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Abstract. In this paper, we show that the invariant Ro(X), introduced in [I5], coincides
with cato(X) for any rationally elliptic space X. Additionally, we define, for any space X
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X is rationally elliptic.
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Introduction

In [16], the author introduced, for any topological space X, what is subse-
quently called the Toomer invariant ex(X), over a given field K. This invariant
is defined as the least integer p for which the term EZ7 in the Milnor-Moore
spectral sequence:

Eathf oy i (K K) = HF(X;K) (1)

is non-zero. The author then showed that ex (X) provides a lower bound for the
Lusternik-Schnirelmann category (LS category for short), denoted cat(X) [11]
and defined as the smallest number (plus one, for normalization) of open sets
that are contractile in X and form a cover of X. That is,

ex(X) < cat(X)

for any field K. The study of this invariant has led to interesting results in
practice. Among these, we cite Y. Félix and S. Halperin’s analogous inequal-
ity eo(X) < cato(X) [3, Theorem 4.7], where eo(X) := e(Xp) and cato(X) :=
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cat(Xp), with X being the rationalization space of X. Several specialists in ra-
tional homotopy theory worked then hard to specify the largest class of spaces
for which these two invariants are equal. Referring to [8], we know that this class
includes all Poincaré duality spaces over Q (see §2). In particular, it includes
all rationally elliptic spaces, which are characterized by their rational coho-
mology H*(X,Q) and rational homotopy m.(X) ® Q, both of which are finite-
dimensional. These results are achieved using Sullivan’s approach to rational
homotopy theory, which associates to every simply connected space X (having
the homotopy type of a finite-type CW-complex) a unique (up to isomorphism)
minimal Sullivan algebra (AV,d). This algebra satisfies H*(X,Q) = H(AV,d)
and V = Homg(m(X),Q). Here, (AV,d) is a commutative differential graded
algebra (cdga for short) with specific properties (see §2).

In what follows, unless otherwise stated, X will denote a simply connected
finite-type CW-complex, and (AV, d) will denote its minimal Sullivan model (or
simply its ”minimal model”).

Refeering to [3] (see also [§]), cato(X) = cat(AV,d) where the later is defined
as the least integer m such that the projection:

AV =

p: (AV,d) = (G @)

has a retraction as a morphism of cdga’s, while eg(X) := e(AV,d) is the least
integer m such that p is injective in cohomology. An equivalente definition of
e(AV,d) is given using the isomorphism, established in [3], between (1)) and the
so-called hte Ext-Milnor-Moore spectral sequence [8, Proposition 9.1] (see §2):

EPY = HPI(AV, dy) = HPTI(AV, d). 2)
as follows:
e(AV,d) = sup{p | such that E®? # 0}. (3)

Here, E& is the infty term of (2).
Next, consider the (rational) Ezxt-Eilenberg-Moore spectral sequence intro-
duced in [I3] (see §2) :

Batfyl, 4,)(Q: (AV.d2)) = Bat({ ) (Q, (AV.d)). @)

In [15], the second author introduced the invariant R(AV,d) defined similarly
to e(AV,d), as follows:

R(AV,d) = sup{p | such that E2? # 0}, (5)

where EL? stands here for the infty term of . He then constructed an isomor-
phism between the spectral sequence and the topological Eilenberg-Moore
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spectral sequence [15, Theorem 1.2]:
by which he introduced a new (topological) homotpy invariant:
Ro(X) := R(AV,d).

The first main result of this paper extends (in the rational case) the result
of [I5, Theorem 1.1] as follows :

Theorem 1. Let X be a rationally elliptic space. Then :
Ro(X) = eo(X) = cato(X).

Our second result is related to rational Ginsburg’s lower bound invariant
lo(X) of cato(X) [9]. This invariant is defined as the greatest integer ¢ > 2 such
that the differential §; of the t — th page (E;", ;) of is non-zero. In other
words, lo(X) =t if and only if EX" = E;7. Clearly, one may similarly define
I(AV,d) in terms of and immediately conclude, thanks to the isomorphism
between and [3, Proposition 9.1], that io(X) = I(AV,d).

Likewise to Ro(X) and R(AV,d), we introduce, in this paper, the Euxt-
Ginsburg invariant Lo(X) (resp. L(AV,d)) as the greatest integer ¢ > 2 such
that the differential d; in the ¢ — th term, (E;"*,§;) of @ (resp. d; in the t — th
term (E;™*,d;) of () is non-zero. Again, by the isomorphism between (6)) and
(4) [15, Theorem 1.2], we have Lo(X) = L(AV,d)

As a second result, we prove the following

Theorem 2. Let X be a rationally elliptic space. Then, Lo(X) = lp(X).

1 Preliminaries

In this section, unless otherwise stated, our ground field K is of characteristic
zero. The main references are [8] and [6].

1.1 Sullivan model

LetV = :;OS V' be a graded K-vector space, TV the graded tensor algebra
on V, and AV = TV/I the free commutative graded algebra, where I is the
graded ideal generated by homogeneous elements of the form v@w—(—1) vy
v for v,w € V. Here and henceforth, | v | denotes the degree of v.

A Sullivan algebra is a free commutative differential graded algebra of the
form (AV,d), with V' has a well-ordered basis {v,} such that dv, € AV, with
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V< being the subspace of V' generated by {vg, o < 5}. Such an algebra is said
minimal if the differential satisfies :

Imd C ATV.ATV.
When V? =K and V! =0 (i.e. (AV,d) is 1-connected), this is equivalent to :

d(V) C APV = P AV,
i>2

A (minimal) Sullivan model for a commutative differential graded algebra (A, d)
is a quasi-isomorphism (i.e. a morphism inducing an isomorphism in cohomol-
ogy)

m: (AV,d) — (A,d)

from a (minimal) Sullivan algebra (AV,d). It is well known [§, Proposition 12,2]
that any cdga (4,d) with H°(A) = K and H'(A) = 0 has a minimal Sullivan
model. In particular, for a path-connected topological space X, a Sullivan model
for X over Q is a Sullivan model for the singular cochain complex C*(X;Q) :

m: (AV,d) — C*(X;K).

Recall that X is said to be rationally elliptic if its rational cohomology and
rational homotopy are both finite-dimensional. In terms of its minimal Sullivan
model (AV,d), this means that dim H(AV,d) < co and dim V' < co.

Recall also that a finite-dimensional graded algebra A is said to be Poincaré
duality algebra over K if it is commutative and satisfies the following conditions:

(1) A™ = Kw for some integer m > 0.
(2) For all p, the bilinear form AP ® A™ P — A™ =~ K is a non-degenerate.

The generating element w of degree m is called the fundamental class of A. As
a particular case of interest for our purposes, the cohomology H*(X, Q) of any
rationally elliptic space X is a Poincaré duality algebra over Q [§]. We then say
that X is a Poincaré duality space over Q. The fundamental class, denoted w,
of H*(X,Q) is called the fundamental class of X, and its degree, denoted N, is
called the formal dimension of X (or of (AV,d)).

1.2 The evaluation map.

Let (A, d) be an augmented differential graded algebra (dga) over a field K,
and o : (P,d) —» (K;0) be a minimal semifree resolution of K [8]. This defines
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the differential graded complex (A, D), where A = Hom 4 4)((P, d), (A,d)) and
D, its differential, is given by :

D(f)=fod—(-1)ldo .
This induces, the map of complexes :

ev: (Homaq)((P,d),(A,d),D) — (A,d)
f — f(p)

where p € P is a cocycle representing 1x.
The evaluation map of (A,d) is :

evia,d) = H(ev) : Exty 4K, (A,d)) — H(A,d).

Here, Ext(4 q)(K, (A,d)) = H(A, D), where Ext is the Eilenberg-Moore differ-
ential functor [6].

It is well known that ev( gy is independent of the choice of (P, d) and p [13|
14]. In particular, for any topological path-connected space X, evex(x;K) 1s called
the evaluation map of X over K. It is an homotopy invariant of X. Another im-
portant invariant is the K-formal dimension of X [6l §5], denoted fd(X,K), and
defined as the greatest integer r € Z such that [Extc«(xx) (K, C*(X;K))]" #0
or —oo if Extes(xx)(K,C*(X;K)) = 0. By [6, §Remark 1.3 |, fd(AV,d) =
fd(X,Q) for any minimal Sullivan model of X.

A Sullivan algebra (AV,d) is called a Gorenstein algebra if its dimension
fulfills dim Extzy,q) (K, (AV,d)) = 1. It is well known that if dimV < oo,
then (AV,d) is a Gorenstein algebra [6]. Moreover, evzy,q) # 0 if and only
if dim H(AV,d) < oo [13]. Thus, when dimV < oo, (AV,d) is elliptic if and
only if ev(zy,q) # 0. The space X is said a Gorenstein space over Q if its model
(AV,d) is.

1.3 Spectral sequences

Our main references for spectral sequences are [12] and [§].

A spectral sequence consists in a sequence of differential bigraded vector
spaces F,*, together with a sequence of isomorphisms o, : E::l = (EFT).
That is, for any integer r, we have E." = ®EPY, and there is a linear map
a1 EPY — BRI of degree +1 and bidegree (r,1 — r), such that
dPTTarH o @P4 — . Thus, for any r > 0, (E-",d"") is a cochain complex.

A spectral sequence (E,™ d,") is said convergent if, for each pair (p,q),
there exists an integer 7(p, ¢) such that EP? = Ef( holds for all r > r(p, q).

D4 _ P
We denote EL' = ET(p,q).

q
P,q)
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A filtration F'A on a (commutative) differential graded algebra (dga) (A, d)
is defined as a family of graded subalgebras {FPA}, for p € Z, linked by the

inclusions :
o CFPHYACFPACFPIAC... C A,

such that dFPA C FPA for all integers p € Z. Such an algebra is said a filtered
algebra and denoted (A, FA,d). Its filtration induces naturally a filtration on
H(A,d) given by :

FPH(A,d) = Im(H(FPA) — H(A)),

and a spectral sequence (E,"*,d,) [8]. This spectral sequence is said convergent

to H(A,d) if ER? = GP1H(A,d) = FPH(A)/FPTH(A). If this is the case, we
write :
EYY — HPTI(A,d).
The filtration F'A on a dga (A, d) is said to be bounded if, for each p, there
exist two integers s(p) and n(p) so that :

0=FPACFsP1acC...Cc FrAC A

In such situation, the associated spectral sequence to (A, F'A,d) converges to
H(A,d) [12]. Its zero-term is (EJY(A),dy) = (GP?A,Gd), and its first term is
(EP9(A),dv) = (HP(GA,Gd), dy).

Below, we provide examples of spectral sequences that will be used in the
next section.

Consider a minimal Sullivan algebra (AV,d) and express the differential as
d = di 4+ dgs1 + ... (where & > 2 by minimality). Note that dj is also a
differential.

We filter AV as follows :

FP(AV) = AZPV, p>0. (7)

This is an increasing and bounded filtration, hence, it defines the algebraic
Milnor-Moore spectral sequence:

EPU(AV) = HPY(AV, dy) = HPYI(AV,d). (8)

Next, consider the dga A = (Homy,q)((AV @ AsV,0), (AV,d)), D), where
(AV®AsV,0) is a (AV, d)-semifree resolution of K [8]. The differential § extends
that of AV by d(sv) = v — sdv for all v € V' [4]. We filter A by :

FP(A) = {f € A,| f(AsV) CAZPV}, p>0. 9)

This filtration gives rise to the algebraic Eilenberg-Moore spectral sequence [14]
(see also [15]) :

EpI(A) = Bty , (K, (AV,dy)) = Bt ) (K, (AV, d)). (10)
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Remark 1. As defined, it is clear that the evaluation map ev(y,q) preserves
the filtration @D and . In particular, it induces a morphism between the
spectral sequences and . That is, there is a sequence of differential graded
vector spaces, denoted EY?(ev) : EP4(A) — EPI(AV) for k < i < oo, between
the corresponding pages.

In a similar way, we consider the minimal free model (TW,d) of the (com-
mutative) dga (A4, d) [5] and again express the differential as d = dy + dp4+1 +. . .
(where k > 2 by minimality). Filtering TW by FP(TW) = T=P(W) defines [5,
Proposition A.8] the following spectral sequence :

EPUTW) = Batyy, o (K K) = E:rtl(’;gv, oK K)=H(TW,d).  (11)
When (TW,d) designate the Adams-Hlton model of X [5], this spectral se-
quence is isomorphic to (cf. [6, Remark 1.3]). As for Sullivan models, an
easy calculation shows that indeed Ext%%TW’ K K).

Next, consider the dga B = (Hompwq((TW ® (K@ sW),9), (TW,d)), D),
where (TW @ (K@ sW), d) serves as a (TW, d)-semifree resolution of K [§]. The
differential § which extends that of TW and is specifically given by §(sv) =
v — sdv for all v € W (see [4, §]). Additionally, filtering B by

FP(B)={f € B,| fKa®sW)CT=>W}; p>0,
we obtain the following spectral sequence, introduced in [1] :
EYY(B) = Ext(fy, (K, (TW,dy)) = Ext(pi, o (K, (TW, d)). (12)
Once again using the Adams-Hlton model of X, we see that is isomorphic
to @
2 Proofs of the main results

Recall from the introduction that the Ro-invariant introduced in [15] for any
simply connected finite-type CW-complex X is defined (with notations of §2)
in terms of and @ as follows :

Ro(X) = R(AV, d) = sup{m | EZ*(A) # 0}.

This is indeed inspired from the definitin of the Toomer’s invariant of X, which
is defined in terms of and as follows:

eo(X) = e(AV.d) = sup{m | EZ*(AV) # 0}.
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It is well known that when X is elliptic (and hence a Poincaré duality space),
e(AV,d) can be equivalently defined in terms of the fundamental class w as
follows:

e(AV,d) = sup{m | w can be represented by a cocycle in A="V'}. (13)

Referring to [I5, Remark 3.4], when dimV < oo (i.e. when (AV,d) is a
Gorenstein cdga), an equivalent definition of R(AV, d) is similarly given in terms
of the generating class Q of Extf,y, (K, (AV,d)) as follows :

R(AV,d) = sup{m | 2 can be represented by a cocycle in F"(A)}, (14)

where A = Homy,q)((AV @ A(sV), d), (AV,d)).

We now recall and prove our first main result.
Theorem 3. (Theorem Let X be a rationally elliptic space. Then :

Ro(X) = eo(X) = cato(X).

Proof. First, note that since X is a Poincaré duality space over Q, it follows from
[7] that eg(X) = cato(X). Let (AV,d) be a minimal Sullivan model of X. By
hypothesis, dim V' < oo, and both (AV,dy) and (AV,d) are Gorenstein algebras
of the same formal dimension N, as established in [0, Theorem 5.2]. Therefore,
the first term of the spectral sequence , E;(A) = Ext?‘AV’dk)(K, (AV,dy)),
is concentrated in a fixed bidegree (p, q¢) with p+ ¢ = N. By the convergence of
(4), we have dim E5!(A) = 1. It follows that R(AV, d) is precisely the integer p.
For the remainder of the proof, we identify EL(A) with Ea:té\gv’d) (K, (AV,d))
and denote by Qo := [fo] (resp. [Q]) the unique generating class of E}Y(A) =
Ea;té\/fw’dk)((@, (AV,dy)) (resp. of Emté\/[xv,d) (K, (AV,d))).

Case 1 : Assume ev(y,q,) 7 0. Then (AV,dy) is an elliptic cdga [14]. By
homogeneity of di, its fundamental class wo = evy,q,)[fo] = [fo(1)], where
fo(1) € (APV)PH4. Note that the cocycle representing 1g € AV ® A(sV) is
necessarily 1 =: 1g € V? = Q. Therefore, e(AV,dy) = p. By [10, Theorem 5],
we conclude that e(AV,d) = p = R(AV,d).

Case 2 : Assume ev(pyq,) = 0. In this case, (AV,dy) is not elliptic, but,
since dim V' < oo we still have dim H™ (AV, d},) < co. By [2, Theorem 2], there is
a unique basis element in H™ (AV, dy) that survives to the term Ex"(AV). Since
(AV,d) is elliptic (and hence a Poincaré duality algebra) with formal dimension
N, we may identify the one-dimensional vector spaces Ex (AV) and H (AV, d).
Let w denotes the generating element resulting from that identification and
put, using (L3)), e(AV,d) = p’ and (p/, ¢’), the associated bidegree i.e. such that
p' + ¢ = N. It results that Ex" (AV) = BT (AV). Once again, since (AV,d)
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is elliptic, the evaluation map ev(y,q) : E:Ut?/’\*Vd)(Q, (AV,d)) — HN(AV,d) is

non-zero. By Remark [1} the induced map EX"(ev) : EX(A) — Eg;’q/(AV) is
also non-zero. It follows that Ex (A) = E5 7 (A), and consequently, R(AV, d) =
p = e(AV,d).

QED

Next, we introduce the Ext-Ginsburg invariant Lo(X) (cf. §1), defined in
the same spirit of the Ginsburg’s invariant lo(X), which was originally defined
using the spectral sequence [9]. By the isomorphism between and 13,
Proposition 9.1], lop(X) has the following algebraic characterization :

I(AV,d) = sup{j > 0] d; # 0} = min{m | E;)" | (AV) = EZ'(AV)}

where d; denotes the differential on the j —th page in the spectral sequence .
For our more general setting, we define :

Definition 1. For a field K of arbitrary characteristic and a simply con-
nected finite type CW-complex X, the the Ext-Ginsburg invariant of X over K
is defined as :

Ly (X) = sup{j | 6; # 0},

where §; denotes the differential of the 4t page of the spectral sequence @
with K replacing Q. Equivalently,

L (X) = min{m | E*’:l =FEJ}

m

When K = Q, using the minimal Sullivan model (AV,d) of X, we similarly
define :

L(AV,d) = sup{j | d; # 0} = min{m | E;;%,(A) = EZ7(A)},

where §; denotes the differential on the j — th page of the spectral sequence
(). By the isomorphism between (6] and established in [I5, Theorem 1.1],
we obtain the algebraic characterization of Lg(X) which we denote Lo(X) as
follows:

Lo(X) = L(AV, d).

We now reccal and prove our second main result.

Theorem 4. (Theorem 1.2) Let X be a rationally elliptic space. Then:

Lo(X) = lo(X).
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Proof. Since (AV,d) is elliptic and a Gorenstein algebra, the evaluation map
ev(Av,q) is non-zero. Therefore, it induces a non-zero isomorphism of one-dimen-
sional spaces ER(ev) : E5I(A) — ERY(AV) for some unique bidegree (p,q).
By Remark |1 and the definition of Lo(X), this isomorphism is precisely
7 ) +1(€0) * B 1 (A) = Byl 1 (AV).

Thus, ER/(AV) = Py (
lo(X) < Lo(X).

On the other hand, by the identifications made above, HV (AV, d) = EX!(AV)

=B ’EJX) +1(AV) is generated by the fundamental class w € HY(AV,d). How-

ever, w = [f(1)] = ev(av,g)([f]) for some [f] € Extfyy, (Q, (AV,d)) = E&(A).
By Remark [f] € EPlxy1(A), so ERNA) = EPly (). Consequently, by
the definition of Ly(X'), we obtain Lo(X) < lp(X). QED

AV). By the definition of lo(X), we conclude that

Remark 2. Using the spectral sequence (11)) (resp. (12))), we may define
lo(X) (resp. Lo(X)) in terms of the minimal free model (TW,d) of C*(X, Q).
This model is obtained [5] as the dual bar construction Q(7'V,d) of the Adams-
Hilton model (TV,d) = C.(Q(X),Q) of X. Recall that in (T((V),d), each V;
has a basis indexed by the 7 4+ 1-cells of X.
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