

On some Lusternick–Schnirelmann type invariants

A. Acharqy

Sidi Mohamed Ben Abdellah University, Department of Mathematics, Fès, Morocco
abdelouhid.acharqy@usmba.ac.ma

Y. Rami

Moulay Ismail University, Department of Mathematics, Meknès, Morocco
y.rami@umi.ac.ma

Received: January 22, 2025; accepted: May 7, 2025.

Abstract. In this paper, we show that the invariant $R_0(X)$, introduced in [15], coincides with $cat_0(X)$ for any rationally elliptic space X . Additionally, we define, for any space X over an arbitrary field \mathbb{K} , an *Ext-version* homotopy invariant $L_{\mathbb{K}}(X)$ of the Ginsburg invariant $l_{\mathbb{K}}(X)$. Then, we establish the equality between $L_0(X) := L_{\mathbb{Q}}(X)$ and $l_0(X)$ in the case where X is rationally elliptic.

Keywords: LS-category, Toomer and Ginsburg invariants, Milnor-Moore and Eilenberg-Moore spectral sequences.

MSC 2020 classification: Primary 55P62; Secondary 55M30, 57T35

Introduction

In [16], the author introduced, for any topological space X , what is subsequently called the *Toomer invariant* $e_{\mathbb{K}}(X)$, over a given field \mathbb{K} . This invariant is defined as the least integer p for which the term $E_{\infty}^{p,q}$ in the Milnor-Moore spectral sequence:

$$Ext_{H_*(\Omega X; \mathbb{K})}^{p,q}(\mathbb{K}, \mathbb{K}) \Longrightarrow H^{p+q}(X; \mathbb{K}) \quad (1)$$

is non-zero. The author then showed that $e_{\mathbb{K}}(X)$ provides a lower bound for the *Lusternik–Schnirelmann category* (LS category for short), denoted $cat(X)$ [11] and defined as the smallest number (plus one, for normalization) of open sets that are contractile in X and form a cover of X . That is,

$$e_{\mathbb{K}}(X) \leq cat(X)$$

for any field \mathbb{K} . The study of this invariant has led to interesting results in practice. Among these, we cite Y. Félix and S. Halperin's analogous inequality $e_0(X) \leq cat_0(X)$ [3, Theorem 4.7], where $e_0(X) := e(X_0)$ and $cat_0(X) :=$

$cat(X_0)$, with X_0 being the rationalization space of X . Several specialists in rational homotopy theory worked then hard to specify the largest class of spaces for which these two invariants are equal. Referring to [8], we know that this class includes all Poincaré duality spaces over \mathbb{Q} (see §2). In particular, it includes all rationally elliptic spaces, which are characterized by their rational cohomology $H^*(X, \mathbb{Q})$ and rational homotopy $\pi_*(X) \otimes \mathbb{Q}$, both of which are finite-dimensional. These results are achieved using Sullivan's approach to rational homotopy theory, which associates to every simply connected space X (having the homotopy type of a finite-type CW-complex) a unique (up to isomorphism) *minimal Sullivan algebra* $(\Lambda V, d)$. This algebra satisfies $H^*(X, \mathbb{Q}) \cong H(\Lambda V, d)$ and $V \cong \text{Hom}_{\mathbb{Z}}(\pi_*(X), \mathbb{Q})$. Here, $(\Lambda V, d)$ is a commutative differential graded algebra (cdga for short) with specific properties (see §2).

In what follows, unless otherwise stated, X will denote a simply connected finite-type CW-complex, and $(\Lambda V, d)$ will denote its minimal Sullivan model (or simply its "minimal model").

Referring to [3] (see also [8]), $cat_0(X) = cat(\Lambda V, d)$ where the later is defined as the least integer m such that the projection:

$$p : (\Lambda V, d) \rightarrow \left(\frac{\Lambda V}{\Lambda^{\geq m+1} V}, \bar{d} \right)$$

has a retraction as a morphism of cdga's, while $e_0(X) := e(\Lambda V, d)$ is the least integer m such that p is injective in cohomology. An equivalent definition of $e(\Lambda V, d)$ is given using the isomorphism, established in [3], between (1) and the so-called *Ext-Milnor-Moore* spectral sequence [8, Proposition 9.1] (see §2):

$$E_2^{p,q} = H^{p,q}(\Lambda V, d_2) \Rightarrow H^{p+q}(\Lambda V, d). \quad (2)$$

as follows:

$$e(\Lambda V, d) = \sup \{p \mid \text{such that } E_\infty^{p,q} \neq 0\}. \quad (3)$$

Here, $E_\infty^{p,q}$ is the infy term of (2).

Next, consider the (rational) *Ext-Eilenberg-Moore spectral sequence* introduced in [13] (see §2) :

$$\text{Ext}_{(\Lambda V, d_2)}^{p,q}(\mathbb{Q}, (\Lambda V, d_2)) \Longrightarrow \text{Ext}_{(\Lambda V, d)}^{p+q}(\mathbb{Q}, (\Lambda V, d)). \quad (4)$$

In [15], the second author introduced the invariant $R(\Lambda V, d)$ defined similarly to $e(\Lambda V, d)$, as follows:

$$R(\Lambda V, d) = \sup \{p \mid \text{such that } E_\infty^{p,q} \neq 0\}, \quad (5)$$

where $E_\infty^{p,q}$ stands here for the infy term of (4). He then constructed an isomorphism between the spectral sequence (4) and the *topological Eilenberg-Moore*

spectral sequence [15, Theorem 1.2]:

$$Ext_{H_*(\Omega X; \mathbb{Q})}^{p,q}(\mathbb{Q}, H_*(\Omega X; \mathbb{Q})) \Longrightarrow Ext_{C_*(\Omega X, \mathbb{Q})}^{p+q}(\mathbb{Q}, C_*(\Omega X, \mathbb{Q})) \quad (6)$$

by which he introduced a new (topological) homotopy invariant:

$$R_0(X) := R(\Lambda V, d).$$

The first main result of this paper extends (in the rational case) the result of [15, Theorem 1.1] as follows :

Theorem 1. *Let X be a rationally elliptic space. Then :*

$$R_0(X) = e_0(X) = cat_0(X).$$

Our second result is related to rational Ginsburg's lower bound invariant $l_0(X)$ of $cat_0(X)$ [9]. This invariant is defined as the greatest integer $t \geq 2$ such that the differential δ_t of the $t - th$ page $(E_t^{*,*}, \delta_t)$ of (1) is non-zero. In other words, $l_0(X) = t$ if and only if $E_\infty^{*,*} = E_{t+1}^{*,*}$. Clearly, one may similarly define $l(\Lambda V, d)$ in terms of (2) and immediately conclude, thanks to the isomorphism between (1) and (2) [3, Proposition 9.1], that $l_0(X) = l(\Lambda V, d)$.

Likewise to $R_0(X)$ and $R(\Lambda V, d)$, we introduce, in this paper, the *Ext-Ginsburg invariant* $L_0(X)$ (resp. $L(\Lambda V, d)$) as the greatest integer $t \geq 2$ such that the differential δ_t in the $t - th$ term, $(E_t^{*,*}, \delta_t)$ of (6) (resp. d_t in the $t - th$ term $(E_t^{*,*}, d_t)$ of (4)) is non-zero. Again, by the isomorphism between (6) and (4) [15, Theorem 1.2], we have $L_0(X) = L(\Lambda V, d)$

As a second result, we prove the following

Theorem 2. *Let X be a rationally elliptic space. Then, $L_0(X) = l_0(X)$.*

1 Preliminaries

In this section, unless otherwise stated, our ground field \mathbb{K} is of characteristic zero. The main references are [8] and [6].

1.1 Sullivan model

Let $V = \bigoplus_{i=0}^{+\infty} V^i$ be a graded \mathbb{K} -vector space, TV the graded tensor algebra on V , and $\Lambda V = TV/I$ the free commutative graded algebra, where I is the graded ideal generated by homogeneous elements of the form $v \otimes w - (-1)^{|v||w|} w \otimes v$ for $v, w \in V$. Here and henceforth, $|v|$ denotes the degree of v .

A *Sullivan algebra* is a free commutative differential graded algebra of the form $(\Lambda V, d)$, with V has a well-ordered basis $\{v_\alpha\}$ such that $dv_\alpha \in \Lambda V_{<\alpha}$, with

$V_{<\alpha}$ being the subspace of V generated by $\{v_\beta, \alpha < \beta\}$. Such an algebra is said *minimal* if the differential satisfies :

$$Imd \subseteq \Lambda^+ V \cdot \Lambda^+ V.$$

When $V^0 = \mathbb{K}$ and $V^1 = 0$ (i.e. $(\Lambda V, d)$ is 1-connected), this is equivalent to :

$$d(V) \subseteq \Lambda^{\geq 2} V = \bigoplus_{i \geq 2} \Lambda^i V.$$

A (*minimal*) *Sullivan model* for a commutative differential graded algebra (A, d) is a quasi-isomorphism (i.e. a morphism inducing an isomorphism in cohomology)

$$m : (\Lambda V, d) \xrightarrow{\cong} (A, d)$$

from a (*minimal*) *Sullivan algebra* $(\Lambda V, d)$. It is well known [8, Proposition 12.2] that any cdga (A, d) with $H^0(A) = \mathbb{K}$ and $H^1(A) = 0$ has a minimal Sullivan model. In particular, for a path-connected topological space X , a Sullivan model for X over \mathbb{Q} is a Sullivan model for the singular cochain complex $C^*(X; \mathbb{Q})$:

$$m : (\Lambda V, d) \xrightarrow{\cong} C^*(X; \mathbb{K}).$$

Recall that X is said to be *rationally elliptic* if its rational cohomology and rational homotopy are both finite-dimensional. In terms of its minimal Sullivan model $(\Lambda V, d)$, this means that $\dim H(\Lambda V, d) < \infty$ and $\dim V < \infty$.

Recall also that a finite-dimensional graded algebra A is said to be *Poincaré duality algebra* over \mathbb{K} if it is commutative and satisfies the following conditions:

- (1) $A^m \cong \mathbb{K}\omega$ for some integer $m \geq 0$.
- (2) For all p , the bilinear form $A^p \otimes A^{m-p} \rightarrow A^m \cong \mathbb{K}$ is a non-degenerate.

The generating element ω of degree m is called the *fundamental class* of A . As a particular case of interest for our purposes, the cohomology $H^*(X, \mathbb{Q})$ of any rationally elliptic space X is a Poincaré duality algebra over \mathbb{Q} [8]. We then say that X is a *Poincaré duality space* over \mathbb{Q} . The fundamental class, denoted ω , of $H^*(X, \mathbb{Q})$ is called the *fundamental class* of X , and its degree, denoted N , is called the *formal dimension* of X (or of $(\Lambda V, d)$).

1.2 The evaluation map.

Let (A, d) be an augmented differential graded algebra (dga) over a field \mathbb{K} , and $\alpha : (P, d) \xrightarrow{\cong} (\mathbb{K}; 0)$ be a minimal semifree resolution of K [8]. This defines

the differential graded complex $(\mathcal{A}, \mathcal{D})$, where $\mathcal{A} = \text{Hom}_{(A,d)}((P,d), (A,d))$ and \mathcal{D} , its differential, is given by :

$$\mathcal{D}(f) = f \circ d - (-1)^{|f|} d \circ f.$$

This induces, the map of complexes :

$$\begin{array}{ccc} ev : & \text{Hom}_{(A,d)}((P,d), (A,d)), D) & \longrightarrow (A,d) \\ & f & \longmapsto f(p) \end{array}$$

where $p \in P$ is a cocycle representing $1_{\mathbb{K}}$.

The *evaluation map* of (A, d) is :

$$ev_{(A,d)} := H(ev) : \text{Ext}_{(A,d)}(\mathbb{K}, (A,d)) \longrightarrow H(A, d).$$

Here, $\text{Ext}_{(A,d)}(\mathbb{K}, (A,d)) = H(\mathcal{A}, \mathcal{D})$, where Ext is the Eilenberg-Moore differential functor [6].

It is well known that $ev_{(A,d)}$ is independent of the choice of (P, d) and p [13, 14]. In particular, for any topological path-connected space X , $ev_{C^*(X; \mathbb{K})}$ is called the *evaluation map of X over \mathbb{K}* . It is an homotopy invariant of X . Another important invariant is the \mathbb{K} -*formal dimension of X* [6, §5], denoted $fd(X, \mathbb{K})$, and defined as the greatest integer $r \in \mathbb{Z}$ such that $[\text{Ext}_{C^*(X; \mathbb{K})}(\mathbb{K}, C^*(X; \mathbb{K}))]^r \neq 0$ or $-\infty$ if $\text{Ext}_{C^*(X; \mathbb{K})}(\mathbb{K}, C^*(X; \mathbb{K})) = 0$. By [6, §Remark 1.3], $fd(\Lambda V, d) = fd(X, \mathbb{Q})$ for any minimal Sullivan model of X .

A Sullivan algebra $(\Lambda V, d)$ is called a *Gorenstein algebra* if its dimension fulfills $\dim \text{Ext}_{(\Lambda V, d)}(\mathbb{K}, (\Lambda V, d)) = 1$. It is well known that if $\dim V < \infty$, then $(\Lambda V, d)$ is a Gorenstein algebra [6]. Moreover, $ev_{(\Lambda V, d)} \neq 0$ if and only if $\dim H(\Lambda V, d) < \infty$ [13]. Thus, when $\dim V < \infty$, $(\Lambda V, d)$ is elliptic if and only if $ev_{(\Lambda V, d)} \neq 0$. The space X is said a *Gorenstein space* over \mathbb{Q} if its model $(\Lambda V, d)$ is.

1.3 Spectral sequences

Our main references for spectral sequences are [12] and [8].

A spectral sequence consists in a sequence of differential bigraded vector spaces $E_r^{*,*}$, together with a sequence of isomorphisms $\sigma_r : E_{r+1}^{*,*} \xrightarrow{\cong} H(E_r^{*,*})$. That is, for any integer r , we have $E_r^{*,*} = \bigoplus E_r^{p,q}$, and there is a linear map $d_r^{p,q} : E_r^{p,q} \longrightarrow E_r^{p+r, q-r+1}$, of degree $+1$ and bidegree $(r, 1-r)$, such that $d_r^{p+r, q-r+1} \circ d_r^{p,q} = 0$. Thus, for any $r \geq 0$, $(E_r^{*,*}, d_r^{*,*})$ is a cochain complex.

A spectral sequence $(E_r^{*,*}, d_r^{*,*})$ is said *convergent* if, for each pair (p, q) , there exists an integer $r(p, q)$ such that $E_r^{p,q} = E_{r(p,q)}^{p,q}$ holds for all $r \geq r(p, q)$. We denote $E_{\infty}^{p,q} = E_{r(p,q)}^{p,q}$.

A filtration FA on a (commutative) differential graded algebra (dga) (A, d) is defined as a family of graded subalgebras $\{F^p A\}$, for $p \in \mathbb{Z}$, linked by the inclusions :

$$\cdots \subseteq F^{p+1} A \subseteq F^p A \subseteq F^{p-1} A \subseteq \cdots \subseteq A,$$

such that $dF^p A \subseteq F^p A$ for all integers $p \in \mathbb{Z}$. Such an algebra is said a filtered algebra and denoted (A, FA, d) . Its filtration induces naturally a filtration on $H(A, d)$ given by :

$$F^p H(A, d) = \text{Im}(H(F^p A) \longrightarrow H(A)),$$

and a spectral sequence $(E_r^{*,*}, d_r)$ [8]. This spectral sequence is said convergent to $H(A, d)$ if $E_\infty^{p,q} \cong G^{p,q} H(A, d) = F^p H(A) / F^{p+1} H(A)$. If this is the case, we write :

$$E_2^{p,q} \Longrightarrow H^{p+q}(A, d).$$

The filtration FA on a dga (A, d) is said to be *bounded* if, for each p , there exist two integers $s(p)$ and $n(p)$ so that :

$$0 = F^{s(p)} A \subseteq F^{s(p)-1} A \subseteq \cdots \subseteq F^{n(p)} A \subseteq A.$$

In such situation, the associated spectral sequence to (A, FA, d) converges to $H(A, d)$ [12]. Its zero-term is $(E_0^{p,q}(A), d_0) = (G^{p,q} A, Gd)$, and its first term is $(E_1^{p,q}(A), d_1) = (H^{p,q}(GA, Gd), d_1)$.

Below, we provide examples of spectral sequences that will be used in the next section.

Consider a minimal Sullivan algebra $(\Lambda V, d)$ and express the differential as $d = d_k + d_{k+1} + \dots$ (where $k \geq 2$ by minimality). Note that d_k is also a differential.

We filter ΛV as follows :

$$F^p(\Lambda V) = \Lambda^{\geq p} V, \quad p \geq 0. \quad (7)$$

This is an increasing and bounded filtration, hence, it defines the *algebraic Milnor-Moore spectral sequence*:

$$E_k^{p,q}(\Lambda V) = H^{p,q}(\Lambda V, d_k) \Longrightarrow H^{p+q}(\Lambda V, d). \quad (8)$$

Next, consider the dga $A = (\text{Hom}_{(\Lambda V, d)}((\Lambda V \otimes \Lambda sV, \delta), (\Lambda V, d)), D)$, where $(\Lambda V \otimes \Lambda sV, \delta)$ is a $(\Lambda V, d)$ -semifree resolution of \mathbb{K} [8]. The differential δ extends that of ΛV by $\delta(sv) = v - sdv$ for all $v \in V$ [4]. We filter A by :

$$F^p(A) = \{f \in A, \mid f(\Lambda sV) \subseteq \Lambda^{\geq p} V\}, \quad p \geq 0. \quad (9)$$

This filtration gives rise to the *algebraic Eilenberg-Moore spectral sequence* [14] (see also [15]) :

$$E_k^{p,q}(A) = \text{Ext}_{(\Lambda V, d_k)}^{p,q}(\mathbb{K}, (\Lambda V, d_k)) \Longrightarrow \text{Ext}_{(\Lambda V, d)}^{p+q}(\mathbb{K}, (\Lambda V, d)). \quad (10)$$

Remark 1. As defined, it is clear that the evaluation map $ev_{(\Lambda V, d)}$ preserves the filtration (9) and (7). In particular, it induces a morphism between the spectral sequences (4) and (2). That is, there is a sequence of differential graded vector spaces, denoted $E_i^{p,q}(ev) : E_i^{p,q}(A) \rightarrow E_i^{p,q}(\Lambda V)$ for $k \leq i \leq \infty$, between the corresponding pages.

In a similar way, we consider the *minimal free model* (TW, d) of the (commutative) dga (A, d) [5] and again express the differential as $d = d_k + d_{k+1} + \dots$ (where $k \geq 2$ by minimality). Filtering TW by $F^p(TW) = T^{\geq p}(W)$ defines [5, Proposition A.8] the following spectral sequence :

$$E_k^{p,q}(TW) = \text{Ext}_{H(TW, d)}^{p,q}(\mathbb{K}, \mathbb{K}) \Longrightarrow \text{Ext}_{(TW, d)}^{p+q}(\mathbb{K}, \mathbb{K}) = H(TW, d). \quad (11)$$

When (TW, d) designate the Adams-Hilton model of X [5], this spectral sequence is isomorphic to (1) (cf. [6, Remark 1.3]). As for Sullivan models, an easy calculation shows that indeed $\text{Ext}_{H(TW, d)}^{p,q}(\mathbb{K}, \mathbb{K})$.

Next, consider the dga $B = (Hom_{TW, d}((TW \otimes (\mathbb{K} \oplus sW), \delta), (TW, d)), D)$, where $(TW \otimes (\mathbb{K} \oplus sW), \delta)$ serves as a (TW, d) -semifree resolution of \mathbb{K} [8]. The differential δ which extends that of TW and is specifically given by $\delta(sv) = v - sdv$ for all $v \in W$ (see [4, 8]). Additionally, filtering B by

$$F^p(B) = \{f \in B, | f(\mathbb{K} \oplus sW) \subseteq T^{\geq p}W\}; p \geq 0,$$

we obtain the following spectral sequence, introduced in [1] :

$$E_k^{p,q}(B) = \text{Ext}_{(TW, d_k)}^{p,q}(\mathbb{K}, (TW, d_k)) \Longrightarrow \text{Ext}_{(TW, d)}^{p+q}(\mathbb{K}, (TW, d)). \quad (12)$$

Once again using the Adams-Hilton model of X , we see that (12) is isomorphic to (6).

2 Proofs of the main results

Recall from the introduction that the R_0 -invariant introduced in [15] for any simply connected finite-type CW-complex X is defined (with notations of §2) in terms of (4) and (6) as follows :

$$R_0(X) = R(\Lambda V, d) = \sup\{m | E_\infty^{m,*}(A) \neq 0\}.$$

This is indeed inspired from the definitin of the Toomer's invariant of X , which is defined in terms of (1) and (2) as follows:

$$e_0(X) = e(\Lambda V, d) := \sup\{m | E_\infty^{m,*}(\Lambda V) \neq 0\}.$$

It is well known that when X is elliptic (and hence a Poincaré duality space), $e(\Lambda V, d)$ can be equivalently defined in terms of the fundamental class ω as follows:

$$e(\Lambda V, d) = \sup\{m \mid \omega \text{ can be represented by a cocycle in } \Lambda^{\geq m} V\}. \quad (13)$$

Referring to [15, Remark 3.4], when $\dim V < \infty$ (i.e. when $(\Lambda V, d)$ is a Gorenstein cdga), an equivalent definition of $R(\Lambda V, d)$ is similarly given in terms of the generating class Ω of $Ext_{(\Lambda V, d)}^*(\mathbb{K}, (\Lambda V, d))$ as follows :

$$R(\Lambda V, d) = \sup\{m \mid \Omega \text{ can be represented by a cocycle in } F^m(A)\}, \quad (14)$$

where $A = Hom_{(\Lambda V, d)}((\Lambda V \otimes \Lambda(sV), d), (\Lambda V, d))$.

We now recall and prove our first main result.

Theorem 3. (*Theorem 1*) *Let X be a rationally elliptic space. Then :*

$$R_0(X) = e_0(X) = cat_0(X).$$

Proof. First, note that since X is a Poincaré duality space over \mathbb{Q} , it follows from [7] that $e_0(X) = cat_0(X)$. Let $(\Lambda V, d)$ be a minimal Sullivan model of X . By hypothesis, $\dim V < \infty$, and both $(\Lambda V, d_k)$ and $(\Lambda V, d)$ are Gorenstein algebras of the same formal dimension N , as established in [6, Theorem 5.2]. Therefore, the first term of the spectral sequence (4), $E_k^{*,*}(A) = Ext_{(\Lambda V, d_k)}^*(\mathbb{K}, (\Lambda V, d_k))$, is concentrated in a fixed bidegree (p, q) with $p + q = N$. By the convergence of (4), we have $\dim E_\infty^{p,q}(A) = 1$. It follows that $R(\Lambda V, d)$ is precisely the integer p . For the remainder of the proof, we identify $E_\infty^{p,q}(A)$ with $Ext_{(\Lambda V, d)}^N(\mathbb{K}, (\Lambda V, d))$ and denote by $\Omega_0 := [f_0]$ (resp. $[\Omega]$) the unique generating class of $E_k^{p,q}(A) = Ext_{(\Lambda V, d_k)}^N(\mathbb{Q}, (\Lambda V, d_k))$ (resp. of $Ext_{(\Lambda V, d)}^N(\mathbb{K}, (\Lambda V, d))$).

Case 1 : Assume $ev_{(\Lambda V, d_k)} \neq 0$. Then $(\Lambda V, d_k)$ is an elliptic cdga [14]. By homogeneity of d_k , its fundamental class $\omega_0 = ev_{(\Lambda V, d_k)}[f_0] = [f_0(1)]$, where $f_0(1) \in (\Lambda^p V)^{p+q}$. Note that the cocycle representing $1_{\mathbb{Q}} \in \Lambda V \otimes \Lambda(sV)$ is necessarily $1 =: 1_{\mathbb{Q}} \in V^0 = \mathbb{Q}$. Therefore, $e(\Lambda V, d_k) = p$. By [10, Theorem 5], we conclude that $e(\Lambda V, d) = p = R(\Lambda V, d)$.

Case 2 : Assume $ev_{(\Lambda V, d_k)} = 0$. In this case, $(\Lambda V, d_k)$ is not elliptic, but, since $\dim V < \infty$ we still have $\dim H^N(\Lambda V, d_k) < \infty$. By [2, Theorem 2], there is a unique basis element in $H^N(\Lambda V, d_k)$ that survives to the term $E_\infty^{*,*}(\Lambda V)$. Since $(\Lambda V, d)$ is elliptic (and hence a Poincaré duality algebra) with formal dimension N , we may identify the one-dimensional vector spaces $E_\infty^{*,*}(\Lambda V)$ and $H^N(\Lambda V, d)$. Let ω denotes the generating element resulting from that identification and put, using (13), $e(\Lambda V, d) = p'$ and (p', q') , the associated bidegree i.e. such that $p' + q' = N$. It results that $E_\infty^{*,*}(\Lambda V) = E_\infty^{p',q'}(\Lambda V)$. Once again, since $(\Lambda V, d)$

is elliptic, the evaluation map $ev_{(\Lambda V, d)} : Ext_{(\Lambda V, d)}^{*,*}(\mathbb{Q}, (\Lambda V, d)) \rightarrow H^N(\Lambda V, d)$ is non-zero. By Remark 1, the induced map $E_\infty^{*,*}(ev) : E_\infty^{*,*}(A) \rightarrow E_\infty^{p',q'}(\Lambda V)$ is also non-zero. It follows that $E_\infty^{*,*}(A) = E_\infty^{p',q'}(A)$, and consequently, $R(\Lambda V, d) = p' = e(\Lambda V, d)$.

\boxed{QED}

Next, we introduce the *Ext-Ginsburg invariant* $L_0(X)$ (cf. §1), defined in the same spirit of the Ginsburg's invariant $l_0(X)$, which was originally defined using the spectral sequence (1) [9]. By the isomorphism between (1) and (2) [3, Proposition 9.1], $l_0(X)$ has the following algebraic characterization :

$$l(\Lambda V, d) = \sup\{j \geq 0 \mid d_j \neq 0\} = \min\{m \mid E_{m+1}^{*,*}(\Lambda V) = E_\infty^{*,*}(\Lambda V)\}$$

where d_j denotes the differential on the j -th page in the spectral sequence (2).

For our more general setting, we define :

Definition 1. For a field \mathbb{K} of arbitrary characteristic and a simply connected finite type CW-complex X , the *the Ext-Ginsburg invariant* of X over \mathbb{K} is defined as :

$$L_{\mathbb{K}}(X) = \sup\{j \mid \delta_j \neq 0\},$$

where δ_j denotes the differential of the j^{th} page of the spectral sequence (6) with \mathbb{K} replacing \mathbb{Q} . Equivalently,

$$L_{\mathbb{K}}(X) = \min\{m \mid E_{m+1}^{*,*} = E_\infty^{*,*}\}.$$

When $\mathbb{K} = \mathbb{Q}$, using the minimal Sullivan model $(\Lambda V, d)$ of X , we similarly define :

$$L(\Lambda V, d) = \sup\{j \mid d_j \neq 0\} = \min\{m \mid E_{m+1}^{*,*}(A) = E_\infty^{*,*}(A)\},$$

where δ_j denotes the differential on the j -th page of the spectral sequence (4). By the isomorphism between (6) and (4) established in [15, Theorem 1.1], we obtain the algebraic characterization of $L_{\mathbb{Q}}(X)$ which we denote $L_0(X)$ as follows:

$$L_0(X) = L(\Lambda V, d).$$

We now recall and prove our second main result.

Theorem 4. (*Theorem 1.2*) *Let X be a rationally elliptic space. Then:*

$$L_0(X) = l_0(X).$$

Proof. Since $(\Lambda V, d)$ is elliptic and a Gorenstein algebra, the evaluation map $ev_{(\Lambda V, d)}$ is non-zero. Therefore, it induces a non-zero isomorphism of one-dimensional spaces $E_\infty^{p,q}(ev) : E_\infty^{p,q}(A) \rightarrow E_\infty^{p,q}(\Lambda V)$ for some unique bidegree (p, q) . By Remark 1 and the definition of $L_0(X)$, this isomorphism is precisely

$$E_{L_0(X)+1}^{p,q}(ev) : E_{L_0(X)+1}^{p,q}(A) \rightarrow E_{L_0(X)+1}^{p,q}(\Lambda V).$$

Thus, $E_\infty^{p,q}(\Lambda V) = E_{L_0(X)+1}^{p,q}(\Lambda V)$. By the definition of $l_0(X)$, we conclude that $l_0(X) \leq L_0(X)$.

On the other hand, by the identifications made above, $H^N(\Lambda V, d) = E_\infty^{p,q}(\Lambda V) = E_{l_0(X)+1}^{p,q}(\Lambda V)$ is generated by the fundamental class $\omega \in H^N(\Lambda V, d)$. However, $\omega = [f(1)] = ev_{(\Lambda V, d)}([f])$ for some $[f] \in \text{Ext}_{(\Lambda V, d)}^N(\mathbb{Q}, (\Lambda V, d)) = E_\infty^{p,q}(A)$. By Remark 1, $[f] \in E_{l_0(X)+1}^{p,q}(A)$, so $E_\infty^{p,q}(A) = E_{l_0(X)+1}^{p,q}(A)$. Consequently, by the definition of $L_0(X)$, we obtain $L_0(X) \leq l_0(X)$. QED

Remark 2. Using the spectral sequence (11) (resp. (12)), we may define $l_0(X)$ (resp. $L_0(X)$) in terms of the minimal free model (TW, d) of $C^*(X, \mathbb{Q})$. This model is obtained [5] as the dual bar construction $\Omega(TV, d)$ of the Adams-Hilton model $(TV, d) \xrightarrow{\sim} C_*(\Omega(X), \mathbb{Q})$ of X . Recall that in $(T(V), d)$, each V_i has a basis indexed by the $i + 1$ -cells of X .

References

- [1] L. BISIAUX: *Depth and Toomer's invariant*, Topology and its Applications, 97(3), 207-215, (1999).
- [2] K. BOUTAHIR, Y. RAMI: *On LS-Category of a Family of Rational Elliptic Spaces II*, Extracta Mathematicae 31(2), 235-250 (2016).
- [3] Y. FÉLIX, S. HALPERIN: *Rational LS category and its Applications*, Tran. Amer. Math. Soc., vol. 273, (1982), 1-38.
- [4] S. HALPERIN: *Universal enveloping algebras and loop space homology*, Journal of pure and applied algebra North-Holland 83 (1992) 237-282.
- [5] S. HALPERIN, J. M. LEMAIRE: *Notions of category in differential algebra*, Berlin, Heidelberg: Springer Berlin Heidelberg, 138-154 (1986).
- [6] Y. FÉLIX, S. HALPERIN, J. C. THOMAS: *Gorenstein spaces*, Advances in Mathematics, 71, (1988) 92-112.
- [7] Y. FÉLIX, S. HALPERIN, J. M. LEMAIRE: *The Rational LS-category of Products and Poincaré Duality Complexes*, Topology Vol. 37, No. 4, (1998), 749-756.
- [8] Y. FÉLIX, S. HALPERIN, J. C. THOMAS: *Rational Homotopy Theory*, Graduate texts in mathematics; 205 Springer-Verlag New York, Inc (2001).
- [9] M. GINSBURG: *On L.S. category*, Ann. of Math. 77 (1963) 89-96.
- [10] L. LECHUGA, A. MURILLO: *A formula for the S-category of certain spaces*, Annales de l'institut Fourier 52, (2002), 1585-1590.

- [11] L. LUSTERNIK, L. SCHNIRELMANN: Méthodes Topologiques dans les Problèmes Variationnels, Hermann, Paris, (1934).
- [12] J. McCLEARY: A User's Guide to Spectral Sequences, University Press, Cambridge(2001).
- [13] A. MURILLO: *On the evaluation map*, Trans. Amer. Math. Soc, 393, (1993), 611-622.
- [14] A. MURILLO: *The evaluation map of some Gorenstein algebras*, Journal of Pure and Applied Algebra, 91, (1994), 209-2018.
- [15] Y. RAMI: *A new lower bound for LS-category*, Arab. J. Math. 7, (2018), 39–47.
- [16] G. H. TOOMER: *Lusternik-Schnirelmann category and the Moore spectral sequence*, Math. Zeit., Vol. 183,(1974), 123-143

