
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 45 (2025) suppl. 1, 13–44. doi:10.1285/i15900932v45s1p13

Hermitian metrics on complex non-Kähler

manifolds

Daniele Angellai

Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze
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1 The holomorphic landscape

We are interested in studying the geometry and topology of holomorphic
manifolds. We prefer to use the term “holomorphic manifold” [dB94], instead of
the more common “complex manifold”, since they behave as the objects in the
category of holomorphic maps. More precisely, a holomorphic manifold of com-
plex dimension n is a topological space, with the Hausdorff and second-countable
properties, such that any point has a neighbourhood homeomorphic to an open
set of Cn, which is called “local holomorphic chart”, such that the transition
functions are biholomorphisms. A holomorphic map between holomorphic man-
ifolds is a function which is locally expressed by holomorphic functions.
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1.1 Almost-complex structures

Given a local holomorphic chart ϕ : U
'→ ϕ(U) ⊆ Cn on U ⊆ X, with

coordinates ϕ = (z1, . . . , zn), let zi = xi +
√
−1yi denote its real and imaginary

parts. We have a well-defined endomorphism J of the tangent bundle, locally
given by

J∂/∂xi = ∂/∂yi, J∂/∂yi = −∂/∂xi.

This endomorphism satisfies J2 = −id and encodes the pointwise linear complex
structure on the tangent spaces, varying smoothly with the point. An endomor-
phism J ∈ End(TX) satisfying J2 = −id is called an almost-complex struc-
ture. Conversely, an almost-complex structure J is naturally associated with
local holomorphic coordinates if and only if the bundle of the

√
−1-eigenspaces,

defined as T 1,0
x X := {v −

√
−1Jv : v ∈ TxX} ⊂ TxX ⊗R C, is involutive

[NN57]. This condition is equivalent to require that [V 1,0,W 1,0]0,1 = 0 for any
vector fields V and W , where V = V 1,0 + V 0,1 denotes the decomposition
with respect to TX ⊗R C = T 1,0X ⊕ T 0,1X with T 0,1X = T 1,0X. The tensor
NJ(V,W ) = 8 Re[V 1,0,W 1,0]0,1 is called the Nijenhuis tensor of J . In dimension
greater than four, there are no known examples of almost-complex manifolds
that do not admit any (integrable) complex structure. For instance, it is an open
problem whether the six-dimensional sphere S6 admits an integrable complex
structure, see [ABG+18] and the references therein. See also [AM19] for a con-
jecture by Sullivan on the minimal sum of Betti numbers of a compact complex
n-fold, with n ≥ 3 being four.

1.2 Complex cohomologies

Under the action of an (almost-)complex structure J , the tangent bundle
decomposition TX ⊗R C = T 1,0X ⊕ T 0,1X induces a corresponding decompo-
sition for its dual (the cotangent bundle) and its exterior powers. More pre-
cisely, the bundle of differential forms decomposes into bigraded components as
∧kT ∗X ⊗R C =

⊕
p+q=k ∧p,qX, where ∧p,qX := ∧pT ∗ 1,0X ⊗∧qT ∗ 0,1X. Denote

by Ωp,q(X) the space of the corresponding sections. Accordingly, the exterior
differential d : Ωp,q(X)→ Ωp+q+1T ∗(X)⊗R C on (p, q)-differential forms decom-
poses into components. In general, the exterior differential has four components:
d : Ωp,q(X)→ Ωp+2,q−1(X)⊕Ωp+1,q(X)⊕Ωp,q+1(X)⊕Ωp−1,q+2(X). When J is
integrable, only ∂ : Ωp,q(X) → Ωp+1,q(X) and ∂ : Ωp,q(X) → Ωp,q+1(X) remain

non-zero. The condition d2 = 0 assures that ∂2 = ∂∂ + ∂∂ = ∂
2

= 0. In other
words, (Ω•,•(X), ∂, ∂) has the structure of a double complex. It follows that sev-
eral cohomologies can be defined: the Dolbeault cohomology H•,•

∂
(X) = ker ∂/im ∂

is the cohomology of the sheaf OX of germs of holomorphic functions; its con-
jugate H•,•∂ (X) is defined similarly; the Bott-Chern cohomology H•,•BC(X) =
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ker d/im ∂∂; and its dual, the Aeppli cohomology H•,•A (X) = ker ∂∂/im ∂ + im ∂. For
laziness, we refer to [Ang14] for more details on the cohomology of almost-
complex or holomorphic manifolds, although better references can be found
elsewhere. We refer to [Ste21, Ste22, Ste25], as well as other works by Jonas
Stelzig, for recent in-depth advances in the understanding of the double com-
plexes of holomorphic manifolds. For a comprehensive review of recent results
on non-Kähler Hodge theory and deformations of complex structures, we refer
to [Pop23].

1.3 Hermitian metrics

Thanks to the paracompactness property, we can take the (pullback of) the
standard Hermitian inner product on each holomorphic chart and then glue
them together using a partition of unity. This construction yields a Hermi-
tian metric on X, defined as a family of Hermitian inner products hx on each
complex vector space (TxX, Jx), varying smoothly with x ∈ X. Via the linear
isomorphisms (TxX, Jx) ' (T 1,0

x X,
√
−1) ' (T 0,1X,−

√
−1), this induces a fam-

ily of Hermitian inner products h on each fibre (TxX, Jx). Decomposing this
inner product into real and imaginary parts, say 1/2(g −

√
−1ω), we obtain: a

Riemannian metric g on X, for which J acts as isometry; a J-invariant 2-form
ω on X, satisfying ω(V, JV ) > 0 pointwise for any nowhere-zero vector field V .
Since ω = g(J , ), we will refer to a Hermitian metric either as g or ω without
ambiguity.

1.4 Complex algebraic geometry and Kähler geometry

The first examples of compact holomorphic manifolds are the complex torus
Cn/Zn and the complex projective space CPn = Cn+1 \ 0/C \ 0. Another fundamental
construction is as follows. Consider a homogeneous polynomial in n+1 variables
with no multiple roots. Its zero set in CPn defines a compact holomorphic
manifold of complex dimension n − 1. More generally, the zero set of a finite
number of homogeneous polynomials defines a compact holomorphic manifold,
provided that the polynomials are sufficiently generic to assure smoothness.
Many geometric properties of such manifolds are indeed encoded in the ideal
generated by its defining polynomials (see e.g. [Hüb92]), which explains the
name algebraic projective manifolds. For example, a smooth hypersurface X
of degree d in CPn has canonical bundle isomorphic to OX(−n − 1 + d). In
particular, for d = n+1, the hypersurface X is a Calabi-Yau manifold, meaning
it has trivial canonical bundle.

The examples X discussed above share a common property: there exists
a Hermitian metric g that osculates to order 2 the standard Hermitian inner
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product of Cn. Specifically, this means that for every point x ∈ X, there exist
local holomorphic coordinates (z1, . . . , zn) on a neighbourhood U such that
g =

∑n
i,j=1(δij +o(z)) dzi⊗dz̄j at x. Such metrics are known as Kähler metrics,

see [SvD30, Käh32], since [Wei58]. Equivalently, a Hermitian metric is Kähler
if and only if its associated 2-form ω is symplectic, meaning that dω = 0.
Indeed, on CPn with homogeneous coordinates [z0 : z1 : · · · : zn], the Fubini-
Study metric [Fub04, Stu05], defined as ωFS = 1/4πddc log(

∑
i |zi|2), is a Kähler

metric. This metric naturally induces a Kähler metric on any submanifolds.
More precisely, Kähler geometry is a sort of transcendental analogue [Dem12]
of algebraic geometry. More precisely, it is well-known [Kod54] that a compact
Kähler manifold is an algebraic projective manifold if and only if its associated
2-form ω defines a rational cohomology class [ω] ∈ H2(X,Q). Kähler geometry
lies at the intersection of complex, Riemannian, and symplectic geometries.
Each of these perspectives provides specific tools, and their compatibility allows
for easily switching between these points of view. This interplay makes Kähler
geometry nearly as powerful as algebraic geometry itself.

Since Kähler geometry “represents a perfect synthesis of the Symplectic and
the Holomorphic worlds”, it is meaningful to perform “a sort of chemical analysis
of symplectic and holomorphic contribution [...] in order to better understand
the role of the different components of the theory” [DBT13] For this reason, we
are interested in investigating the broad class of complex non-Kähler manifolds.

2 Riemannian metrics on differentiable manifolds

Let us first consider the Riemannian context, referring to [Bes08] for further
details and a comprehensive discussion. Let g be a Riemannian metric on a
differentiable manifold M . There exists a unique affine connection D on M
that preserves g (i.e., Dg = 0) and is torsion-free (i.e., T = 0 where T (V,W ) :=
DVW −DWV − [V,W ]). This connection is known as the Levi-Civita connection
and it is fully determined by the Koszul formula: 2g(DVW,Z) = V g(W,Z) +
Wg(Z, V )−Zg(V,W ) + g([V,W ], Z)− g([W,Z], V ) + g([Z, V ],W ). It defines a
curvature tensor R(V,W ) = D[V,W ] − [DV , DW ], which can be interpreted as a
End(TX)-valued 2-form. We can also interpret the curvature in the following
way. Consider α to be a differential k-form with values in TM . Define the
exterior derivative dD associated with D by

(dDα)(V0, . . . , Vk) =
∑
i

(−1)iDVi(α(V0, . . . , V̂i, . . . , Vn))+∑
i 6=j

(−1)i+jα([Vi, Vj ], V0, . . . , V̂i, . . . , X̂j , . . . , Xn),
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where “X̂i” means skipped. Then R = −(dD)2 measure the failure of dD to
be a genuine differential. The curvature tensor satisfies several additional sym-
metries. It is clear that R(V,W ) = −R(W,V ), and we also have the identity
g(R(V,W )Z, Y ) = −g(R(V,W )Y,Z). Moreover, R ∧ id = 0 (known as the first,
or algebraic, Bianchi identity) and dDR = 0 (the second, or differential, Bianchi
identity), see [Gau15] for details. The curvature tensor contains exactly the
information about the sectional curvatures

K(V,W ) = g(R(V,W )V,W )/(g(V, V )g(W,W )− g(V,W )2)

of any plane σp = span{V,W} ⊆ TpX at p, which correspond to the Gaussian
curvature of the surface whose tangent plane at p is σp. Still, interesting in-
formation is encoded in the Ricci curvature, defined as Ric(V,W ) := tr(Z 7→
R(V,Z)W ). Lastly, another important metric invariant is the function s = trgr,
called the scalar curvature.

We aim to find some canonical metrics, unique up to automorphisms, that
would encode the topological or differentiable properties of the manifold.

2.1 Space forms

A natural choice for this is to look for Riemannian manifolds with ‘con-
stant’ curvature. Asking for complete Riemannian metrics whose sectional cur-
vature is constant (when varying the planes at p and the point p, the latter
being a consequence of the former in dimension n ≥ 3, thanks to the differen-
tial Bianchi identity) leads to the notion of space form. There are only three
simply-connected model space forms in any dimension n, up to homothety: the
Euclidean metric on Rn has flat curvature R = 0; the unit sphere Sn with the
round metric has constant sectional curvature +1; and the hyperbolic space Hn

has constant sectional curvature −1.

2.2 Einstein metrics

Since the constant sectional curvature problem seems too rigid, one might
consider weakening it to the condition ‘constant Ricci tensor’. This can be in-
terpreted as the problem of searching for metrics g such that

Ricg = λ · g

with λ constant. Indeed, in dimension n ≥ 3, even if λ is a scalar function, it will
result in a constant, given by a multiple of the scalar curvature, precisely nλ = s.
(For surfaces, namely the case n = 2, there is only one notion of curvature: the
Riemann tensor, the Ricci tensor and the scalar curvature all coincide with the
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Gauss curvature.) The problem is related to Einstein field equations for gravita-
tion, which are given by Ric− 1

2sg = T , where T is the energy-momentum tensor.
Indeed, solutions in the vacuum (T = 0) correspond to Ricci flat metrics. The
Einstein problem is a variational problem: more precisely, Einstein metrics are
characterized as the critical points for the functional S(g) =

∫
M sg µg, (where

µg denotes the Riemannian volume form,) which corresponds to the total scalar
curvature, on the space of metrics with volume one. As Besse remarks [Bes08,
page 6], “[d]espite the simplicity of the [Einstein condition] the reader should
not imagine that examples are easy to find”. Indeed, “[t]he author will be happy
to stand you a meal in a starred restaurant in exchange of” some new examples!
As far as now, the known examples of Einstein metrics are mainly constructed
either by exploiting large symmetry group or through coupled equation. In the
homogeneous setting, Einstein metrics correspond to positive definite solutions
of a system of quadratic equations. For instance, they exist on irreducible sym-
metric spaces, including compact semi-simple groups. A complete classification
of compact homogeneous Einstein spaces is available up to dimension 7, and
examples are known to exist in all dimensions up to 11, with a counterexample
appearing in dimension 12. Recently, the Alekseevskii conjecture, stating that
any homogeneous Einstein manifold of negative scalar curvature is diffeomor-
phic to Rn and is a solvmanifold, was proven by [BL23b]. For more details,
see the surveys [Bes08, Wan99, Wan12, Lau09, Jab21] and references therein.
The first non-homogeneous example of compact Einstein manifold with positive
scalar curvature was constructed by Page [Pag78, PP87] on the connected sum
CP 2]CP 2 and later generalized by Bérard-Bergery [BB83]. By exploiting the
theory of Riemannian submersion [O’N66] and the cohomogeneity one prop-
erty, the Einstein equation can be reduced to a system of second-order ODEs.
Lastly, another powerful tool for producing Einstein metrics is the Aubin-Yau
theorem [Yau78, Aub78] solving the Calabi conjecture. This theorem guarantees
the existence of Kähler-Einstein metrics on compact complex Kähler manifolds
X with non-positive first Chern class c1(X) ≤ 0. Also the existence of Kähler-
Einstein metrics on Fano manifolds (namely, with c1(X) > 0) has been recently
understood [CDS15a, CDS15b, CDS15c, Tia15].

Note that simply-connected manifolds with holomorphically trivial canoni-
cal bundle, known as Calabi-Yau manifolds, possess strong geometric properties
that make them the most promising candidates for internal spaces in string the-
ory compactifications [CHSW85]. We refer to [Pic25] for a very recent survey on
Calabi-Yau threefolds. Calabi-Yau manifolds, which admit Kähler metrics with
holonomy in SU(n), play a crucial role in many string theory compactifications
because they admit covariantly constant spinors, thereby preserving a portion
of the original supersymmetry in the four-dimensional effective theory. Their
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geometric properties (Ricci-flatness, trivial canonical bundle) fit perfectly with
the low-energy string/supergravity equations of motion and the requirement
of having unbroken supersymmetry. It is estimated that there are at least on
the order of 10100 vacua matching the Standard Model gauge group and low-
energy spectrum, see e.g. [Dou03]. Therefore, machine learning techniques seem
promising for learning topological and holomorphic invariants in large datasets,
see e.g. [He21, AALSG24, HSG23] and references therein.

We notice that Einstein metrics are stationary points of the normalized Ricci
flow, which evolves a Riemannian metric according to

∂

∂t
g(t) = −2Ricg(t) +

2

n
rg(t) · g(t),

where n = dimM and rg = (
∫
M
sµg)/(

∫
M
µg) denotes the normalized average scalar

curvature. It is a foundational result by Hamilton [Ham82] that, on compact
three-dimensional Riemannian manifolds with positive Ricci curvature, the vol-
ume normalized Ricci flow exists for all time and converges to an Einstein met-
ric. It is well-known that the Ricci flow preserves the Kähler condition, in which
case it is referred to as the Kähler-Ricci flow. In his seminal work, Cao [Cao85]
reproved the Aubin-Yau theorem using the Kähler-Ricci flow, by showing that,
for compact Kähler manifolds X with c1(X) = 0 (respectively, c1(X) < 0), the
(normalized) Kähler-Ricci flow starting at any Kähler metric ω0 smoothly con-
verges to the unique Kähler-Einstein metrics in [ω0] (respectively, in −c1(X)).

2.3 Yamabe problem

Lastly, one may be interested in studying constant scalar curvature metrics,
which is a weaker condition than Einstein. The problem, originally introduced
by Yamabe [Yam60], was solved through the combined efforts of Trudinger
[Tru68], Aubin [Aub76], and Schoen [Sch84], with Schoen utilizing the positive
mass theorem of general relativity [SY79]. This effort culminated in proving
that any Riemannian metric g on a compact n-dimensional manifold can be
conformally changed to a metric u4/(n − 2) · g with constant scalar curvature. The
problem corresponds to finding a positive smooth solution to the semi-linear pde
4(n−1)
n−2 ∆gu−sgu+cu(n + 2)/(n − 2) = 0 where ∆g denotes the Laplace-Beltrami op-

erator of g and c is a constant. In fact, the scalar curvature can be prescribed to
be any possible function. More precisely, Kazdan and Warner [KW75] proved
that, on a compact manifold of dimension three or greater, any smooth func-
tion that attains a negative value somewhere is the scalar curvature of some
Riemannian metric. Moreover, if the manifold admits metrics with strictly pos-
itive scalar curvature, then any smooth function is the scalar curvature of some
Riemannian metric.
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When the metric is Kähler, the scalar curvature has an interesting inter-
pretation as a moment map for an infinite-dimensional Hamiltonian action, as
shown by Donaldson [Don97] and Fujiki [Fuj90]. The problem of finding con-
stant scalar curvature metrics (csck) in a fixed Kähler class was recently solved
through the groundbreaking work of Chen and Cheng [CC21a, CC21b]. Recall
that csck metrics are special cases of extremal metrics [Cal82], namely, Kähler
metrics that extremize the so-called Calabi functional. For a thorough introduc-
tion to the subject, we refer to [Gau15, Szé14, GZ17].

3 Hermitian metrics on holomorphic manifolds

In the Hermitian setting, there is a first issue to address. Let X be a holo-
morphic manifold of complex dimension n, whose complex structure will be
denoted by J , and endowed with a Hermitian metric g, with associated (1, 1)-
form ω = g(J , ). The Levi-Civita connection does not preserve the Hermitian
structure, unless it is Kähler. This follows from the identities

3dω(V,W,Z) = g((DV J)W,Z) + g((DWJ)Z, V ) + g((DZJ)V,W ),

2g((DV J)W,Z) = 3dω(V,W,Z)− 3dω(V, JW, JZ).

Then, if we want to take into account the complex structure, we must consider
linear connections ∇ that preserve both the tensor of the Hermitian structure,
namely ∇g = 0 and ∇J = 0, even if this comes at the cost of introducing torsion
terms T .

3.1 Gauduchon connections

The space of Hermitian connections on X is an affine space modeled on
Ω1,1(X,TX). More precisely, any Hermitian connection ∇ is determined by
g(∇VW,Z) = g(DVW,Z) + A, where the potential A is a vector valued 2-
form, view as a trilinear form that is skew-symmetric in the last two argu-
ments. The potential completely determines the torsion, as detailed in [Gau97,
page 265]; see also detailed computations in [AP22]. The space Ω2(X,TX)
of vector-valued 2-forms, where the torsion lives, admits a natural decompo-
sition Ω2(X,TX) = Ω1(X)⊕ (Ω2(X,TX))0 ⊕ Ω3(X). The corresponding com-

ponents of an element B ∈ Ω2(X,TX) are denoted as B = t̃rB + B0 + bB.
Here: the space Ω3(X) of 3-forms is embedded as a subspace of Ω2(X,TX) via
B(V,W,Z) = g(V,B(W,Z)); the projection b : Ω2(X,TX) → Ω3(X) is called
the Bianchi projector; the operator trB : Ω2(X,TX)→ Ω1(X) is defined as the
trace of the bilinear form (V,W ) 7→ g(V,B(W, )); the space of 1-forms Ω1(X) is
embedded as a subspace of Ω2(X,TX) via α̃(V,W,Z) = 1/(2n− 1)(α(Z)g(V,W )−
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α(W )g(Z, V )) where α ∈ Ω1(X); the space (Ω2(X,TX))0 consists of trace-free
vector-valued 2-forms B0 satisfying the Bianchi identity bB0 = 0. With respect
to the complex structure J , the space Ω2(X,TX) admits the decomposition
Ω2(X,TX) = Ω2,0(X,TX) ⊕ Ω1,1(X,TX) ⊕ Ω0,2(X,TX), where: Ω2,0(X,TX)
consists of vector-valued 2-forms B such that B(JV,W ) = J(B(V,W )); the
space Ω1,1(X,TX) consists of B such that B(JV, JW ) = B(V,W ); and the
space Ω2,0(X,TX) consists of B such that B(JV,W ) = −J(B(V,W )). In par-
ticular, we consider the orthogonal splitting of Ω1,1(X,TX) as Ω1,1(X,TX) =
Ω1,1
s (X,TX) ⊕ Ω1,1

a (X,TX), where Ω1,1
s (X,TX) denotes the subspace of ele-

ments satisfying the Bianchi identity, and Ω1,1
a (X,TX) is its orthogonal com-

plement, which is isomorphic to Ω3(X) ∩ (Ω2,1(X)⊕ Ω1,2(X)). It turns out, as
shown in [Gau97, Proposition 2], that the component T 0,2 does not depend on
the connection and is equal to the Nijenhuis tensor, which therefore vanishes.
Moreover, the term b(T 2,0 − T 1,1

a ) is also independent of the connection and
equals the (2, 1)+(1, 2) component of 1/3dcω, denoted by 1/3(dcω)+. As a result,
the connection is completely determined by T 1,1

s and the (2, 0)+(1, 1) component
of bT , denoted by (bT )+. In his celebrated paper [Gau97], Gauduchon intro-
duced a canonical one-parameter family {∇t}t∈R of Hermitian connections, now
called Gauduchon connections, by setting T 1,1

s = 0 and (bT )+ = (2t− 1)/3(dcω)+.
More explicitly, they are given by:

g(∇tVW,Z) = g(DVW,Z)− 1− t
4

dω(JV, JW, JZ) +
1 + t

4
dω(JV,W,Z).

Of course, they all reduce to the Levi-Civita connection if the metric is Kähler.
Among them, two distinguished connections are particular noteworthy. For t =
1, one obtains the Chern connection, which is the unique Hermitian connection
whose component∇0,1 corresponds to the Cauchy-Riemann operator ∂TX of the
holomorphic tangent bundle. For t = −1, one obtains the Bismut connection
[Bis89], which is the unique Hermitian connection with totally skew-symmetric
torsion. We also notice the following special cases. The connection for t = 0 is
the orthogonal projection of the Levi-Civita connection onto the affine space of
Hermitian connections; it is also known as the first canonical connection. The
connection for t = 1/2 is referred as conformal by Libermann. The connection for
t = 1/3 is characterized by having minimal torsion among Hermitian connections.
Note that, more generally, one can consider the family of metric connections∇ε,ρ
defined by

g(∇ε,ρV W,Z) = g(DVW,Z)− εdω(JV, JW, JZ) + ρdω(JV,W,Z),

for (ε, ρ) ∈ R2, as introduced by [OUV17]. Among these, when the metric is non-
Kähler, the only Hermitian connections lie on the line ε+ρ = 1/2, corresponding
to the Gauduchon connections, with the parameter relation t = 1− 4ε.
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3.2 Curvatures

Associated with any of these connections, there is a curvature operator

R ∈ Ω2(X,End(TX)), R(V,W ) := [∇V ,∇W ]−∇[V,W ],

(note the different notation used in the literature compared to the Rieman-
nian case,) which we can also be viewed as R ∈ Ω2(X) ⊗ Ω2(X) by setting
R(V,W,Z, Y ) := g(R(V,W )Z, Y ). In the Kähler case, all Gauduchon connec-
tions reduce to the Levi-Civita connection, which also coincides with the Chern
connection. As a consequence, the additional symmetries R ∈ S2Ω2(X) and
R ∈ Ω1,1(X,End(T 1,0X)) hold. The question of when these symmetries still
hold in the non-Kähler case was first studied by Gray [Gra76], and Yang and
Zheng [YZ18b], see also [AOUV22] for further details. The missing symmetries
give rise to several notions of Ricci curvature, arising from different traces:

Ric(1)(V,W ) = trR(V,W ) ∈ Ω2X,

Ric(2)(Z, Y ) = trgR( , , Z, Y ) ∈ End(TX),

both yielding the same scalar curvature

s := trgRic(1) = tr Ric(2) ∈ C∞(S,R).

There is also a third way to take a trace, but we have not found any clear
geometric motivation for it. Note that, for the Chern connection, the first Ricci
curvature is a closed real (1, 1)-form that represents the first Bott-Chern class
cBC1 (X) ∈ H1,1

BC(X,R), mapped to the usual Chern class of the anti-canonical
bundle K−1X .

3.3 Special metrics

Let us look at Dω, the covariant derivative of the (1, 1)-form ω with respect
to the Levi-Civita connection. It can be viewed as an element of Ω2(X,TX)
via g((Dω)(V,W ), Z) = (DV ω)(W,Z). See [Gau97, Proposition 1] for the de-
termination of each component in the complex bi-degree decomposition. With
respect to the irreducible representations of U(n), the tensor Dω decomposes
as the sum of four components, one of which vanishing in the integrable case.
The vanishing of some subsets of the set of four irreducible components led to
the celebrated Gray and Hervella classification [GH80] into 24 = 16 classes of
almost-Hermitian metrics. The Kähler case correspond to all the components
vanishing, while the general case corresponds to none of them vanishing. Other
special classes include: almost-Kähler metrics, namely almost-Hermitian met-
rics with dω = 0); balanced metrics [Mic82], namely Hermitian metrics satisfying
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dωn−1 = 0, which are particularly interesting as they are invariant under modifi-
cations [AB96]); locally conformally Kähler metrics, namely Hermitian metrics
such that dω = θ ∧ ω with dθ = 0, meaning they locally admit a conformal
change to a Kähler metric, see, for instance, the recent book [OV24].

It would be interesting to investigate whether special metrics exist on certain
classes of complex manifolds. For instance, on compact complex manifolds satis-
fying the ∂∂-lemma property, the existence of balanced metrics may follow from
solving Hessian equations of the type considered in [STW17] or [Pop15]. Note
that, when dealing with possibly non-Kähler metrics, deformations of ω of the
form ω+

√
−1∂∂u, where u is a smooth real function, do not generally preserve

the total volume: see [GL21, GL22, GL23, AGL23] for results and applications.

4 Analytic problems for the Chern connection

We are now ready to analyze the analogue of the ’constant curvature’ prob-
lems in the Hermitian setting. For simplicity, we will mainly focus on the Chern
connection, although other Hermitian connections are also worth considering.

4.1 Constant holomorphic sectional curvature

Let X be a holomorphic manifold endowed with a Hermitian metric g. Con-
sider its Chern connection ∇ (or any other Hermitian connection) and the asso-
ciated Riemann curvature tensor R. A natural object to study is the holomorphic
sectional curvature, defined as

K(V ) := K(V, JV ) =
g(R(V, JV )V, JV )

g(V, V )2
,

even though, in general, it no longer encodes the full curvature tensor.

A foundational result in this context is due to Kobayashi: if the holomorphic
sectional Chern-curvature K is everywhere negative and bounded away from
zero, then the manifold is hyperbolic in the sense of Kobayashi, see [Kob05].
This result generalizes the Schwarz-Ahlfors-Pick theorem from dimension 1 to
higher dimension. In particular, by the Brody theorem, if X is compact, every
holomorphic map C→ X must be constant.

Complete Kähler manifolds with constant holomorphic sectional curvature
are referred to as complex space forms. Analogously to the Riemannian case,
their universal covers are classified as follows: the complex projective space
CPn with the standard Fubini-Study metric, the complex Euclidean space Cn

with the flat metric, and the complex hyperbolic space CHn equipped with the
Bergman metric; see e.g. [KN69, IX.7].
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In the non-Kähler setting, the first attempt to study compact Hermitian
manifolds with constant holomorphic sectional Chern-curvature dates back to
[Bal85]. Examples include compact quotients of complex Lie groups, which are
precisely the compact Chern-flat manifolds thanks to [Boo58]. It is conjec-
tured that a compact Hermitian manifold with holomorphic sectional Chern-
curvature equal to c must be Kähler (hence a complex space form) when c 6= 0,
or Chern-flat when c = 0. This conjecture has been confirmed for compact
complex surfaces by [BG85] (in the case of constant non-positive holomorphic
sectional Chern-curvature) and [ADM96] (in the case of pointwise constant holo-
morphic sectional Chern-curvature); for twistor spaces by [DGM09]; for locally
conformally Kähler manifolds with non-positive constant holomorphic sectional
Chern-curvature by [CCN21]; for complex nilmanifolds with left-invariant Her-
mitian structures by [LZ22]; for non-balanced Bismut torsion parallel manifolds,
including Vaisman manifolds, by [CZ24]; and for Hermitian manifolds whose Bis-
mut connection obeys all the Kähler symmetries (so-called Bismut-Kähler-like)
by [RZ22]. Hermitian metrics with vanishing holomorphic Chern-curvature on
compact holomorphic manifolds are studied in [BT25].

The same questions can be posed for Hermitian metrics with constant holo-
morphic sectional curvature with respect to other connections. The case of the
Levi-Civita connection was considered in [SS90], with positive results for com-
pact complex surfaces [ADM96]. The case of the Bismut connection was studied
in [CZ22]. More generally, an extension to the 2-parameter family of canonical
metric connections, including the Gauduchon connections, was proposed and
studied by [CN22], with further developments by [CZ25]. Compact Hermitian
manifolds admitting a flat Gauduchon connection were investigated by [YZ18a]
and their classification was completed in [LS22]: they are either Kähler flat or
Chern-flat or Bismut-flat, and the same classification holds when the flatness
assumption is replaced by the so-called Kähler-like condition, confirming a con-
jecture by [AOUV22].

To conclude this section, we recall another intermediate notion of interest
in Kähler geometry. Given two complex planes π = span{V, JV } and π′ =
span{W,JW}, the holomorphic bisectional curvature [GK67] is defined as

H(V,W ) := g(R(V, JV )W,JW )/(g(V, V )g(W,W )− g(V,W )2).

Since H(X,X) = K(X), the holomorphic bisectional curvature contains more
information than the holomorphic sectional curvature. Moreover, since H(V,W )
= K(V,W )+K(V, JW ) by the Bianchi identity, it provides less information than
the (real) sectional curvature. The positivity of H is related to the Griffiths pos-
itivity [Gri69] of the holomorphic tangent bundle. In [SY80], Siu and Yau gave
an affirmative answer to the Frankel conjecture [Fra61], which states that ev-
ery compact Kähler manifold with positive holomorphic bisectional curvature
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is biholomorphic to the projective space, serving as an analogue of the sphere
theorem in Riemannian geometry. (Using algebraic techniques, Mori [Mor79]
proved the stronger result of the Hartshorne conjecture [Har70]. For the case
of non-negative holomorphic bisectional curvature, see also [Mok88].) An alter-
native proof, utilizing the Kähler-Ricci flow, was provided by [CST09] (see also
[Che07]). In the non-Kähler setting, Ustinovskiy [Ust19, Ust20] proved that,
among the Hermitian curvature flow proposed by [ST11], there exists one that
preserves Griffiths-non-negativity of the Chern curvature. Combined with the
results of [SY80, Mor79], this extends the Frankel conjecture to the Hermi-
tian context: a compact Hermitian manifold with Griffiths-non-negative Chern
curvature, strictly positive at some point, is biholomorphic to the projective
space. A similar study for the Griffiths-positivity of the Bismut curvature was
undertaken in [Bar21].

4.2 Constant Chern scalar curvature

Let X be a compact holomorphic manifold of complex dimension n. Once
fixed a Hermitian metric ω, its conformal class {ω} := {exp(f)ω : f ∈ C∞(X,R)}
consists entirely of Hermitian metrics. Motivated by the Yamabe problem in Rie-
mannian geometry, we ask whether the conformal class {ω} contains at least
one Hermitian metric with constant scalar curvature with respect to the Chern
connection. More precisely, let us study the moduli space

ChYa(X, {ω}) :=
{
ω′ ∈ {ω} : sCh(ω′) constant

}
/HConf(X, {ω})× R>0

of constant Chern scalar curvature metrics, where HConf(X, {ω}) denotes the
group of biholomorphisms preserving the conformal class {ω}, and R>0 acts by
homotheties.

Note that this problem is essentially different from the classical Yamabe
problem. In fact, as shown in [LY17, Corollary 4.5], on a compact holomorphic
manifold, if the (average of the) Chern scalar curvature of a Hermitian metric
equals the (average of the) scalar curvature of the corresponding Riemannian
metric, then the metric must be Kähler. For the same reason, the Chern-Yamabe
problem also differs from the Yamabe problem for almost Hermitian manifolds
studied by del Rio and Simanca in [dRS03].

Under conformal changes, the Chern scalar curvature transforms according
to the formula:

sCh(exp(2f/n)ω) = exp(−2f/n) · (sCh(ω) + ∆Ch
ω f),

where ∆Ch
ω denotes the Chern Laplacian with respect to ω. It is given by ∆Ch

ω f =
−2
√
−1trω∂∂f = ∆d,ωf + g(df, θ), where θ is defined by the condition dωn−1 =
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θ ∧ ωn−1 and is called Lee form or torsion 1-form. Two special cases are of
particular interest. When ω is balanced (i.e., dωn−1 = 0, equivalent to θ = 0),
the operator ∆Ch

ω coincides with the usual Hodge-de Rham Laplacian ∆d,ω.
When ω is Gauduchon (i.e., ∂∂ωn−1 = 0, equivalent to d∗ωθ = 0), then the
Green identity

∫
X ∆Ch

ω fωn = 0 holds.
We recall the following foundational theorem by Gauduchon.

Theorem 1 ([Gau77b]). On a compact holomorphic manifold, any confor-
mal class of Hermitian metrics contains a unique Gauduchon representative of
volume 1.

Thanks to this result, we will fix η as the Gauduchon representative of
volume 1 in {ω}.

The equation sCh(exp(2f/n)ω) = λ, with λ ∈ R, translates into the Liouville-
type equation

∆d,ηf + η(df, θ) + sCh(η) = λ · exp(2f/n).

Up to homotheties, we choose the normalization 1/n!
∫
X exp(2f/n)ηn = 1 for the

solution. The choices for reference and normalization above make the expected
constant Chern scalar curvature λ completely determined by X and the confor-
mal class {ω}:

λ =

∫
X
sCh(η)ηn =

1

(n− 1)!

∫
X
cBC1 (K−1X ) ∧ [ηn−1],

where cBC1 (K−1X ) ∈ H1,1
BC(X,R) maps to the first Chern class of X in H2(X,R),

and [ηn−1] ∈ Hn−1,n−1
A (X,R) is well-defined thanks to η being Gauduchon.

We will denote this quantity as the Gauduchon degree ΓX({ω}). It is equal to
the volume of the divisor associated with any meromorphic section of the anti-
canonical line bundle K−1X , measured with respect to the Gauduchon metric η,
see [Gau81a, Gau84]. Recall that the Kodaira dimension is a fundamental holo-
morphic invariant that measures the growth of the sections of the pluricanonical
bundles:

Kod(X) = lim sup
m→+∞

log dimH0(X,K⊗mX )

logm
∈ {−∞, 0, 1, . . . , n}.

In particular, when Kod(X) ≥ 0, the Gauduchon degree satisfies ΓX({ω}) ≤ 0
for any conformal class {ω}. More precisely, we have ΓX({ω}) < 0 for any con-
formal class, unless KX is holomorphically torsion, i.e., there exists an integer
` such that K⊗`X = OX , in which case ΓX({ω}) = 0 for any conformal class.

When ΓX({ω}) = 0, meaning the expected Chern scalar curvature is identi-
cally zero, the Chern-Yamabe equation reduces to a linear pde. The Gauduchon
condition on η guarantees that the kernel of (∆Ch

η )∗ consists only of constants,
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and the condition ΓX({ω}) = 0 assures that −sCh lies in the orthogonal comple-
ment of ker((∆Ch

η )∗)⊥, thus making the linear pde solvable. When ΓX({ω}) < 0,
meaning the expected constant Chern scalar curvature is negative, we can apply
conformal techniques and standard elliptic theory, using the continuity method,
to prove the existence of a unique solution. Summarizing, we have the following
result, which in particular applies to any conformal class when Kod(X) ≥ 0:

Theorem 2 ([ACS17]). Let X be a compact holomorphic manifol endowed
with a conformal class {ω} of Hermitian metrics. If the Gauduchon degree sat-
isfies ΓX({ω}) ≤ 0, then the Chern-Yamabe moduli space consists of a single
point.

When ΓX({ω}) > 0, the arguments relying on the maximum principle fail,
and whether the moduli space ChYa(X, {ω}) is non-empty remains an open
question. An important example of this kind is the Hopf surface, which admits
a Hermitian metric with positive constant Chern-scalar curvature, see [GI97].
Further examples can be constructed using an implicit function theorem argu-
ment, starting from a metric whose Chern-scalar curvature is sufficiently small in
C0,α-norm. We should note that the Chern-Yamabe problem is not variational in
general: the Chern-Yamabe equation can be interpreted as the Euler-Lagrange
equation of an associated functional if and only if the conformal class contains a
balanced representative. However, it remains unclear whether this functional is
bounded from below. In the positive case, uniqueness of constant Chern-scalar
curvature metrics in a fixed conformal class generally fails. This can be shown
by adapting the argument in [dLPZ12] and employing a version of the Kras-
nosel’skii Bifurcation Theorem. We still expect compactness of ChYa(X, {ω}),
provided the volumes are bounded. As an additional strategy to attack the ex-
istence problem, we introduced the Chern-Yamabe flow. Further attempts and
advancements in this direction have been made in [LM18, CZ20, Yu25].

Other related problems include the following. Lejmi and Upmeier [LU20]
studied the problem in the (non-integrable) almost-complex setting. Barbaro
[Bar23b] addressed the analogous problem for the Bismut connection, and more
generally, for connections in the Gauduchon family. Fusi [Fus22] examined the
prescribed Chern-scalar curvature problem, analogous to the work of Kazdan
and Warner [KW75] in the Riemannian setting. In [ACPS22], we extended the
classical Donaldson-Fujiki interpretation of the scalar curvature as moment map
in Kähler Geometry to the wider framework of locally conformally Kähler Ge-
ometry.
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4.3 Chern-Einstein problems

Regarding the Einstein problem with respect to the Chern connection, two
differences immediately appear with the Riemannian case. First, the lack of
symmetries in the Chern-Riemann curvature tensor leads to different ways of
tracing out the Ricci curvature, resulting in various Chern-Einstein problems.
Second, the failure of the first Bianchi identity results in the Einstein factor
possibly being non-constant. We then have three distinct Chern-Einstein prob-
lems, each in a weak (when λ is a function) or strong (when λ is a constant)
version:

Ric(i)(g) = λ(x) · g,
for i ∈ {1, 2, 3}. Since the third Chern-Ricci curvature lacks a clear geometric
interpretation, we focus our attention on the first and second Chern-Einstein
problems.

Let us begin with the first Chern-Einstein problem. The case λ = 0 is well
understood and corresponds to the so-called non-Kähler Calabi-Yau manifolds
[Tos15], characterized by cBC1 (X) = 0.

Theorem 3 ([Tos15, TW10]). Let X be a compact holomorphic manifold
endowed with a Hermitian metric ω. If c1(X) = 0, then there exists a first-
Chern-Ricci flat metric. This solution can be expressed either as a conformal
transformation of ω, or as a deformation of the form ω +

√
−1∂∂ϕ.

In [STW17], the authors prove the Gauduchon’s generalization of the Cal-
abi’s conjecture for compact holomorphic manifolds X with cBC1 (X) = 0. It
follows that that one can always find Gauduchon first-Chern-Ricci flat metrics,
thereby establishing the existence of non-Kähler special metrics satisfying both
curvature and cohomological conditions.

When the manifold is non-Kähler, meaning that it does not admit any Kähler
metric, no other interesting cases arise. This is evident for the strong problem,
as Ric(1)(ω) is a closed form. For the weak problem, conformal arguments yield
the following result:

Theorem 4 ([ACS20]). Let X be a compact holomorphic manifold endowed
with a Hermitian metric ω satisfying the first-Chern-Einstein problem with non-
identically-zero Einstein factor. Then ω is conformal to a Kähler metric in the
class ±c1(X).

For this reason, the second Chern-Einstein problem seems more promising to
understand the geometry of non-Kähler manifolds. We observe that, under con-
formal changes, the second-Chern-Ricci curvature transforms as Ric(2)(exp(f)ω) =
Ric(2)(ω)−(∆Ch

ω f)ω, in contrast to the first-Chern-Ricci curvature, which trans-
forms as Ric(1)(exp(f)ω) = Ric(1)(ω)−n

√
−1∂∂f . In particular, this makes the

second-Chern-Einstein problem depends only on the conformal class [Gau80].
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As a consequence, conformal methods allow us to assume that the Einstein
factor has a definite sign [Gau81b], equal to the sign of the Gauduchon degre
and determined according to KX and K−1X being pseudo-effective or unitary
flat [Tel06, Yan19]. Furthermore, if the Chern-Yamabe problem can be solved
affirmatively, then it would even be possible to make the Einstein factor con-
stant. Obstructions à la Bochner arise from [Gau77a, LY12]: compact manifolds
admitting a positive second-Chern-Einstein metric do not have non-trivial holo-
morphic p-forms, while those admitting negative second-Chern-Einstein mani-
folds do not have non-trivial holomorphic p-vector-fields, for p ≥ 1. Moreover,
second-Chern-Ricci metrics g are weakly-g-Hermite-Einstein, see e.g. [LT06].
This provides additional obstructions: the Bogomolov-Lübke inequality holds
[Bog80, Lue82], and the Kobayashi-Hitchin correspondence assures that the
holomorphic tangent bundle is g-semi-stable [Kob82, Lüb83]. The fundamen-
tal example in this context is provided by Hopf surfaces, which admit second-
Chern-Einstein metrics with positive scalar curvature. Indeed, they are the only
non-Kähler compact complex surface that admit second-Chern-Einstein metrics
[GI97]. Other compact examples include holomorphically-parallelizable mani-
folds [Boo58] and the homogeneous non-Kähler C-spaces studied by Podestà
[Pod18]. See also [AP23] for some non-compact simply-connected examples
of cohomogeneity-one. Currently, no compact non-Kähler examples admitting
second-Chern-Einstein metric with negative scalar curvature are known [ACS20,
Remark 1].

For the analogous problem in the context of almost-Kähler structures within
the non-integrable setting, we refer to e.g. [AD03, DV19, BL23a]. For the corre-
sponding problem involving the Bismut connection, we refer to [Bar23b, Bar23a],
which focus on Calabi-Yau with torsion metrics, meaning Bismut-Ricci-flat met-
rics. This condition is of particular interest because coupling (RicB(ω))1,1 = λω,
where λ is a real function, with the pluriclosed condition ∂∂ω = 0 leads to ei-
ther Kähler-Einstein metrics (when λ 6= 0) or to the so-called Bismut Hermitian
Einstein metrics [GFS21] (meaning pluriclosed and Calabi-Yau with torsion),
which are stationary points of the pluriclosed flow [ST10]. We point out that the
pluriclosed flow is motivated by, and conjecturally related to, the geometriza-
tion of compact complex surfaces [Str20]. Moreover, Bismut Hermitian-Einstein
metrics are closely connected to generalized geometry, see [GFS21]. In particu-
lar, the pluriclosed flow preserves generalized Kähler geometry in the sense of
Hitchin and Gualtieri [ST12], and there are interesting results concerning its
global existence and convergence on compact Bismut-flat manifolds [GFJS23].
Recently, the authors of [ABLS24] proved that, under further topological hy-
pothesis, a compact Hermitian threefold endowed with a pluriclosed metric with
vanishing Bismut-Ricci form is either Kähler Calabi-Yau or Bismut-flat.
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Another interesting generalization in the non-Kähler setting is provided by
the Hull-Strominger system [Str86, Hul86], see also the recent survey [GF16].
Let X be a complex manifold of complex dimension n = 3, endowed with a never
vanishing holomorphic global section Ω trivializing the canonical bundle KX .
Denote by M the underlying 6-dimensional smooth manifold endowed with the
(integrable) almost-complex structure J and consider the smooth complex vec-
tor bundle (TM, J). Let E be a holomorphic bundle on X. The Hull-Strominger
system, with the heterotic equation of motion [Iva10], aims at finding a Hermi-
tian metric g on X, a Hermitian metric h on the bundle E , and an integrable
Dolbeault operator ∂TM on (TM, J) satisfying the Hermite-Einstein equations

ΛωFh = 0, ΛωR = 0,

where Fh denotes the curvature of (E , h), respectively R the curvature of the
Chern connection on (TM, J, ∂TM ), and the dilatino equation d∗ω−dc log ‖Ω‖ω =
0, which is equivalent to the conformally balanced equation [GMW04, LY05]

d(‖Ω‖ωωn−1) = 0,

and the Green-Schwarz anomaly cancellation condition, also known as Bianchi
identity,

ddcω − α(trR ∧R− trFh ∧ Fh) = 0,

for some parameter α ∈ R, which is usually taken positive for physical reasons,
where the first term denotes the differential of the torsion −dcω of the Bismut
connection of (M,J, g). Alternatively, one can fix a Hermitian metric h on E and
rephrase the Hull-Strominger system as coupling a pair of Hermite-Yang-Mills
connections, A on (E, h) and ∇ on (TM, J, ω), meaning

ΛωFA = 0, F 0,2
A = 0, ΛωR∇ = 0, R0,2

∇ = 0,

with a conformally balanced metric ω by means of the Bianchi identity. Explicit
invariant solutions to the Strominger system (with the heterotic equations of
motion) are found in [FIUV14, OUV17] on compact non-Kähler homogeneous
spaces, obtained as the quotient by a lattice of maximal rank of a nilpotent Lie
group, the semisimple group SL(2,C) and a solvable Lie group.

We conclude this section by emphasizing the role of Hopf manifolds in non-
Kähler geometry, serving as a natural counterpart to projective space in the
realm of Kähler geometry. In [AMP24], we investigated the problem of ap-
proximating compact regular (respectively, quasi-regular) Vaisman metrics by
metrics induced by immersions (respectively, embeddings) into Hopf manifolds.
This provides a non-Kähler analogue of the Tian approximation theorem for
projective manifolds [Tia90, Rua98, Zel98] in a specific non-Kähler context.
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4.4 Hermitian flows

As already remarked, the Ricci flow proved to be a very powerful tool in
differential geometry. When the starting metric is Kähler, the evolving metrics
remain Kähler: in this case, the flow is called the Kähler-Ricci flow. On the
other hand, if the starting metric is just Hermitian, the flow does not, in general,
preserve Hermitianity, unless the curvature of the Levi-Civita connection of the
initial metric satisfies all the Kähler symmetries [AOUV22]. For this reason,
several geometric flows have been proposed for holomorphic manifolds to assure
that Hermitianity is preserved. Among these are the Chern-Ricci flow [Gil11,
TW15], the Hermitian curvature flows [ST11] including the pluriclosed flow and
the flow by Ustinovskiy [Ust19], the anomaly flows [PPZ18b, PPZ18a, Pic19].

Let us focus on the Chern-Ricci flow, originally introduced by Gill [Gil11] to
study compact non-Kähler Calabi-Yau manifolds and subsequently investigated
in depth by Tosatti and Weinkove [TW15, TW13, TW22]. This flow evolves a
Hermitian metric ω0 on a (compact) holomorphic manifold X according to the
equation

∂ω(t)

∂t
= −RicCh(ω(t)), with ω(0) = ω0,

where RicCh
loc
= −
√
−1∂∂ log detω denotes the first Ricci curvature with respect

to the Chern connection. One might expect the behaviour of the Chern-Ricci
flow to reflect the underlying holomorphic geometry of X, making it particularly
useful in completing the classification of compact non-Kähler complex surfaces.

We recall that the Enriques-Kodaira-Siu classification (see, for instance, the
comprehensive book [BHPVdV04]) classifies compact complex surfaces accord-
ing to their Kodaira dimension, which can take the values −∞, 0, 1, or 2.
By the Castelnuovo contraction theorem, we can always contract the rational
curves of self-intersection −1. Therefore, in the following, we will assume the
surface to be minimal. Surfaces S of general type, that is, those with KodS = 2,
are always algebraic. Focusing on non-Kähler surfaces, which are topologically
characterized by the first Betti-number being odd [Lam99, Buc99], only the
following cases remain. For KodS = 1, we have minimal non-Kähler properly
elliptic surfaces, which are described, up to finite covers, as elliptic bundles,
see e.g. [Br̂ı94, Br̂ı96]. For KodS = 0, we have Kodaira surfaces, which have
cBC1 (S) = 0, meaning they are non-Kähler Calabi-Yau. Lastly, the so-called
class VII consists of compact complex surfaces that have KodS = −∞ and
b1(S) = 1. Surfaces S in class VII with b2(S) = 0 are either Hopf surfaces or
Inoue-Bombieri surfaces [Ino74, Bom73], as proven in [Bog80, LYZ90, Tel94].
The first examples of surfaces S in class VII with b2(S) > 0 were constructed
in [Ino75, Ino77] and later generalized by Kato [Kat77], through an iterative
process of blowing up the standard ball in C2 followed by holomorphic surgery.
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These surfaces are characterized by the existence of a global spherical shell,
meaning an open subset U ⊂ S biholomorphic to a neighbourhood of S3 in C2

such that S \U is connected. Moreover, they are degenerations of blown-up pri-
mary Hopf surfaces [Nak84], and always admit singular holomorphic foliations
[DO99]. Every Kato surface S has exactly b2(S) rational curves, and conversely,
every minimal compact complex surface in class VII with exactly b2(S) > 0
rational curves is a Kato surface [DOT03]. It is expected that no other surfaces
exist in class VII beyond these, a conjecture known as the Global Spherical
Shell conjecture. The “optimistic conjecture” in [FTWZ16, Section 4.6] aims at
recovering a global spherical shell from the limiting behavior of the Chern-Ricci
flow.

For non-Kähler properly elliptic surfaces, the Chern-Ricci flow starting at
any Gauduchon metric exists for all non-negative time and exhibits the follow-
ing collapsing behaviour: the normalized metrics ω(t)/t converge in the sense of
Gromov-Hausdorff to to a Riemann surface endowed with the distance function
induced by an orbifold Kähler-Einstein metric, see [TWY15]. When KodS = 0,
the behaviour of the Chern-Ricci flow has been studied by Gill [Gil11]. It was
shown that the Chern-Ricci flow exists for all time and converges to a Chern-
Ricci flat metric. For classical Hopf surfaces C2 \ 0/Z, where Z is generated by
λ · id with λ ∈ C and 0 < |λ| < 1, the solution starting from the standard
metric can be explicitly written [TW13]. The flow collapses in finite time and
smoothly converges to a non-negative (1, 1)-form, whose kernel defines a smooth
distribution, with iterated brackets generating the tangent space of the Sasaki
S3. In this sense, the limiting behaviour of the Chern-Ricci flow clearly de-
tects both the differential and holomorphic geometries of the Hopf surface. See
also [Edw21] for further results on the Chern-Ricci flow for Hopf surfaces, sup-
porting the conjecture that the Gromov-Hausdorff limit is isometric to a round
S1. The Chern-Ricci flow on Inoue-Bombieri surfaces is well understood after
[TW13, Lau09, LV15, FTWZ16, AT23].

We briefly recall the results on the convergence of the normalized Chern-
Ricci flow ∂/∂tω(t) = −RicCh(ω(t)) − ω(t) starting from a Gauduchon metric
ω(0) = ω0 on an Inoue-Bombieri surface S. First, recall that Inoue-Bombieri
surfaces are classified into three types: SM , S+ and S−, each depending on some
parameters. Inoue-Bombieri surfaces in class SM have a differentiable torus-
bundle structure over S1 and a holomorphic parabolic foliation induced by a
non-negative (1, 1)-form α ∈ −cBC1 (S), whose leaves are dense in the fibres of
the torus-bundle. They also admit a Hermitian metric, known as the Tricerri
metric [Tri82], which is flat along the leaves of the foliation and lifts to a Kähler
metric on the universal covering C×H. In [TW13], the explicit solution starting
from the Tricerri metric ωT is computed and analyzed. It is shown that the
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flow uniformly converges to α as t→ +∞, and the corresponding metric spaces
converge in Gromov-Hausdorff to S1. This result is extended when starting
from any locally homogeneous metric [Lau15, LV15], and, more generally, from
a metric of type ωSFL +

√
−1∂∂u with ωSFL strongly flat along the leaves

[FTWZ16]. The latter condition means that ωSFL restricted to any leaf L ' C
of the foliation is a Kähler flat metric and moreover p∗ωSFL = c ·

√
−1dz ∧ dz̄,

with c = c(Imw) smooth, where p : C × H → S is the universal covering and
(z, w) ∈ C×H are coordinates, with Imw > 0. This is equivalent to the function
u solving the degenerate elliptic equation

√
−1∂∂u ∧ α

ω2
T

= −ω ∧ α
ω2
T

+

∫
S ω ∧ α∫
S ω

2
T

,

which involves the leafwise Laplacian ∆D =
√
−1∂∂ ∧ α/ω2

T . Finally, in [AT23],
we proved that any Gauduchon metric admits a

√
−1∂∂-deformation that is

strongly flat along the leaves. This is achieved by solving the equation ∆Du = g
on S. Exploiting Fourier expansion along the torus fibres (along with the irra-
tionality arising from the parameters in the construction of the surface), we ob-
tain a distributional solution. The Liouville theorem on rational approximation
of irrational algebraic numbers assures that this solution is smooth on each torus.
By continuous dependence and uniqueness, we get that the solution is smooth on
the torus bundle and then descends to S. The same argument applies to surfaces
of type S+, which also have a bundle structure with fibres given by quotients of
the three-dimensional Heisenberg group and a holomorphic foliation with leaves
isomorphic to C \ {0}, whose leaves are dense in the fibres. In this case, we use
partial Fourier expansion on nilmanifolds, a technique that has proven useful in
many other contexts, see e.g. [AT75, DS84, Ric82, HZ22a, HZ22b, RS22], and
which beautifully connects complex geometry, pdes, and number theory. Finally,
surfaces of type S− admit an unramified double cover of type S+. Therefore
we have the following. (For further results on when the convergence is indeed
smooth, see [AT23, Theorem 1.3].)

Theorem 5 ([FTWZ16, AT23]). Let S be an Inoue-Bombieri surface en-
dowed with a Gauduchon metric ω. The solution ω(t) of the normalized Chern-
Ricci flow starting at ω exists for all time and uniformly converges to a multiple
of the degenerate metric α. Moreover, the corresponding metric spaces converge
to S1 with the round metric in Gromov-Hausdorff sense.
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Élie Cartan, Univ. Nancy I, 6:1–60, 1983.

[Bes08] Arthur L. Besse. Einstein manifolds. Class. Math. Berlin: Springer, reprint of
the 1987 edition edition, 2008.

[BG85] Andrew Balas and Paul Gauduchon. Any Hermitian metric of constant non-
positive (Hermitian) holomorphic sectional curvature on a compact complex
surface is Kähler. Math. Z., 190:39–43, 1985.

[BHPVdV04] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven.
Compact complex surfaces, volume 4 of Ergeb. Math. Grenzgeb., 3. Folge. Berlin:
Springer, 2nd enlarged ed. edition, 2004.



36 D. Angella

[Bis89] Jean-Michel Bismut. A local index theorem for non-Kähler manifolds. Math.
Ann., 284(4):681–699, 1989.

[BL23a] Giuseppe Barbaro and Mehdi Lejmi. Second Chern-Einstein metrics on four-
dimensional almost-Hermitian manifolds. Complex Manifolds, 10:24, 2023.
Id/No 20220150.
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(EMS), 2017.

[Ham82] Richard S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differ.
Geom., 17:255–306, 1982.

[Har70] Robin Hartshorne. Ample subvarieties of algebraic varieties. Notes written in
collaboration with C. Musili, volume 156 of Lect. Notes Math. Springer, Cham,
1970.

[He21] Yang-Hui He. The Calabi-Yau landscape. From geometry, to physics, to machine
learning, volume 2293 of Lect. Notes Math. Cham: Springer, 2021.

[HSG23] Edward Hirst and Tancredi Schettini Gherardini. Calabi-Yau Four/Five/Six-
folds as pnw Hypersurfaces: Machine Learning, Approximation, and Generation.
Preprint, arXiv:2311.17146 [hep-th] (2023), 2023.
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[Szé14] Gábor Székelyhidi. An introduction to extremal Kähler metrics, volume 152
of Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS),
2014.

[Tel94] Andrei-Dumitru Teleman. Projectively flat surfaces and Bogomolov’s theorem
on class V II0 surfaces. Int. J. Math., 5(2):253–264, 1994.

[Tel06] Andrei Teleman. The pseudo-effective cone of a non-Kählerian surface and
applications. Math. Ann., 335(4):965–989, 2006.

[Tia90] Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. J.
Differ. Geom., 32(1):99–130, 1990.

[Tia15] Gang Tian. K-stability and Kähler-Einstein metrics. Commun. Pure Appl.
Math., 68(7):1085–1156, 2015.

[Tos15] Valentino Tosatti. Non-Kähler Calabi-Yau manifolds. In Analysis, complex
geometry, and mathematical physics: in honor of Duong H. Phong. Proceedings
of the conference, Columbia University, New York, NY, USA, May 7–11, 2013,
pages 261–277. Providence, RI: American Mathematical Society (AMS), 2015.

[Tri82] Franco Tricerri. Some examples of locally conformal Kähler manifolds. Rend.
Semin. Mat., Torino, 40(1):81–92, 1982.

[Tru68] N. S. Trudinger. Remarks concerning the conformal deformation of Riemannian
structures on compact manifolds. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat.,
III. Ser., 22:265–274, 1968.

[TW10] Valentino Tosatti and Ben Weinkove. The complex Monge-Ampère equation on
compact Hermitian manifolds. J. Am. Math. Soc., 23(4):1187–1195, 2010.

[TW13] Valentino Tosatti and Ben Weinkove. The Chern-Ricci flow on complex surfaces.
Compos. Math., 149(12):2101–2138, 2013.

[TW15] Valentino Tosatti and Ben Weinkove. On the evolution of a Hermitian metric
by its Chern-Ricci form. J. Differ. Geom., 99(1):125–163, 2015.

[TW22] Valentino Tosatti and Ben Weinkove. The Chern-Ricci flow. Atti Accad. Naz.
Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 33(1):73–107,
2022.

[TWY15] Valentino Tosatti, Ben Weinkove, and Xiaokui Yang. Collapsing of the Chern-
Ricci flow on elliptic surfaces. Math. Ann., 362(3-4):1223–1271, 2015.

[Ust19] Yury Ustinovskiy. The Hermitian curvature flow on manifolds with non-negative
Griffiths curvature. Am. J. Math., 141(6):1751–1775, 2019.

[Ust20] Yury Ustinovskiy. On the structure of Hermitian manifolds with semipositive
Griffiths curvature. Trans. Am. Math. Soc., 373(8):5333–5350, 2020.



44 D. Angella

[Wan99] McKenzie Y. Wang. Einstein metrics from symmetry and bundle constructions.
In Surveys in differential geometry. Vol. VI: Essays on Einstein manifolds. Lec-
tures on geometry and topology, sponsored by Lehigh University’s Journal of Dif-
ferential Geometry, pages 287–325. Cambridge, MA: International Press, 1999.

[Wan12] McKenzie Y.-K. Wang. Einstein metrics from symmetry and bundle construc-
tions: A sequel. In Differential geometry: Under the influence of S.-S. Chern,
pages 253–309. Somerville, MA: International Press; Beijing: Higher Education
Press, 2012.
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