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Abstract. Let B(X) be the algebra of all bounded linear operators on a complex Banach
space X with dimX ≥ 3. In this paper, we characterize the maps from B(X) into itself
which preserves the dimension of the local spectral subspace relative to {1} of the product of
operators. The form of the maps from B(X) into itself preserving the local spectral subspace
relative to {1} of the product of operators are also described.
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Introduction

Let X be a complex Banach space and let B(X) be the algebra of all bounded
linear operators on X with identity I. We denote by P(X) the set of all idem-
potent operators in B(X), and by X∗ the dual space of X. For each x ∈ X
and f ∈ X∗, we denote by x⊗ f the bounded linear operator on X defined by
(x ⊗ f)(y) = f(y)x for any y ∈ X. The operator x ⊗ f is of rank one when x
and f are nonzero and each rank one operator in B(X) can be written in such
form. Note that x ⊗ f is idempotent if and only if f(x) = 1, and that x ⊗ f
is nilpotent if and only if f(x) = 0. We denote by F1(X),P1(X) and N1(X)
the set of all rank one operators, the set of all rank one idempotent operators
and the set of all rank one nilpotent operators in B(X), respectively. The local
resolvent of A ∈ B(X) at a point x ∈ X, denoted by ρA(x), is the union of all
open subsets U of C for which there exists an analytic function f : U → X such
that (A− λ)f(λ) = x for every λ ∈ U . The local spectrum of A at x is defined
by σA(x) := C\ρA(x) and is a (possibly empty) closed subset of σ(A), the usual
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spectrum of A. In fact σA(x) 6= ∅ for all nonzero vectors x ∈ X precisely when
A has the single-valued extension property, abbreviated as SVEP. Recall that
an operator A is said to have SVEP provided that for every open subset U of
C the equation (A− λ)f(λ) = 0 has no non-trivial analytic solution f .

For a subset Ω ⊂ C and an operator A ∈ B(X), the local spectral subspace
A relative to Ω is

XA(Ω) := {x ∈ X : σA(x) ⊂ Ω},

which is a subspace of X. For more information about these notions one can see
the books [1, 7].
The set of all fixed points of A is defined by

F (A) := {x ∈ X : Ax = x}

and is a subspace of X too.

The study of maps on operator algebras preserving certain properties is a
topic that attracts the attention of many authors, for example see [2, 3, 4, 5]
and the references therein. In [4], Bourhim and Ransford proved that the only
additive map on B(X) preserving the local spectrum at any vector is nothing
else than the identity. Motivated by this result, Elhodaibi and Jaatit [5] showed
that an additive map φ : B(X)→ B(X) satisfies

Xφ(A)({λ}) = XA({λ}) for all A ∈ B(X) and λ ∈ C,

has the form φ(A) = A for all A ∈ B(X). This result has been generalized
in [3]. The authors studied the non-additive case, and gave the form of all
surjective maps φ : B(X) → B(X) satisfying Xφ(A)φ(B)({λ}) = XAB({λ}) for
all A,B ∈ B(X) and λ ∈ C.

Recently, Taghavi and Hosseinzadeh [12] characterized all surjective maps φ
on B(X) satisfying

dimF (φ(A)φ(B)) = dimF (AB) for all A,B ∈ B(X).

Motivated by these results, we determine the form of all unital surjective maps
φ from B(X) into itself satisfying

dimXφ(A)φ(B)({1}) = dimXAB({1}) for all A,B ∈ B(X).

Moreover, the form of surjective maps from B(X) into itself satisfying

Xφ(A)φ(B)({1}) = XAB({1}) for all A,B ∈ B(X),

have also been established.
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This paper is divided into four sections. In Section 2, we collect some aux-
iliary Lemmas and summarize some basic properties of the local spectral sub-
spaces. In section 3, we prove some identity principles in term of the dimension
of local spectral subspaces of the product of two operators. In section 4, we state
and prove our main results.

1 Local spectral subspace properties

The first Lemma summarizes some basic properties of the local spectrum
which will be used frequently.

Lemma 1. ([1, 7]) For an operator A ∈ B(X), vectors x, y ∈ X and a
scalar α ∈ C, the following statements hold:

(1) σA(αx) = σA(x) if α 6= 0, and σαA(x) = ασA(x);

(2) If Ax = λx for some λ ∈ C then σA(x) ⊂ {λ}. Furthermore if x 6= 0 and
A has SVEP then σA(x) = {λ};

(3) If B ∈ B(X) commutes with A, then σA(Bx) ⊂ σA(x);

(4) If A has SVEP and Ax = αy, then σA(y) ⊂ σA(x) ⊂ σA(y) ∪ {0}.

The following result gives an explicit identification of the local spectral sub-
space of rank one operators. We denote by ker(A) and Im(A) the kernel and
the range of A ∈ B(X), respectively.

Lemma 2. ([4, Lemma 2.3]) Let R ∈ F1(X) be a non-nilpotent operator
and let λ be a nonzero eigenvalue of R. Then

XR({0}) = ker(R) and XR({λ}) = Im(R).

If R is a rank one nilpotent operators we have the following Lemma.

Lemma 3. Let R ∈ F1(X) be a nilpotent operator and λ be a nonzero
scalar. Then

XR({0}) = X and XR({λ}) = {0}.

Proof. It is a consequence of the fact that σR(x) ⊂ σ(R) = {0} for all x ∈
X. QED

An operator A ∈ B(X) is a scalar operator if there exists α ∈ C such that
A = αI. The next Lemma is proved in [6] which gives an important identity
principle for this class of operators.
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Lemma 4. ([6, proposition 2.3]) Let A,B ∈ B(X) be non-scalar operators.
If AP ∈ P(X) \ {0} implies BP ∈ P(X) \ {0} for every P ∈ P1(X), then
B = αI + (1− α)A for some α ∈ C \ {1}.

Let x⊗ f and y ⊗ g be rank one operators in F1(X) for some x, y ∈ X and
f, g ∈ X∗. We define the relation ∼ on F1(X) by x ⊗ f ∼ y ⊗ g if and only if
either {x, y} or {f, g} is a linearly dependent set. Recall that two idempotents
P,Q ∈ P1(X) are said to be orthogonal if PQ = QP = 0. In this case we write
P ⊥ Q.

Lemma 5. ([8, Lemma 2.12]) Let P and Q be two rank one idempotent
operators. The following are equivalent:

(1) P ⊥ Q.

(2) There exist M,N ∈ N1(X) such that P ∼ N , P ∼ M , Q ∼ N , Q ∼ M
and N �M .

A map ψ : P1(X)→ P1(X) preserves orthogonality if for every pair P,Q ∈
P1(X) the relation P ⊥ Q implies ψ(P ) ⊥ ψ(Q). If ψ is bijective and P ⊥ Q⇔
ψ(P ) ⊥ ψ(Q) P,Q ∈ P1(X), then we say that ψ preserves orthogonality in
both directions. For maps that preserve rank one operators we refer to [9]. We
end this section by presenting a result of bijective maps from P1(X) into itself
preserving the orthogonality in both directions which is proved in [10, Theorem
2.4].

Lemma 6. Let X be an infinite-dimensional Banach space, and let φ :
P1(X) −→ P1(X) be a bijective map preserving orthogonality in both directions.
Then either there exists a bounded invertible linear or conjugate-linear operator
S : X → X such that

φ(P ) = SPS−1 for all P ∈ P1(X),

or there exists a bounded invertible linear or conjugate-linear operator S : X∗ →
X such that

φ(P ) = SP ∗S−1 for all P ∈ P1(X).

In the second case, X must be reflexive.

2 Identity principles

In this section, we introduce and prove some Lemmas which are useful for
the proof of the main results. The first one gives a necessary and sufficient
condition for equality among two operators in terms of the dimension of local
spectral subspaces.



On the local spectral subspace preservers 85

Lemma 7. Let A,B ∈ B(X) be such that

dimXAT ({1}) = dimXBT ({1}) for all T ∈ F1(X).

Then A = B.

Proof. Assume by the way of contradiction that there is a nonzero vector x ∈ X
for which Ax 6= Bx. Let f ∈ X∗ be a linear functional such that f(Ax) = 1
and f(Bx) 6= 1. By considering T = x ⊗ f , we obtain XAT ({1}) = 〈Ax〉 and
XBT ({1}) = {0}. Then dimXAT ({1}) = 1 and dimXBT ({1}) = 0, a contradic-
tion. QED

Lemma 8. Let A ∈ B(X) \ {I}. Then dimXAP ({1}) = 0 for every P ∈
P1(X) if and only if A ∈ CI.

Proof. The ’if’ part is easily verified since dimXλP ({1}) = 0 for every P ∈
P1(X) and for all scalar λ 6= 1. For the ’only if’ part, let A be a non-scalar
operator. Then there is a vector x ∈ X such that x and Ax are linearly inde-
pendent. So, we can find a linear functional f such that f(x) = f(Ax) = 1.
Setting P = x ⊗ f , we obtain dimXAP ({1}) = 1, a contradiction. This proves
the Lemma. QED

Lemma 9. Let A,B ∈ B(X) be non-scalar operators. If dimXAP ({1}) =
dimXBP ({1}), for all P ∈ P1(X), then there exists an α ∈ C \ {1} such that
B = αI + (1− α)A.

Proof. Let P ∈ P1(X). If AP ∈ P1(X), then dimXAP ({1}) = 1. By assumption
dimXBP ({1}) = 1. Since BP is a rank one operator, BP ∈ P1(X) \ {0}. The
assertion follows from Lemma 4. QED

Lemma 10. Let A,B ∈ B(X) be non-scalar operators. If dimXAR({1}) =
dimXBR({1}) for all R ∈ P1(X) ∪N1(X), then A = B.

Proof. Let A,B ∈ B(X) two non-scalar operators such that for all R ∈ P1(X)∪
N1(X), we have dimXAR({1}) = dimXBR({1}). By Lemma 9, there exists a
nonzero scalar α such that B = αI+(1−α)A. Since A is a non-scalar operator,
there exists a vector x ∈ X such that x and Ax are linearly independent. Let f
be a linear functional satisfying f(x) = 0 and f(Ax) = 1. By choosing R = x⊗f ,
we get

dimXAx⊗f ({1}) = dimX(αI+(1−α)A)x⊗f ({1}).

Since dimXAx⊗f ({1}) = 1 and (αI + (1−α)A)x⊗ f is a rank one operator, we
obtain (αI + (1−α)A)x⊗ f ∈ P1(X) \ {0} which implies that α = 0 and hence
A = B. QED



86 Y. Bouramdane, M. E. El Kettani, A. Lahssaini

The idea of the last Lemma in this section comes from [6, Proposition 2.7],
which is a characterization of the relation ∼ in term of the local spectral sub-
spaces.

Lemma 11. Let A1, A2 ∈ B(X) be linearly independent rank one operators.
Then the following are equivalent:

(1) A1 ∼ A2;

(2) There is a rank one operator B ∈ B(X) such that {B,Ai} is linearly
independent for i = 1, 2, and for each T ∈ B(X)

dimXζAiT ({1}) = 0, for all i = 1, 2, and ζ ∈ C =⇒ dimXBT ({1}) = 0.

Proof. Let A1 = x ⊗ f and A2 = y ⊗ g for some x, y ∈ X and f, g ∈ X∗.
Assume that A1 ∼ A2, then there exists a nonzero scalar λ such that y = λx
or g = λf . If g = λf , we can write A2 = y ⊗ f . Note B = A1 + A2, since
A1 and A2 are linearly independent, B is linearly independent of Ai , i = 1, 2.
Moreover, if for every T ∈ B(X) and ζ ∈ C, dimXζAiT ({1}) = 0 for i = 1, 2
. Then ζf(Tx) 6= 1 and ζf(Ty) 6= 1. Which implies that f(Tx) = f(Ty) = 0.
Hence f(T (x+ y)) = 0. Thus dimXBT ({1}) = 0. In the case where x and y are
linearly dependent, the same process leads to the same conclusion.
Conversely, in order to obtain a contradiction assume that A1 = x⊗f and A2 =
y⊗g are rank one operators such that x, y and f, g are linearly independent, and
there exists a rank one operators B = u⊗k which satisfies the second condition.
We show that k is a linear combination of f and g. If it is not the case, we can find
a vector z ∈ X such that k(z) 6= 0, and f(z) = g(z) = 0. Moreover, we can find
an operator T ∈ B(X) satisfying Tu 6= 0 and Tx, Ty, Tu ∈< z >. It follows that
f(Tx) = g(Ty) = 0 and k(Tu) = 1. Which leads to dimXAiT ({1}) = 0, i = 1, 2
and dimXBT ({1}) = 1, a contradiction. With a similar reasoning we show that
u is a linear combination of x and y. So, we can write B = (λx+µy)⊗(αf+βg).
Consider η and ν any complex numbers. Since f and g are linearly independent,
we can find w1, w2 ∈ X such that f(w1) = 0, g(w1) = η, f(w2) = ν, and
g(w2) = 0. Since x and y are linearly independent we can also find an operator
T ∈ B(X) such that Tx = w1 and Ty = w2. Then

0 = k(Tu) = (αf + βg)(λTx+ µTy) = αµν + βλη

which implies that αµ = βλ = 0. Thus B is multiple either of A1 or A2, a
contradiction. QED

3 Main results and proof

The first promised main results of this section is the following Theorem.
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Theorem 1. Let X be an infinite dimensional Banach space. If a surjective
unital map φ : B(X)→ B(X) satisfies

dimXφ(A)φ(B)({1}) = dimXAB({1}) for all A,B ∈ B(X), (1)

then there exists an invertible operator S ∈ B(X) such that φ(A) = SAS−1 for
all A ∈ B(X).

Proof. Assume that φ is a surjective map from B(X) into itself satisfies (1). We
divide the proof into several steps.

Step 1. φ(0) = 0 and φ is injective.
Assume that φ(0) 6= 0, then there exists x ∈ X such that φ(0)x 6= 0. Let f

be a linear functional satisfying f(φ(0)x) = 1. Since φ is surjective, there exists
A ∈ B(X) such that φ(A) = x⊗ f . By hypothesis and Lemma 2, we obtain

0 = dimX0({1})
= dimX0A({1})
= dimXφ(0)x⊗f ({1}) = 1.

This contradiction proves that φ(0) = 0.
Let A,B ∈ B(X) such that φ(A) = φ(B). By (1), we have

dimXAT ({1}) = dimXφ(A)φ(T )({1})
= dimXφ(B)φ(T )({1})
= dimXBT ({1}),

for all T ∈ B(X). Thus by Lemma 7 A = B, which proves that φ is injective.
Thus φ is bijective, since it is assumed to be surjective. Moreover φ−1 satisfies
the equation (1) too.

Step 2. φ preserves rank one operators in both directions.
Let R ∈ B(X) be a rank one operator. Assume φ(R) is of rank greater than

2. Then there exist linearly independent vectors y1 and y2 in the range of φ(R).
Let x1, x2 ∈ X such that φ(R)(x1) = y1 and φ(R)(x2) = y2. Note that x1 and
x2 are linearly independent too. We can find a finite rank operator B ∈ B(X)
satisfying By1 = x1 and By2 = x2. Since φ is surjective, there exists A ∈ B(X)
such that φ(A) = B. Thus, we have Bφ(R)(x1) = x1 and Bφ(R)(x2) = x2 which
imply that

x1, x2 ∈ XBφ(R)({1})

and so
dimXAR({1}) = dimXBφ(R)({1}) ≥ 2.
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Which contradicts the fact that dimXAR({1}) ≤ 1. Therefore, the rank of φ(R)
is less than 1. Since φ(0) = 0, we have φ(R) of rank one.
Since φ−1 satisfies the equality (1), we conclude that φ preserves rank one op-
erators in both directions.

Step 3. φ preserves rank one idempotent operators in both directions.
Let x ∈ X and f ∈ X∗ be such that f(x) = 1. By the previous step, we can

find y ∈ X and g ∈ X∗ such that φ(x⊗f) = y⊗g. Thus by hypothesis, we have

1 = dimXx⊗f ({1})
= dimXy⊗g({1}).

Which implies that g(y) = 1. Then φ(x⊗ f) = y ⊗ g is a rank one idempotent
operator.

Step 4. φ(βI) = γ(β)I for all β ∈ C, where γ is bijective function on C.
By Lemma 8 and the first step, the assertion is true. Moreover since φ is

bijective, we conclude that γ is bijective and this completes the proof.

Step 5. φ(βP ) = δ(β)φ(P ) for every rank one idempotent P and for all
β ∈ C, where δ is a bijective function on C.
To do that, consider a rank one idempotent P ∈ P1(X) and a nonzero scalar
β ∈ C. It follows by (1), that dimXφ(βP )φ(β−1I)({1}) = 1. This holds only if
φ(βP )φ(β−1I) ∈ P1(X). By the previous step, φ(βP )φ(β−1I) = γ(β−1)φ(βP ).
It remains to show that γ(β−1)φ(βP ) = φ(P ) for all β ∈ C\{0}. Since φ(I) = I,
it is enough to prove the last equality for all β ∈ C \ {0, 1}. Assume that
γ(β−1)φ(βP ) 6= φ(P ) for some β ∈ C \ {0, 1}. Since both operators are rank
one idempotent, we can write γ(β−1)φ(βP ) = x ⊗ f and φ(P ) = y ⊗ g with
f(x) = g(y) = 1. In order to obtain a contradiction, let us discuss the following
two cases.
Case 1. x and y are linearly dependent.
Without loss of generality, we can assume that x = y. Let us prove that f and
g are also linearly dependent. If is not true, let u ∈ X be such that g(u) = 1
and f(u) = γ(β−1). We have

dimX(u⊗g)(x⊗g)({1}) = dimXu⊗g({1}) = 1,

which implies that
dimXφ−1(u⊗g)P ({1}) = 1. (2)

On the other hand

dimX(u⊗g)(γ(β−1)−1x⊗f)({1}) = dimX(γ(β−1)−1u⊗f)({1}),
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which gives that

dimXφ−1(u⊗g)βP ({1}) = 1. (3)

Combining (2) and with (3), we get a contradiction since β /∈ {0, 1}.
Case 2. x and y are linearly independent. If f(y) 6= 0, let h ∈ X∗ be such that
h(x) = (γ(β−1)−1f(y))−1 and h(y) = 1. We have

dimX(y⊗h)(y⊗g)({1}) = dimXy⊗g({1}) = 1.

Which implies that

Xφ−1(y⊗h)P ({1}) = 1. (4)

On the other hand

dimX(y⊗h)(γ(β−1)−1x⊗f)({1}) = dimXf(y)−1y⊗f ({1}) = 1

thus, by hypothesis

dimXφ−1(y⊗h)βP ({1}) = 1. (5)

Combining (4) and (5), we get a contradiction because β /∈ {0, 1}. With a similar
reasoning, we get a contradiction when g(x) 6= 0. Suppose that f(y) = g(x) = 0,
and let A = y ⊗ g + γ(β−1)x⊗ f . Then

dimXAy⊗g({1}) = 1 and dimXA(γ(β−1)−1x⊗f)({1}) = 1.

Thus, we obtain

dimXφ−1(A)P ({1}) = 1 and dimXφ−1(A)βP ({1}) = 1,

which is a contradiction, since β /∈ {0, 1}.
Define for β ∈ C \ {0}, δ(β) = γ(β−1)−1 and δ(0) = 0. This completes the

proof of this step.

Step 6. φ preserves rank one nilpotent operators in both directions (N ∈
N1(X)⇔ φ(N) ∈ N1(X)). Moreover φ(βN) = δ(β)φ(N) for every N ∈ N1(X)
and for all β ∈ C.

Let N be a rank one non-nilpotent operator. For x ∈ X and f ∈ X∗ with
f(x) 6= 0 let us write N = x⊗ f . By (1) and Step 4, we have

1 = dimXf(x)−1N ({1}) = dimXγ(f(x)−1)φ(N)({1}).

By Step 2, φ(N) is a rank one operator, consequently γ(f(x)−1)φ(N) is a rank
one idempotent. Therefore, φ(N) is not nilpotent. Since φ−1 satisfies (1), we
conclude that φ preserves rank one nilpotent operators in both directions.
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For the second part, let N be a rank one nilpotent operator and β ∈ C. Then
we have

dimXβNP ({1}) = dimXφ(βN)φ(P )({1})
= dimXφ(N)φ(βP )({1})
= dimXδ(β)φ(N)φ(P )({1}),

for every P ∈ P1(X). By Lemma 4, there exists a scalar α 6= 1 such that
φ(βN) = αI+ (1−α)δ(β)φ(N). Since φ(N) is a rank one operator, then α = 0.
Thus φ(βN) = δ(β)φ(N), as desired.

Step 7. φ preserves the orthogonality of rank one idempotent operators in
both directions.

First, we show that R1 ∼ R2 ⇔ φ(R1) ∼ φ(R2) for every operators R1, R2 ∈
N1(X) ∪ P1(X). Indeed, if R1 ∼ R2 by Lemma 11 there is a rank one operator
B linearly independent of R1 and linearly independent of R2, and for every
T ∈ B(X)

dimXRiT ({1}) = 0, i = 1, 2⇒ dimXBT ({1}) = 0.

Hence φ(B) is a rank one operator linearly independent of φ(Ri), i = 1, 2.
Indeed, if it is not then there exists a scalar α such that φ(B) = αφ(Ri) =
δ(β)φ(Ri) = φ(βRi). Which contradicts the fact that B and Ri are linearly
independent for i = 1, 2. By the surjectivity of φ and (1) we get φ(R1) ∼ φ(R2).

Let P , Q be rank one idempotent operators such that PQ = QP = 0.
Then by Lemma 5 there exist M,N ∈ N1(X) such that P ∼ N , P ∼ M ,
Q ∼ N , Q ∼ M and N � M . Therefore φ(M), φ(N) ∈ N1(X) such that
φ(P ) ∼ φ(N), φ(P ) ∼ φ(M), φ(Q) ∼ φ(N), φ(Q) ∼ φ(M) and φ(N) � φ(M).
Thus φ(P )φ(Q) = φ(Q)φ(P ) = 0. So φ preserves the orthogonality of rank one
idempotent operators in both directions.
Combining Step 3, Step 6, and Lemma 6 we infer that φ takes one of the
following forms:

(1) There exists a bounded invertible linear or conjugate-linear operator S :
X → X such that

φ(P ) = SPS−1, P ∈ P1(X).

(2) X is reflexive, and there exists a bounded invertible linear or conjugate-
linear operator S : X∗ → X such that

φ(P ) = SP ∗S−1, P ∈ P1(X).
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Let N be a nilpotent operator of rank one, suppose that the first form occurs.
Since dimXA({1}) = dimXTAT−1({1}) for every operator of finite rank A and
every bijective operator T ∈ B(X). Then for every idempotent operator of rank
one P , we have

dimXφ(N)φ(P )({1}) = dimXNP ({1})
= dimXSNPS−1({1})
= dimXSNS−1SPS−1({1})
= dimXSNS−1φ(P )({1}).

By Lemma 9 and Step 3 we obtain φ(N) = αI + (1 − α)SNS−1 for some
α ∈ C \ {1}. Step 6, implies that φ(N) is a nilpotent operator of rank one.
Hence α = 0, as desired. If the second form occurs, then with a similar way we
can prove that φ(N) = SN∗S−1.

Step 8. φ takes the desired forms.
Assume that there exists a bounded invertible linear or conjugate-linear operator
S such that

φ(P ) = SPS−1, P ∈ P1(X).

We discuss the following two cases.
Case 1. φ(A) = SAS−1 for every non-scalar operator A ∈ B(X).

Let A be a non-scalar operator. For every R ∈ P1(X) ∪N1(X), we have

dimXφ(A)φ(R)({1}) = dimXAR({1})
= dimXSARS−1({1})
= dimXSAS−1SRS−1({1})
= dimXSAS−1φ(R)({1}).

Now by Lemma 10, Step 3, and Step 6 we obtain φ(A) = SAS−1 for all non-
scalar operators A ∈ B(X).
Case 2. φ(βI) = S(βI)S−1.

Let x⊗f be an idempotent operator of rank one for some x ∈ X and f ∈ X∗,
and let β be a nonzero complex number. By Step 4 and Case 1, we have

1 = dimXβI.β−1x⊗f ({1}) = dimXγ(β)Sβ−1x⊗fS−1({1}).

If S is linear, we obtain

1 = dimXγ(β)β−1Sx⊗fS−1({1}).

If S is conjugate linear, we obtain

1 = dimX
γ(β)β−1Sx⊗fS−1({1}).
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Which imply that γ(β) = β or β. Therefore, φ(βI) = γ(β)I = S(βI)S−1.
The second part can not occur because by a similar way, we may show that
φ(A) = SA∗S−1 for every A ∈ B(X). Such a form does not satisfy the condition
(1) and this completes the proof. QED

The following is finite-dimensional part of our main result, however, here
we obtain similar conclusions without assuming unitarity of φ. By Mn(F) we
denote the algebra of all n× n matrices with entries in F.

Theorem 2. Let n ≥ 3. Then a surjective map φ : Mn(F)→Mn(F) satisfies
that

dimXφ(A)φ(B)({1}) = dimXAB({1}) for all A,B ∈ B(X), (6)

if and only if there exists a field automorphism ξ : F → F, a function k :
Mn(F)→ F∗ and an invertible matrix T ∈Mn(F) such that φ(A) = k(A)TAξT

−1

for all A ∈Mn(F), where Aξ = [ξ(aij)] if A = [aij ].

Proof. Applying [10, Theorem 2.3] and [11, Theorem 4.7] and using similar
argument as above, we get the desired result. QED

The following is a consequence of Theorem 1.

Theorem 3. Let X be an infinite dimensional Banach space with dimX ≥
3. Then a surjective map φ : B(X)→ B(X) satisfies

Xφ(A)φ(B)({1}) = XAB({1}) for all A,B ∈ B(X) (7)

if and only if φ(A) = ±A for all A ∈ B(X).

Proof. It is not difficult to see that φ(I) = ±I. Assume that φ(I) = I. By
Theorem 1, there exists an invertible operator S ∈ B(X) such that φ(A) =
SAS−1 for all A ∈ B(X). It remains to prove that, S is a scalar operator.
Indeed, φ satisfies the equation (7) then it satisfies the equation (1). Again by
Theorem 1 we have φ(A) = ±SAS−1 for all A ∈ B(X). Let x ∈ X be a nonzero
vector, then there exists f ∈ X∗ such that f(x) = 1. Take A = x⊗ f and note
that

〈Ax〉 = XA({1}) = Xφ(A)φ(I)({1}) = XSAS−1({1}) = 〈SAx〉.

Consequently, Ax and SAx are linearly dependent for every x ∈ X. Then S is
a scalar operator.
If φ(I) = −I, a similar discussion by changing φ by −φ leads to prove that Ax
and SAx are linearly dependent for every x ∈ X. Then S is a scalar operator
in this case too, which completes the proof. QED
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