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Moulay Ismäıl University, Department of Mathematics, Meknès, Morocco
y.rami@umi.ac.ma

Received: January 22, 2025; accepted: May 7, 2025.
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Introduction

In [16], the author introduced, for any topological space X, what is subse-
quently called the Toomer invariant eK(X), over a given field K. This invariant
is defined as the least integer p for which the term Ep,q∞ in the Milnor-Moore
spectral sequence:

Extp,qH∗(ΩX;K)(K,K) =⇒ Hp+q(X;K) (1)

is non-zero. The author then showed that eK(X) provides a lower bound for the
Lusternik-Schnirelmann category (LS category for short), denoted cat(X) [11]
and defined as the smallest number (plus one, for normalization) of open sets
that are contractile in X and form a cover of X. That is,

eK(X) ≤ cat(X)

for any field K. The study of this invariant has led to interesting results in
practice. Among these, we cite Y. Félix and S. Halperin’s analogous inequal-
ity e0(X) ≤ cat0(X) [3, Theorem 4.7], where e0(X) := e(X0) and cat0(X) :=
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cat(X0), with X0 being the rationalization space of X. Several specialists in ra-
tional homotopy theory worked then hard to specify the largest class of spaces
for which these two invariants are equal. Referring to [8], we know that this class
includes all Poincaré duality spaces over Q (see §2). In particular, it includes
all rationally elliptic spaces, which are characterized by their rational coho-
mology H∗(X,Q) and rational homotopy π∗(X) ⊗ Q, both of which are finite-
dimensional. These results are achieved using Sullivan’s approach to rational
homotopy theory, which associates to every simply connected space X (having
the homotopy type of a finite-type CW-complex) a unique (up to isomorphism)
minimal Sullivan algebra (ΛV, d). This algebra satisfies H∗(X,Q) ∼= H(ΛV, d)
and V ∼= HomZ(π∗(X),Q). Here, (ΛV, d) is a commutative differential graded
algebra (cdga for short) with specific properties (see §2).

In what follows, unless otherwise stated, X will denote a simply connected
finite-type CW-complex, and (ΛV, d) will denote its minimal Sullivan model (or
simply its ”minimal model”).

Refeering to [3] (see also [8]), cat0(X) = cat(ΛV, d) where the later is defined
as the least integer m such that the projection:

p : (ΛV, d)→ (
ΛV

Λ≥m+1V
, d̄)

has a retraction as a morphism of cdga’s, while e0(X) := e(ΛV, d) is the least
integer m such that p is injective in cohomology. An equivalente definition of
e(ΛV, d) is given using the isomorphism, established in [3], between (1) and the
so-called hte Ext-Milnor-Moore spectral sequence [8, Proposition 9.1] (see §2):

Ep,q2 = Hp,q(ΛV, d2)⇒ Hp+q(ΛV, d). (2)

as follows:
e(ΛV, d) = sup{p | such that Ep,q∞ 6= 0}. (3)

Here, Ep,q∞ is the infty term of (2).
Next, consider the (rational) Ext-Eilenberg-Moore spectral sequence intro-

duced in [13] (see §2) :

Extp,q(ΛV,d2)(Q, (ΛV, d2)) =⇒ Extp+q(ΛV,d)(Q, (ΛV, d)). (4)

In [15], the second author introduced the invariant R(ΛV, d) defined similarly
to e(ΛV, d), as follows:

R(ΛV, d) = sup{p | such that Ep,q∞ 6= 0}, (5)

where Ep,q∞ stands here for the infty term of (4). He then constructed an isomor-
phism between the spectral sequence (4) and the topological Eilenberg-Moore
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spectral sequence [15, Theorem 1.2]:

Extp,qH∗(ΩX;Q)(Q, H∗(ΩX;Q)) =⇒ Extp+qC∗(ΩX,Q)(Q, C∗(ΩX,Q)) (6)

by which he introduced a new (topological) homotpy invariant:

R0(X) := R(ΛV, d).

The first main result of this paper extends (in the rational case) the result
of [15, Theorem 1.1] as follows :

Theorem 1. Let X be a rationally elliptic space. Then :

R0(X) = e0(X) = cat0(X).

Our second result is related to rational Ginsburg’s lower bound invariant
l0(X) of cat0(X) [9]. This invariant is defined as the greatest integer t ≥ 2 such
that the differential δt of the t − th page (E∗,∗t , δt) of (1) is non-zero. In other
words, l0(X) = t if and only if E∗,∗∞ = E∗,∗t+1. Clearly, one may similarly define
l(ΛV, d) in terms of (2) and immediately conclude, thanks to the isomorphism
between (1) and (2) [3, Proposition 9.1], that l0(X) = l(ΛV, d).

Likewise to R0(X) and R(ΛV, d), we introduce, in this paper, the Ext-
Ginsburg invariant L0(X) (resp. L(ΛV, d)) as the greatest integer t ≥ 2 such
that the differential δt in the t− th term, (E∗,∗t , δt) of (6) (resp. dt in the t− th
term (E∗,∗t , dt) of (4)) is non-zero. Again, by the isomorphism between (6) and
(4) [15, Theorem 1.2], we have L0(X) = L(ΛV, d)

As a second result, we prove the following

Theorem 2. Let X be a rationally elliptic space. Then, L0(X) = l0(X).

1 Preliminaries

In this section, unless otherwise stated, our ground field K is of characteristic
zero. The main references are [8] and [6].

1.1 Sullivan model

Let V =
⊕+∞

i=0 V
i be a graded K-vector space, TV the graded tensor algebra

on V , and ΛV = TV/I the free commutative graded algebra, where I is the
graded ideal generated by homogeneous elements of the form v⊗w−(−1)|v||w|w⊗
v for v, w ∈ V . Here and henceforth, | v | denotes the degree of v.

A Sullivan algebra is a free commutative differential graded algebra of the
form (ΛV, d), with V has a well-ordered basis {vα} such that dvα ∈ ΛV<α, with
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V<α being the subspace of V generated by {vβ, α < β}. Such an algebra is said
minimal if the differential satisfies :

Imd ⊆ Λ+V.Λ+V.

When V 0 = K and V 1 = 0 (i.e. (ΛV, d) is 1-connected), this is equivalent to :

d(V ) ⊆ Λ≥2V =
⊕
i≥2

ΛiV.

A (minimal) Sullivan model for a commutative differential graded algebra (A, d)
is a quasi-isomorphism (i.e. a morphism inducing an isomorphism in cohomol-
ogy)

m : (ΛV, d)
∼=−→ (A, d)

from a (minimal) Sullivan algebra (ΛV, d). It is well known [8, Proposition 12,2]
that any cdga (A, d) with H0(A) = K and H1(A) = 0 has a minimal Sullivan
model. In particular, for a path-connected topological space X, a Sullivan model
for X over Q is a Sullivan model for the singular cochain complex C∗(X;Q) :

m : (ΛV, d)
∼=−→ C∗(X;K).

Recall that X is said to be rationally elliptic if its rational cohomology and
rational homotopy are both finite-dimensional. In terms of its minimal Sullivan
model (ΛV, d), this means that dimH(ΛV, d) <∞ and dimV <∞.

Recall also that a finite-dimensional graded algebra A is said to be Poincaré
duality algebra over K if it is commutative and satisfies the following conditions:

(1) Am ∼= Kω for some integer m ≥ 0.

(2) For all p, the bilinear form Ap ⊗Am−p → Am ∼= K is a non-degenerate.

The generating element ω of degree m is called the fundamental class of A. As
a particular case of interest for our purposes, the cohomology H∗(X,Q) of any
rationally elliptic space X is a Poincaré duality algebra over Q [8]. We then say
that X is a Poincaré duality space over Q. The fundamental class, denoted ω,
of H∗(X,Q) is called the fundamental class of X, and its degree, denoted N , is
called the formal dimension of X (or of (ΛV, d)).

1.2 The evaluation map.

Let (A, d) be an augmented differential graded algebra (dga) over a field K,

and α : (P, d)
∼=−→ (K; 0) be a minimal semifree resolution of K [8]. This defines
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the differential graded complex (A,D), where A = Hom(A,d)((P, d), (A, d)) and
D, its differential, is given by :

D(f) = f ◦ d− (−1)|f |d ◦ f.

This induces, the map of complexes :

ev : (Hom(A,d)((P, d), (A, d)), D) −→ (A, d)

f 7−→ f(p)

where p ∈ P is a cocycle representing 1K.
The evaluation map of (A, d) is :

ev(A,d) := H(ev) : Ext(A,d)(K, (A, d)) −→ H(A, d).

Here, Ext(A,d)(K, (A, d)) = H(A,D), where Ext is the Eilenberg-Moore differ-
ential functor [6].

It is well known that ev(A,d) is independent of the choice of (P, d) and p [13,
14]. In particular, for any topological path-connected spaceX, evC∗(X;K) is called
the evaluation map of X over K. It is an homotopy invariant of X. Another im-
portant invariant is the K-formal dimension of X [6, §5], denoted fd(X,K), and
defined as the greatest integer r ∈ Z such that [ExtC∗(X;K)(K, C∗(X;K))]r 6= 0
or −∞ if ExtC∗(X;K)(K, C∗(X;K)) = 0. By [6, §Remark 1.3 ], fd(ΛV, d) =
fd(X,Q) for any minimal Sullivan model of X.

A Sullivan algebra (ΛV, d) is called a Gorenstein algebra if its dimension
fulfills dimExt(ΛV,d)(K, (ΛV, d)) = 1. It is well known that if dimV < ∞,
then (ΛV, d) is a Gorenstein algebra [6]. Moreover, ev(ΛV,d) 6= 0 if and only
if dimH(ΛV, d) < ∞ [13]. Thus, when dimV < ∞, (ΛV, d) is elliptic if and
only if ev(ΛV,d) 6= 0. The space X is said a Gorenstein space over Q if its model
(ΛV, d) is.

1.3 Spectral sequences

Our main references for spectral sequences are [12] and [8].
A spectral sequence consists in a sequence of differential bigraded vector

spaces E∗,∗r , together with a sequence of isomorphisms σr : E∗,∗r+1

∼=−→ H(E∗,∗r ).
That is, for any integer r, we have E∗,∗r = ⊕Ep,qr , and there is a linear map
dp,qr : Ep,qr −→ Ep+r,q−r+1

r , of degree +1 and bidegree (r, 1 − r), such that
dp+r,q−r+1
r ◦ dp,qr = 0. Thus, for any r ≥ 0, (E∗,∗r , d∗,∗r ) is a cochain complex.

A spectral sequence (E∗,∗r , d∗,∗r ) is said convergent if, for each pair (p, q),
there exists an integer r(p, q) such that Ep,qr = Ep,qr(p,q) holds for all r ≥ r(p, q).

We denote Ep,q∞ = Ep,qr(p,q).
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A filtration FA on a (commutative) differential graded algebra (dga) (A, d)
is defined as a family of graded subalgebras {F pA}, for p ∈ Z, linked by the
inclusions :

· · · ⊆ F p+1A ⊆ F pA ⊆ F p−1A ⊆ · · · ⊆ A,
such that dF pA ⊆ F pA for all integers p ∈ Z. Such an algebra is said a filtered
algebra and denoted (A,FA, d). Its filtration induces naturally a filtration on
H(A, d) given by :

F pH(A, d) = Im(H(F pA) −→ H(A)),

and a spectral sequence (E∗,∗r , dr) [8]. This spectral sequence is said convergent
to H(A, d) if Ep,q∞ ∼= Gp,qH(A, d) = F pH(A)/F p+1H(A). If this is the case, we
write :

Ep,q2 =⇒ Hp+q(A, d).

The filtration FA on a dga (A, d) is said to be bounded if, for each p, there
exist two integers s(p) and n(p) so that :

0 = F s(p)A ⊆ F s(p)−1A ⊆ · · · ⊆ Fn(p)A ⊆ A.

In such situation, the associated spectral sequence to (A,FA, d) converges to
H(A, d) [12]. Its zero-term is (Ep,q0 (A), d0) = (Gp,qA,Gd), and its first term is
(Ep,q1 (A), d1) = (Hp,q(GA,Gd), d1).

Below, we provide examples of spectral sequences that will be used in the
next section.

Consider a minimal Sullivan algebra (ΛV, d) and express the differential as
d = dk + dk+1 + . . . (where k ≥ 2 by minimality). Note that dk is also a
differential.

We filter ΛV as follows :

F p(ΛV ) = Λ≥pV, p ≥ 0. (7)

This is an increasing and bounded filtration, hence, it defines the algebraic
Milnor-Moore spectral sequence:

Ep,qk (ΛV ) = Hp,q(ΛV, dk) =⇒ Hp+q(ΛV, d). (8)

Next, consider the dga A = (Hom(ΛV,d)((ΛV ⊗ ΛsV, δ), (ΛV, d)), D), where
(ΛV ⊗ΛsV, δ) is a (ΛV, d)-semifree resolution of K [8]. The differential δ extends
that of ΛV by δ(sv) = v − sdv for all v ∈ V [4]. We filter A by :

F p(A) = {f ∈ A, | f(ΛsV ) ⊆ Λ≥pV }, p ≥ 0. (9)

This filtration gives rise to the algebraic Eilenberg-Moore spectral sequence [14]
(see also [15]) :

Ep,qk (A) = Extp,q(ΛV,dk)(K, (ΛV, dk)) =⇒ Extp+q(ΛV,d)(K, (ΛV, d)). (10)
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Remark 1. As defined, it is clear that the evaluation map ev(ΛV,d) preserves
the filtration (9) and (7). In particular, it induces a morphism between the
spectral sequences (4) and (2). That is, there is a sequence of differential graded
vector spaces, denoted Ep,qi (ev) : Ep,qi (A) → Ep,qi (ΛV ) for k ≤ i ≤ ∞, between
the corresponding pages.

In a similar way, we consider the minimal free model (TW, d) of the (com-
mutative) dga (A, d) [5] and again express the differential as d = dk +dk+1 + . . .
(where k ≥ 2 by minimality). Filtering TW by F p(TW ) = T≥p(W ) defines [5,
Proposition A.8] the following spectral sequence :

Ep,qk (TW ) = Extp,qH(TW,d)(K,K) =⇒ Extp+q(TW,d)(K,K) = H(TW, d). (11)

When (TW, d) designate the Adams-Hlton model of X [5], this spectral se-
quence is isomorphic to (1) (cf. [6, Remark 1.3]). As for Sullivan models, an
easy calculation shows that indeed Extp,qH(TW,d)(K,K).

Next, consider the dga B = (HomTW,d((TW ⊗ (K ⊕ sW ), δ), (TW, d)), D),
where (TW ⊗ (K⊕ sW ), δ) serves as a (TW, d)-semifree resolution of K [8]. The
differential δ which extends that of TW and is specifically given by δ(sv) =
v − sdv for all v ∈W (see [4, 8]). Additionally, filtering B by

F p(B) = {f ∈ B, | f(K⊕ sW ) ⊆ T≥pW}; p ≥ 0,

we obtain the following spectral sequence, introduced in [1] :

Ep,qk (B) = Extp,q(TW,dk)(K, (TW, dk)) =⇒ Extp+q(TW,d)(K, (TW, d)). (12)

Once again using the Adams-Hlton model of X, we see that (12) is isomorphic
to (6).

2 Proofs of the main results

Recall from the introduction that the R0-invariant introduced in [15] for any
simply connected finite-type CW-complex X is defined (with notations of §2)
in terms of (4) and (6) as follows :

R0(X) = R(ΛV, d) = sup{m | Em,∗∞ (A) 6= 0}.

This is indeed inspired from the definitin of the Toomer’s invariant of X, which
is defined in terms of (1) and (2) as follows:

e0(X) = e(ΛV, d) := sup{m | Em,∗∞ (ΛV ) 6= 0}.
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It is well known that when X is elliptic (and hence a Poincaré duality space),
e(ΛV, d) can be equivalently defined in terms of the fundamental class ω as
follows:

e(ΛV, d) = sup{m | ω can be represented by a cocycle in Λ≥mV }. (13)

Referring to [15, Remark 3.4], when dimV < ∞ (i.e. when (ΛV, d) is a
Gorenstein cdga), an equivalent definition of R(ΛV, d) is similarly given in terms
of the generating class Ω of Ext∗(ΛV,d)(K, (ΛV, d)) as follows :

R(ΛV, d) = sup{m | Ω can be represented by a cocycle in Fm(A)}, (14)

where A = Hom(ΛV,d)((ΛV ⊗ Λ(sV ), d), (ΛV, d)).
We now recall and prove our first main result.

Theorem 3. (Theorem 1) Let X be a rationally elliptic space. Then :

R0(X) = e0(X) = cat0(X).

Proof. First, note that since X is a Poincaré duality space over Q, it follows from
[7] that e0(X) = cat0(X). Let (ΛV, d) be a minimal Sullivan model of X. By
hypothesis, dimV <∞, and both (ΛV, dk) and (ΛV, d) are Gorenstein algebras
of the same formal dimension N , as established in [6, Theorem 5.2]. Therefore,
the first term of the spectral sequence (4), E∗,∗k (A) = Ext∗(ΛV,dk)(K, (ΛV, dk)),
is concentrated in a fixed bidegree (p, q) with p+ q = N . By the convergence of
(4), we have dimEp,q∞ (A) = 1. It follows that R(ΛV, d) is precisely the integer p.
For the remainder of the proof, we identify Ep,q∞ (A) with ExtN(ΛV,d)(K, (ΛV, d))

and denote by Ω0 := [f0] (resp. [Ω]) the unique generating class of Ep,qk (A) =
ExtN(ΛV,dk)(Q, (ΛV, dk)) (resp. of ExtN(ΛV,d)(K, (ΛV, d))).

Case 1 : Assume ev(ΛV,dk) 6= 0. Then (ΛV, dk) is an elliptic cdga [14]. By
homogeneity of dk, its fundamental class ω0 = ev(ΛV,dk)[f0] = [f0(1)], where
f0(1) ∈ (ΛpV )p+q. Note that the cocycle representing 1Q ∈ ΛV ⊗ Λ(sV ) is
necessarily 1 =: 1Q ∈ V 0 = Q. Therefore, e(ΛV, dk) = p. By [10, Theorem 5],
we conclude that e(ΛV, d) = p = R(ΛV, d).

Case 2 : Assume ev(ΛV,dk) = 0. In this case, (ΛV, dk) is not elliptic, but,

since dimV <∞ we still have dimHN (ΛV, dk) <∞. By [2, Theorem 2], there is
a unique basis element in HN (ΛV, dk) that survives to the term E∗,∗∞ (ΛV ). Since
(ΛV, d) is elliptic (and hence a Poincaré duality algebra) with formal dimension
N , we may identify the one-dimensional vector spaces E∗,∗∞ (ΛV ) and HN (ΛV, d).
Let ω denotes the generating element resulting from that identification and
put, using (13), e(ΛV, d) = p′ and (p′, q′), the associated bidegree i.e. such that

p′ + q′ = N . It results that E∗,∗∞ (ΛV ) = Ep
′,q′
∞ (ΛV ). Once again, since (ΛV, d)
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is elliptic, the evaluation map ev(ΛV,d) : Ext∗,∗(ΛV,d)(Q, (ΛV, d)) → HN (ΛV, d) is

non-zero. By Remark 1, the induced map E∗,∗∞ (ev) : E∗,∗∞ (A) → Ep
′,q′
∞ (ΛV ) is

also non-zero. It follows that E∗,∗∞ (A) = Ep
′,q′
∞ (A), and consequently, R(ΛV, d) =

p′ = e(ΛV, d).
QED

Next, we introduce the Ext-Ginsburg invariant L0(X) (cf. §1), defined in
the same spirit of the Ginsburg’s invariant l0(X), which was originally defined
using the spectral sequence (1) [9]. By the isomorphism between (1) and (2) [3,
Proposition 9.1], l0(X) has the following algebraic characterization :

l(ΛV, d) = sup{j ≥ 0 | dj 6= 0} = min{m | E∗,∗m+1(ΛV ) = E∗,∗∞ (ΛV )}

where dj denotes the differential on the j− th page in the spectral sequence (2).

For our more general setting, we define :

Definition 1. For a field K of arbitrary characteristic and a simply con-
nected finite type CW-complex X, the the Ext-Ginsburg invariant of X over K
is defined as :

LK(X) = sup{j | δj 6= 0},

where δj denotes the differential of the jth page of the spectral sequence (6)
with K replacing Q. Equivalently,

LK(X) = min{m | E∗,∗m+1 = E∗,∗∞ }.

When K = Q, using the minimal Sullivan model (ΛV, d) of X, we similarly
define :

L(ΛV, d) = sup{j | dj 6= 0} = min{m | E∗,∗m+1(A) = E∗,∗∞ (A)},

where δj denotes the differential on the j − th page of the spectral sequence
(4). By the isomorphism between (6) and (4) established in [15, Theorem 1.1],
we obtain the algebraic characterization of LQ(X) which we denote L0(X) as
follows:

L0(X) = L(ΛV, d).

We now reccal and prove our second main result.

Theorem 4. (Theorem 1.2) Let X be a rationally elliptic space. Then:

L0(X) = l0(X).
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Proof. Since (ΛV, d) is elliptic and a Gorenstein algebra, the evaluation map
ev(ΛV,d) is non-zero. Therefore, it induces a non-zero isomorphism of one-dimen-
sional spaces Ep,q∞ (ev) : Ep,q∞ (A) → Ep,q∞ (ΛV ) for some unique bidegree (p, q).
By Remark 1 and the definition of L0(X), this isomorphism is precisely

Ep,qL0(X)+1(ev) : Ep,qL0(X)+1(A)→ Ep,qL0(X)+1(ΛV ).

Thus, Ep,q∞ (ΛV ) = Ep,qL0(X)+1(ΛV ). By the definition of l0(X), we conclude that

l0(X) ≤ L0(X).
On the other hand, by the identifications made above,HN (ΛV, d) = Ep,q∞ (ΛV )

= Ep,ql0(X)+1(ΛV ) is generated by the fundamental class ω ∈ HN (ΛV, d). How-

ever, ω = [f(1)] = ev(ΛV,d)([f ]) for some [f ] ∈ ExtN(ΛV,d)(Q, (ΛV, d)) = Ep,q∞ (A).

By Remark 1, [f ] ∈ Ep,ql0(X)+1(A), so Ep,q∞ (A) = Ep,ql0(X)+1(A). Consequently, by

the definition of L0(X), we obtain L0(X) ≤ l0(X). QED

Remark 2. Using the spectral sequence (11) (resp. (12)), we may define
l0(X) (resp. L0(X)) in terms of the minimal free model (TW, d) of C∗(X,Q).
This model is obtained [5] as the dual bar construction Ω(TV, d) of the Adams-

Hilton model (TV, d)
'→ C∗(Ω(X),Q) of X. Recall that in (T (V ), d), each Vi

has a basis indexed by the i+ 1-cells of X.
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