

(
τκ(`γ(t); c), c

)
for 0 ≤ t ≤ t0, which guarantees

δγ(t) = δκ
(
τκ(`γ(t); c), c

)
for all 0 ≤ t ≤ t0. Thus we get the conclusion with the

aid of Proposition 1. QED

Given a trajectory-harp αγ : [0, T ] × R → M , we call the length of the

curve [0, t0] 3 t 7→ ∂αγ
∂s (t, 0) ∈ Uγ(0)M in the unit tangent space at γ(0) the

zenith angle of γ at t0 (see [2]). In [9], we showed the existence of limit points of
unbounded trajectories by using zenith angles of trajectory-harps associated to
them. Trivially, the above angle is not smaller than cos−1 ηγ(t0). We can study
limit points of unbounded trajectories also by using string-elevations.

We now apply Theorem 2 to prove Theorem 1.

Proof of Theoerm 1. We take trajectory half-lines γ : [0,∞) → M for Bκ and
γ−1 : [0,∞) → M for B−κ. Then their limit-strings are the geodesic σ of unit
speed satisfying σ(0) = γ(0) and σ(∞) = γ(∞) = γ(−∞). We therefore have

∠
(
σ̇(0), γ̇(0)

)
= lim

t→∞
cos−1 ηγ(t) ≤ lim

t→∞
cos−1 δκ

(
τκ(`γ(t); c); c

)
=
π

2
,

∠
(
σ̇(0),−γ̇(0)

)
= lim

t→∞
cos−1 ηγ−1(t) ≤ lim

t→∞
cos−1 δκ

(
τκ(`γ−1(t); c); c

)
=
π

2

with c = −κ2 by Theorem 2. As we have

∠
(
σ̇(0), γ̇(0)

)
+ ∠

(
σ̇(0),−γ̇(0)

)
≥ ∠

(
γ̇(0),−γ̇(0)

)
= π,
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we obtain

lim
t→∞

cos−1 ηγ(t) = lim
t→∞

cos−1 δκ
(
τκ(`γ(t); c); c

)
=
π

2
,

lim
t→∞

cos−1 ηγ−1(t) = lim
t→∞

cos−1 δκ
(
τκ(`γ−1(t); c); c

)
=
π

2
,

which guarantees

η′γ(t) =
d

dt
δκ
(
τκ(`γ(t); c); c

)
and η′γ−1(t) =

d

dt
δκ
(
τκ(`γ−1(t); c); c

)
for t ≥ 0. Thus, the total harp-body HPγ = HPγ(∞) ∪ HPγ−1(∞) is totally
geodesic, totally complex and of constant sectional curvature c. In particular, we
find that σ̇(0) = sgn(κ)Jγ̇(0), where sgn(κ) denotes the signature of κ, and that
for an arbitrary t0, the geodesic σt0 joining γ(t) and γ(∞) lies on HPγ . Since it
is the limit-string of the trajectory-harps associated with γ(t+ t0) : [0,∞)→M
and γ(t0 − t) : [0,∞) → M , and every string of these trajectory-harps lies on
HPγ , by the same argument as above, we find that σt0 and γ cross orthogonally
at γ(t0). This completes the proof. QED

We here mention the case of bounded trajectories.

Remark 1. Let γ be a trajectory for a Kähler magnetic field Bκ on a
Kähler manifold whose sectional curvatures are not greater than a nonnega-
tive constant c. If γ

(
π/
√
κ2 + c

)
= γ

(
−π/
√
κ2 + c

)
, then it is closed and

HPγ
(
π/
√
κ2 + c

)
∪ HPγ−1

(
π/
√
κ2 + c

)
is totally geodesic, and sectional cur-

vatures of planes tangent to this body are c.

Remark 2. Let c be a negative constant, and γ be a trajectory for a Kähler
magnetic field Bκ with κ2 > |c|. If γ

(
π/
√
κ2 + c

)
= γ

(
−π/
√
κ2 + c

)
and

sectional curvatures of planes tangent to the harp-body HPγ
(
π/
√
κ2 + c

)
∪

HPγ−1

(
π/
√
κ2 + c

)
are not greater than c, then it is closed and the harp-body

is totally geodesic, and sectional curvatures of planes tangent to this body are
c.

4 Horocycle trajectories on products of complex hy-
perbolic spaces

Let Sp denote the subset of the unit tangent space UpM of a Hadamard
Kähler manifold M which consists of unit tangent vectors satisfying κ-HC con-
dition. It is natural to consider that if Sp contains a standard sphere Sk at some
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point p ∈M , then M contains a totally geodesic CHk(−κ2) as a factor. Unfor-
tunately, to answer this problem, we need some more study. In this section, we
study trajectories on a product of complex hyperbolic spaces.

Let γ be a trajectory for Bκ on a product of complex hyperbolic spaces
and a complex Euclidean space M = Cm × CHn1(c1) × · · · × CHnr(cr). We
express γ as γ = (γ0, γ1, . . . , γr), where γ0 lies on Cm and γi lies on CHni(ci) for
i = 1, . . . , r. As was pointed out in [1], it is a horocycle trajectory if and only if
‖γ̇i‖ ≤ |κ|/

√
|ci| for every i ≥ 1 and ‖γ̇i0‖ = |κ|/

√
|ci0 | for some i0.

When γ is a horocycle trajectory, if we denote by i1 < i2 < · · · < ik all the

indices of components satisfying ‖γ̇ij‖ = |κ|/
√
|cij | , then the point at infinity

of γ coincide with one of the points at infinity of the geodesic of initial vector
(w0, . . . , wr) with wi = Jγ̇i(0)/

(∑
j ‖γ̇ij‖

)
when i = ij and wi = 0 when i 6= ij

for all j. Thus we have the following.

Proposition 2. Let γ = (γ0, γ1, . . . , γr) be a trajectory for Bκ (κ 6= 0) on a
product M = Cm × CHn1(c1) × · · · × CHnr(cr). It is a holomorphic horocycle
trajectory if and only if we have indices i1, . . . , ik (1 ≤ i1 < i2 < · · · < ik ≤ r)

satisfying ‖γ̇ij‖ = |κ|/
√
|cij | for j = 1, . . . , k and ‖γ̇i‖ = 0 for i 6= ij. In

particular, we have κ2
(

1
|ci1 |

+ · · ·+ 1
|cik |

)
= 1.

We directly compute the string-length and the string-cosine for a holo-
morphic horocycle trajectory γ = (γ1, . . . , γr) for a non-trivial Bκ on M =
CHn1(c1)×· · ·×CHnr(cr) whose velocity vector satisfies ‖γ̇i(t)‖ = |κ|/

√
|ci| for

i = 1, . . . , r. By putting ai = |κ|/
√
|ci| , the curve γ̃i defined by γ̃i(u) = γi(u/ai)

is a horocycle trajectory for B
sgn(κ)

√
|ci|

on CHni(ci). Hence, the string length

˜̀
i of γ̃i is given by

˜̀
i(u) = `√|ci| (u; ci) =

(
2/
√
|ci|

)
sinh−1

(√
|ci| u/2

)
.

Since we have |κ| = 1
/√

1
|c1| + · · ·+ 1

|cr| , we obtain

`γ(t) =

√
{˜̀1(a1t)}2 + · · ·+ {˜̀r(art)}2

= 2

√
1

|c1|
+ · · ·+ 1

|cr|
sinh−1

(
t

2
√

t
|c1| + · · ·+ 1

|cr|

)

= ` 1√
1
|c1|

+...+ 1
|cr |

(
t;

1
1
|c1| + . . .+ 1

|cr|

)
.

We denote by α̃i and δ̃i the trajectory-harp and the string-cosine associated
with γ̃i. Then the trajectory-harp αγ = (α1, . . . , αr) associated with γ is given
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by

αγ(t; s) =

(
α̃1

(
a1t,

˜̀
1(a1t)

`γ(t)
s
)
, . . . , α̃r

(
art,

˜̀
r(art)

`γ(t)
s
))

.

Since we have

δ̃i(u) =
〈

˙̃γi(u),
∂α̃i
∂ν

(
u, ˜̀

i(u)
)〉

=
2√

|ci|u2 + 4
,

we obtain

δγ(t) =
r∑
i=1

〈
γ̇i(t),

∂αi
∂s

(
t, `i(t)

)〉
=

r∑
i=1

ai
˜̀
i(ait)

`(t)
δ̃i(ait)

=
2κ2√

κ2t2 + 4

r∑
i=1

1

|ci|
=

2√
κ2t2 + 4

=
2√

t2

1
|c1| + . . .+ 1

|cr|
+ 4

= δ 1√
1
|c1|

+...+ 1
|cr |

(
t;

1
1
|c1| + . . .+ 1

|cr|

)
,

and ηγ(t) = δγ(t).

5 An estimate of string-elevations from above

In section 4, we gave an estimate of string-elevations from below. We now
give a corresponding estimate from above under the condition that sectional
curvatures are bounded from below.

Let γ : [0, T ]→ M be a trajectory for Bκ on a Kähler manifold M . We say
that the trajectory-harp αγ : [0, T ]× R→ M associated with γ is holomorphic

at the origin if the initial tangent vector
∂αγ
∂s (t, 0) of each string is contained in

the complex subspace of Tγ(0)M spanned by γ̇(0) for 0 ≤ t ≤ T . Similarly, we

say αγ is holomorphic at the arch if
∂αγ
∂s

(
t, `γ(t)

)
is contained in the complex

subspace of Tγ(t)M spanned by γ̇(t) for 0 ≤ t ≤ T . It is likely that one of these
conditions shows the other. But for now, we cannot say any more about their
relationship. In [10], Shi and the second author gave estimates on string-lengths
and string-cosines. We set

Rγ = sup{t | δγ(τ) > 0 for 0 ≤ τ < t},
Cγ = sup{t | `γ(τ) ≤ cHγ(0) for 0 ≤ τ < t}.

Here, cHγ(0) denotes the minimum conjugate value of γ(0) along geodesics tangent

to the harp-body HPγ(T ). Since we have `γ(t) ≤ t, when sectional curvatures
of planes tangent to HPγ(T ) are not less than a constant c, then Cγ ≥ π/

√
c.
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Proposition 3 ([10]). Let γ : [0, T ] → M be a trajectory for a non-trivial
Kähler magnetic field Bκ on a complete Kähler manifold M . We suppose that its
corresponding trajectory-harp is holomorphic at the arch and that sectional cur-
vatures of planes tangent to the harp-body HPγ(T ) of the associated trajectory-
harp αγ are not less than a constant c. We then have the following:

(1) `γ(t) ≤ `κ(t; c) and δγ(t) ≤ δκ
(
τκ(`γ(t); c); c

)
for 0 ≤ t ≤ min{Rγ , Cγ};

(2) If `γ(t0) = `κ(t0; c) at some t0 with 0 < t0 ≤ min{Rγ , Cγ}, then the harp-
body HPγ(t0) is totally geodesic, totally complex and of constant curvature
c.

By using this result we give an estimate of string-elevations from above.

Theorem 3. Let γ : [0, T ] → M be a trajectory for Bκ. Suppose that we
can define a trajectory-harp αγ : [0, T ] × R → M associated with γ. If αγ is
holomorphic at the origin and at the arch, and if sectional curvatures of planes
tangent to its harp body HP(T ) are not less than a constant c, then, we have

ηγ(t) ≤ δκ
(
τκ(`γ(t); c); c

)
and η′γ(t) ≤ d

dt
δκ
(
τκ(`γ(t); c); c

)
for 0 ≤ t ≤ min{Rγ , Cγ}. If ηγ(t0) = δκ

(
τκ(`γ(t0); c); c

)
holds at some t0,

then the harp-body HP(t0) is totally geodesic, totally complex and of constant
sectional curvature c.

Proof. Our proof goes through almost the same as of Theorem 2 by taking
positive κ̂ so that κ̂ < |κ|. Since the trajectory-harp αγ is holomorphic at the

origin, we find that ∇ ∂αγ
∂s

∂αγ
∂s (t, 0) is contained in the complex subspace spanned

by γ̇(0). Therefore we have

η′γ(t) = −
√

1− ηγ(t)2
∥∥∥(∇ ∂αγ

∂s

∂αγ
∂t

)
(t, 0)

∥∥∥
< −

√
1− δκ̂

(
τκ̂(`γ(t); c); c

)2 ∥∥∥(∇ ∂α̂γ̂
∂s

∂α̂γ̂
∂t

)(
τκ̂(`γ(t); c), 0

)∥∥∥
= δ′κ̂

(
τκ̂(`γ(t); c), c

)
.

By using this, we can get our result by the same argument as of the proof of
Theorem 2. QED
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