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Abstract. In the paper, we study the blow-ups at singular points of a singular K3 surface and
analyze the change in the Picard group during this process. Our aim is to produce examples
of such surfaces that serve as the base of Seifert fibrations, carrying a non-Kähler complex
structure with a trivial canonical bundle. These spaces can be explicitly identified up to a
diffeomorphism and are natural candidates for solutions of the Hull-Strominger system.
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1 Introduction

Many complex non-Kähler spaces appear as fibrations over a Kähler base.
One of the first such examples was Calabi-Eckmann manifolds [3], which are
principal toric bundles over a product of projective spaces. Since then, a toric
bundle construction has been used to produce various special metrics in Hermi-
tian geometry ([10, 11, 6, 7]). One particular construction, due to Goldstein and
Prokushkin [10], uses a K3 surface as a base. This makes the total space of a
principal 2-torus bundle over it a complex 3-fold with trivial canonical bundle.

Based on the example in [10], Fu and Yau [8, 9] constructed the first example
of solution of the equations in String Theory, called Hull-Strominger system
([20], [13]), which has non-constant dilaton.
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These spaces are diffeomorphic up to a finite cover to one of S1]21(S2 ×
S3) or ]20(S2 × S4)]21(S3 × S3). Using Fu-Yau methods, but over singular K3
surfaces, solutions for the Hull-Strominger system were found in [7] on spaces
diffeomorphic to S1]k(S

2 × S3) or ]r(S
2 × S4)]r+1(S3 × S3) for all 13 ≤ k ≤

21, 14 ≤ r ≤ 20.
This note is the first part of a project to construct more solutions with dif-

ferent topology using Fu-Yau ansatz. In particular, we find examples of singular
K3 surfaces with an appropriate divisors allowing to construct smooth complex
threefolds, which have the similar topology, but for 3 ≤ k ≤ 21, 4 ≤ r ≤ 20.
The detailed proof of the diffeomorphism type and the problem for existence of
solutions of the Hull-Strominger system on these spaces is given in a preprint
by the second author [17].

2 Preliminaries

In this Section, we collect the main definitions and basic properties of the
specific singular algebraic surfaces in weighted projective spaces which we’ll
utilize later. We focus on the properties of blow-ups of singular points. Most of
the results are well-know, but we present the proofs for reader’s convenience.
We start with the following definition which specifies the surfaces we consider
in this paper:

Definition 2.1. A singular K3 surface X is a complex surface with only
isolated singularities which form a set Σ = {p1, ..., pk}, such that H1(X,OX) = 0
and ωX ∼= OX , where ωX := i∗ωX\Σ, i : X \ Σ→ X is the inclusion, and ωX\Σ
is the canonical bundle sheaf of X \ Σ.

In particular the singular points are Du Val singularities. We’ll be interested
in even more specific surfaces with only An-singularities.

Definition 2.2. An An singularity in a complex surface X is a singular
point p ∈ X such that there is a neighborhood W of p, where W ∼= A2

C/Zn+1,
or equivalently, W ∼= V (x2 + y2 + zn+1).

By the adjunction formula over weighted projective spaces (see [5] Theorem
3.3.4) for quasi smooth complete intersection of multi degree X = Xd1,...,dk ⊂
P(a0, ..., an), we have

ωX = OX(Σidi + Σiai).

In particular, for hypersurfaces in a weighted projective 3-space, Miles Reid
provided a classification of all singular K3 surfaces which contain 95 families
(see [14], p. 138-140). In these cases, the only type of singularities which appear
are Du Val of type An.
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Remark 2.1. One of the most general forms of blow-up is [19]. We will use
a specific case called an embedded blow-up of a point in a surface, which is the
following. Let X be a complex algebraic surface and let p ∈ U ⊂ X be an affine
neighborhood of p, so there is an embedding U ↪→ A3

C. We take A3
C and perform

the blow-up at the origin, giving us π : Ã3
C → A3

C. We have a map U \{p} ↪→ Ã3
C

and we take the closure of the image and we denote that as Ũ . Observe that
U \ {p} ∼= Ũ \π−1(p), so we can glue the schemes Ũ and X \ {p} and we denote
that X̃.

We now will explain how the blow-up of Du Val An singularities appear
locally. This will help us detect the divisors that appear after the blow-ups and
do explicit calculations of intersections of these divisors.

Lemma 2.1. Let X be a complex surface with an An-type singularity at p,
and let π : X̃ → X be the blow-up of X at p as in Remark 2.1. Then we have
an affine cover of the exceptional divisor {Du, Dv, Dw} where

OX̃(Du) =
C[ vu ,

w
u , x](

1 +
(
v
u

)2
+
(
w
u

)n+1
xn−1

) ,
OX̃(Dv) =

C[uv ,
w
v , y]((

u
v

)2
+ 1 +

(
w
v

)n+1
yn−1

) ,
and

OX̃(Dv) =
C[ uw ,

v
w , z]((

u
w

)2
+
(
v
w

)2
+ zn−1

) .
Moreover, the exceptional divisor has the following forms: when n = 1 we have

π−1(p) ∼= {u2 + v2 + w2 = 0} ⊂ P2,

and when n > 1 we have

π−1(p) ∼= {(u+ iv)(u− iv) = 0} ⊂ P2.

Proof. Since blowing up is local, assume p = (0, 0, 0) in Spec(C[x, y, z]), so that
the An singularity is given by x2 + y2 + zn+1 = 0.

Let A = C[x, y, z]/(x2 + y2 + zn+1) and form the graded ring A[u, v, w] =
A⊗C C[u, v, w].

Then the blow-up is

Proj
(
A[u, v, w]/(xv − yu, xw − zu, yw − zv)

)
,
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which embeds in Spec(A)× P2. On the affine chart D+(u), writing y = v
ux and

z = w
u x yields

x2
(

1 +
(v
u

)2
+
(w
u

)n+1
xn−1

)
= 0.

Analogous expressions hold on D+(v) and D+(w). The exceptional divisor cor-
responds to x = 0 (or y = 0, or z = 0), so on D+(u) the defining equation
becomes

1 +
(v
u

)2
+
(w
u

)n+1
xn−1 = 0.

For n = 1, setting x = 0 gives

1 +
(v
u

)2
+
(w
u

)2
= 0,

which in homogeneous coordinates is equivalent to

u2 + v2 + w2 = 0.

For n > 1, the term involving xn−1 drops out, and similar arguments yield

1 +
(v
u

)2
= 0,

so that in projective coordinates the exceptional divisor is

u2 + v2 = (u+ iv)(u− iv) = 0.

QED

Remark 2.2. With the notation above in the case where An has n > 1,

the ideal sheaf (̃v) corresponds to (n − 1)C where C is one of the irreducible

components in the exceptional divisor. We compute (̃v) · C ′ = i∗C′ (̃v) = OC′(1)
and C ′ ∼= P1

C, so (n − 1)C · C ′ = 1 meaning that (n − 1)C is the minimal
multiple of C to be Cartier, this also applies to C ′, that is (n− 1)C ′ is Cartier.
See Remark 3.1.

Du Val singularities are characterized by preserving the canonical bundle by
the pullback of a blow-up. It is important for us to have this feature because
this ensures that after any partial resolution of a singular K3 surface with a Du
Val singularity we still have a K3 surface.

Lemma 2.2. Let X be a K3 surface with an An singularity at p ∈ X, and
let π : X̃ → X be a blow-up at p as in Remark 2.1. Then KX̃ = π∗KX = 0,
where KX denotes the canonical divisor of X.
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Proof. The proof is in [18] in subsection (1.9) in pages 351 and 352 for a more
general case. Essentially we have the expression KX̃ = σ∗KX + (n − k)E, and
in our case n = k = 2. QED

Lemma 2.3. Let X be a complex algebraic surface with at worst finite An
singularities. Let π : X̃ → X be a blow-up as in Remark 2.1 at a singular point
p ∈ X. Then we have the exact sequence

0→ Pic(X)→
π∗
Pic(X̃)→

i∗B
Pic(B)→ 0

where B := π−1(p) is the exceptional divisor of the blow-up π : X̃ → X, and
iB : B → X̃ is the inclusion of the exceptional divisor. Moreover, when the
singularity at p ∈ X is of type An with n > 1 we have

Pic(X̃) ∼= Pic(X)⊕ Z2,

and when it is of type A1 we have

Pic(X̃) ∼= Pic(X)⊕ Z.

Proof. In the case that the singularity at the point p ∈ X is of type An with
n > 1 we have that B is two projective lines C ∪ C ′ intersecting transversally
at a point, so Pic(B) = {(OC(n),OC′(m)|n,m ∈ Z} ∼= Z ⊕ Z. The morphism
i∗B is the pullback of the inclusion iB : B → X̃, and π∗ is of the blow-up map
projection. We can write the map i∗B(D) = (D · C,D · C ′).

Firstly, we prove that i∗B is surjective. Let p ∈ W ⊂ X such that W ∼=
V (xy + zn+1) and p is the origin. In π−1(W ) ⊂W × P2, we have two lines ` :=
(0, y, 0; 0 : 1 : 0) and `′ := (x, 0, 0; 1 : 0 : 0) which each intersect the components
C,C ′ respectively at the points (0, 0, 0; 0 : 1 : 0) and (0, 0, 0; 1 : 0 : 0). These
points are not rationally equivalent in B, so the lines `, `′ are not rationally
equivalent. We can take their projective closure, since we have an embedding
X̃ ⊂ PN . The projective closure are projective lines ¯̀, ¯̀′ in X̃. Both of these
closures are isomorphic to P1. This is because ` lies in an affine open set of
PN , and an affine open is dense in PN . So ¯̀ embeds to a projective line in PN .
Locally in π−1(W ) these lines do not pass trough the singular point in B, but
their point at infinity might pass through another Am singularity in X̃. In that
case we just take L := m¯̀ and L′ := m′ ¯̀′, so L,L′ are Cartier, and L · C = 1,
L′ · C ′ = 1. Thus i∗B(L) = (1, 0) and i∗B(L′) = (0, 1).

Secondly, we prove that π∗ is the kernel of i∗B. So let L̃ ∈ Pic(X̃) such that

i∗B(L̃) = O
X̃

. This means that we can find a Cartier divisor (Uk, fk) (such that
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Dw, Dv, Du ∈ {Uk} and otherwise Uk ∩B = ∅) that is associated to L̃ such that
the pullback

(Uk ∩ C, i∗Cfk) = (Uk ∩ C, fk ◦ iC) = (Uk ∩ C,αk)

where αk ∈ C×. We define now a Cartier divisor L over X over the cover
{π(Uk),W | Uk 6= Dw, Dv, Du} by (π(Uk), gk) where gk(q) = fk(q) for q 6= p
and gk(p) = αk. Thus, we get π∗L ∼= L̃ since the transition functions over every
open set contained in X̃ \B are the same as in X \{p}, and a transition function
over U ⊂ X̃ containing B is constant in B.

Now, consider the case when the singularity at the point p ∈ X is of type A1.
The ideal sheaf generated by w in X̃, I(w) is, locally, two rationally equivalent
lines ` = {(x, 0, 0; 1 : 0 : 0)} and `′ = {(0, y, 0; 0 : 1 : 0)} i.e. I∗(w) = `+ `′ as Weil
divisors. Now, when we compute the intersection product I∗(w) ·E, E being the

exceptional divisor, we get 2 = I∗(w) · E = (` + `′) · C = ` · C + `′ · C, so that

` · C = `′ · C = 1. Note, `’s point at infinity may be a singular point, so there
is a minimal integer such that L := m¯̀ is a Cartier divisor over X̃. The exact
same argument follows as before.

We want to explain the splitting of the group

Pic(X̃) ∼= Pic(X)⊕ Pic(B).

We can identify the generators of group Pic(B) in Pic(X̃) with L,L′ ∈ Pic(X̃)
as defined previously, so we have the maps

Pic(B)
∼→ 〈L,L′〉 → Pic(X̃)

i∗B→ Pic(B).

Note that the composition of all these arrows give us the identity of Pic(B),
so the sequence splits. The other case, where Pic(B) is generated by only one
element, follows by the same argument. QED

This lemma also proves that any partial resolution of An singularities via
blow-ups π : X̃ → X has an exact sequence 0 → Pic(X) → Pic(X̃) →
Pic(π−1(Σ)) → 0 where Σ ⊂ X is the set of singular points. In addition, we
have isomorphisms Pic(X̃) ∼= Pic(X)⊕ Pic(π−1(Σ)) ∼= Pic(X)⊕ ZN where N
is the sum the n’s in the An of the singularities that we are blowing-up. It also
points in the direction of a later theorem because an increase in the rank of the
Picard group means that b2 will increase by the same amount.

The following lemma is more a feature of the theory, but it will justify some
of the intersections of divisors later.
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Lemma 2.4. Let X be a complex algebraic surface with at worst a finite
number An singularities. Let π : Xsm → X be a minimal desingularization of
the surface. Then for L ∈ Pic(X), D the Weil divisor of a smooth curve on X,
and D̃ the proper preimage of D with respect to π:

L ·D = π∗L · D̃.

Proof. We have an inclusion morphism iD̃ : D̃ → Xsm, the inclusion morphism

iD : D → X, and the restriction of π over D̃, say ρ : D̃ → D which is an
isomorphism since D is smooth. Note that π ◦ iD̃ = iD ◦ ρ.

Now, we have

π∗L · D̃ = i∗
D̃

(π∗L) = (π ◦ iD̃)∗L = (iD ◦ ρ)∗L = ρ∗(i∗DL) ∼= L ·D,

and the last isomorphism is given by the fact that ρ is an isomorphism. QED

Corollary 2.1. Let X be a complex K3 orbisurface with at worst finite An
singularities say {An1 , ..., Anj}. Then

χtop(X) = 24−
j∑
i=1

ni,

moreover

b0 = b4 = 1, b1 = b3 = 0, and b2 = 22−
j∑
i=1

ni.

Proof. Firstly, observe that χ(X,OX) = 2 by the fact that Dolbeault isomor-
phism is still true for orbifolds [1]. Indeed, H2(X,OX) ∼=
H0(X,ωX) ∼= H0(X,OX) ∼= C, and H1(X,OX) = 0 by definition of K3 surface.
So we have 2 = 1

12 (χtop(X) +
∑

i ni).

Now, the Hodge numbers are hi,j = dimHj(X,Ωi
X), hi,j = hj,i, and bk =∑

i+j=k h
i,j . Thus, b1 = h0,1 + h1,0 = 2h0,1 = 2dimH1(X,OX) = 0 and by

Poincaré duality b1 = b3. Similarly, b0 = dimH0(X,OX) = 1 and b0 = b4.
Finally, χtop(X) = 2 + b2, thus b2 = 22−

∑
i ni. QED

3 Main result

In Miles Reid’s list of singular 95 K3 surfaces (see [14], p. 138-140), the
singularities determine the rank of the Picard group of the smooth resolution
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of the generic member. In this section, we’ll use an example which has largest
such group.

We start with:

Theorem 3.1. Let X be an integral Q-Cartier complex orbisurface with
only An isolated singularities, let π : X̃ → X be a chain of blow-ups of singular
points as in Remark 2.1 with one An with n > 1, and let H̄ ∈ Pic(X) ⊗ Q
be an ample divisor and keep the notation H̄ for its pullbacks throughout the
chain of blow-ups. Then there is an ample rational divisor E ∈ Pic(X̃)⊗Q, and
non-zero D,D′ ∈ Pic(X̃) such that D,D′ are primitive with respect to E , i.e.
D · E = 0,D′ · E = 0.

Remark 3.1. Note that since we are assuming that X is Q-Cartier we
have that for any Weil divisor D in X there is a k ∈ Z such that OX(nD) is
an invertible sheaf or a Cartier divisor since X is assumed to be integral, so
we will denote OX(nD) just as nD. This means that the groups Cl(X)⊗Q ∼=
Pic(X)⊗Q. We call the elements of Pic(X)⊗Q rational divisors.

Proof. We only need to check the case when the last blow-up ϕ : X̃ → Y in the
chain of blow-ups π : X̃ → X is of an An singularity with n > 1. We consider
the divisors to be of the form:

E :=
k(an− b)(bn− a)

(n− 1)Ē · H̄
(ϕ∗Ē)− aC − bC ′,

D := H̄ − k(bn− a)C,

D′ := H̄ − k(an− b)C ′;

where n is the index in An, a = mn + c − 1, b = c + m, with k,m ∈ Z+ to be
determined later, C and C ′ are the irreducible curves in the exceptional divisor
of the blow-up, and Ē is an ample divisor in Y .

We first check that E is indeed an ample divisor via the Nakai–Moishezon
ampleness criterion which says that E is ample if E2 > 0 and E ·D > 0 for any
irreducible curve D in X̃. Any irreducible curve D will either be the proper
preimage of a curve in Y making E · D = q(ϕ∗Ē · D) = q(Ē · ϕ∗D) > 0 where
q is the rational number in front of ϕ∗Ē in E , or it will be C or C ′ making
E ·D = E · C. The expression q(Ē · ϕ∗D) > 0 is true because we assumed that
Ē is ample and q is a positive number. So we only have to check for the other
cases, and if E2 > 0 we get:
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E · C = −aC2 − bC · C ′

=
an− b
n− 1

=
n(mn− 1) + c(n− 1)−m

n− 1
> 0

E · C ′ = −aC · C ′ − bC ′2

=
bn− a
n− 1

=
c(n− 1) + 1

n− 1
> 0

E2 =
k2(an− b)2(bn− a)2Ē2

(n− 1)2(Ē · H̄)2
−
(
a(an− b) + b(bn− a)

n− 1

)
> 0,

the last inequality is because we can choose k to be big enough.
Now we show that D and D′ are primitive with respect to E . This follows

from:

E · D = E · H̄ − k(bn− a)E · C

=
k(an− b)(bn− a)

(n− 1)Ē · H̄
Ē · H̄ − k(bn− a)(an− b)

n− 1
= 0,

E · D′ = E · H̄ − k(an− b)E · C ′

=
k(an− b)(bn− a)

n− 1
− k(an− b)(bn− a)

n− 1
= 0.

QED

The case of the blow-up of an A1 singularity can be found in [7].

Corollary 3.1. Let X be a singular K3 surface in Miles Reid’s 95 list such
that it has isolated singularities of type A1, A7, A10. Then for every k where
2 ≤ k ≤ 18 there is a partial resolution π : X̃ → X such that b2(X̃) = b2(X)+k.
Moreover, for any partial resolution involving an An singularity with n > 1,
there are two generators in the integral cohomology H2(X̃,Z) given by the
divisors D,D′ from Theorem 3.1; and for a partial resolution involving only A1

singularities, there is one generator in the integral cohomology H2(X̃,Z) given
by the divisor D from Theorem 3.1.

QED

The surface in Corollary 3.1, as seen in [14] (No.76, p. 139), is given by a
generic polynomial of degree 30 in the weighted projective space P(5, 6, 8, 11).
Corollary 3.1 follows directly from previous statements, firstly, b2(X̃) = b2(X)+
k follows from Corollary 2.1. Secondly, the existence of one divisor D in the case
with only A1 singularities, or two D,D′ in the case with at least one An, with
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n > 1, singularity is part of the statement of Theorem 3.1. Finally, the fact that
the divisors have representatives in the integral cohomology H1(X̃,Z) follows
from the existence of the exponential sequence in surfaces with cyclic singulari-
ties, thus in cohomology the long exact sequence we have a natural c1 injective
map (injective since H1(X̃,OX̃) = 0) from H1(X̃,O×

X̃
) ∼= Pic(X̃) to H1(X̃,Z).

Remark: The divisors D and D′ are necessary to construct specific Seifert
principal bundles over X which have smooth total space and admit a geometric
structure necessary for a solution for the Hull-Strominger system. Such bundles
are classified by their first Chern classes c1(Yk/X

′
k) [2, 15, 16]. This construction

was used in [7] for a different singular K3 surface to produce solutions of the Hull-
Strominger system for certain 6-manifolds. In a similar way as in [7], one can
show that the total space of Seifert 2-torus bundles of the surface in Corollary
3.1 has a topology of S1]k(S

2 × S3) or ]r(S
2 × S4)]r+1(S3 × S3) for 3 ≤ k ≤ 22

and 4 ≤ k ≤ 22. As in [7], the proof is based on the classification of the simply-
connected 6-manifolds with free S1 action.

In [7], the examples were only for 13 ≤ k ≤ 22 and 14 ≤ r ≤ 22. A construc-
tion of solutions for the Hull-Strominger system on our examples is left for a
forthcoming paper [17] and details of the proof of the diffeomorphism type.

Acknowledgements. The project leading to this paper was initially star-
ted by the second author and then further developed with the help of the first
and third authors during the Summer 2022 REU program “AMRPU@FIU” that
took place at the Department of Mathematics and Statistics, Florida Interna-
tional University. This program was supported by the NSA grant H982302210016
and NSF (REU Site) grant DMS-2050971 (PI: S. Roudenko). The authors
are grateful for the support and the excellent environment provided for re-
search on this project. The authors would like to thank Mirroslav Yotov, Gueo
Grantcharov, and Anna Fino for the enlightening discussions and their guidance
related to this work.

References

[1] W. L. Baily, On the Quotient of an Analytic Manifold by a Group of Analytic Homeo-
morphisms. Proceedings of the National Academy of Sciences 40, no. 9 (1954): 804-808.

[2] C. P. Boyer, K. Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford
University Press, Oxford, 2008.

[3] E. Calabi and B. Eckmann, A class of compact, complex manifolds which are not algebraic,
Ann. of Math. 58 (1953), 494–500.

[4] S. M. Belcastro, Picard lattices of families of K3 surfaces. University of Michigan, 1997.



Non-Kähler C-Y 3-folds arising from singular K3 surfaces 79

[5] I. Dolgachev, Weighted projective spaces, Group actions and vector fields. Proc. Vancouver
(1981): 34–71.

[6] A. Fino, G. Grantcharov, Astheno-Kähler and balanced structures on fibrations Int. Math.
Res. Not. IMRN 2019, no. 22, 7093–7117.

[7] A. Fino, G. Grantcharov, L. Vezzoni, Solutions to the Hull–Strominger System with Torus
Symmetry, Comm. Math. Phys. 388 (2021), 947—967.

[8] J.-X. Fu, S.-T. Yau, A Monge-Ampère type equation motivated by string theory. Commu-
nications in Analysis and Geometry 15, no. 1 (2007): 29-76.

[9] J.-X. Fu, S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the
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