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Abstract. In this article we explore the role of the Darboux property in proving some of the
basic results of Mathematical Analysis, such as Rolle’s theorem, Lagrange’s mean value theo-
rem, Cauchy’s mean value theorem or Taylor’s theorem. We show that the classical hypotheses
used to prove these theorems can be relaxed.
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1 Introduction

Some of the most fundamental theorems of calculus –namely Rolle’s theo-
rem, Lagrange’s mean value theorem, Cauchy’s mean value theorem and Taylor’s
theorem– are traditionally presented with hypotheses that are of an unmistak-
ably similar flavor. This comes not as a surprise since each one of them can be
considered as a generalization of the previous one –see for instance [1, Theo-
rem 5.20]. Specifically, they all deal with a function f : [a, b]→ R to which two
regularity hypotheses are imposed. One of them applies to the open interval
(a, b) and the other (a weaker one) to the closed interval. This second one is
continuity or, in the case of Taylor’s theorem for the case of an order n approx-
imation, being n times continuously differentiable. Still, when we look at the
proofs of these results it comes to mind that it is not continuity that we are
using, but the Darboux property, that is, that f maps intervals to intervals. In
the case of Taylor’s theorem this is even more flagrant for the great regularity
imposed on f at a and b, as it does not seem to contribute more to the proof
that it would do asking for mere continuity. Indeed, if f is known on (a, b) and
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asked to be continuous on [a, b], there is only one way f can be defined at the
endpoints a and b. Despite the fact, the usual proofs found in the literature use
this premise in a crucial way, and so the hypothesis remains.

Although there are many variants and generalizations of these theorems
throughout the literature –see, for instance, [2]– there are surprisingly few results
in this direction. One of the few, for instance, appears in [1, Theorem 5.13], for
the case of Cauchy’s mean value theorem. There we find a version of this result
not requiring continuity at the endpoints but, instead, the existence of the limit
of the derivative at those points is assumed. Still, there seems to be no previous
works where the hypothesis is reduced to the Darboux property.

In this article we will show that the Darboux property suffices as the hy-
pothesis to be asked on the closed interval. To that end, we first introduce some
notation and properties regarding oscillation limits and study their relation to
the Darboux property. It is then that we move to prove, one by one, the afore-
mentioned results.

2 Oscillation of a function

In what follows we will use the next definitions and notation. Whenever we
want to consider intervals between two endpoints but we do not know which
one is greater that the other we will write

La, bM := (min{a, b},max{a, b}), Ja, bK := [min{a, b},max{a, b}].

We will denote R+ := (0,+∞). Given a set A ⊂ R, x0 ∈ R and δ > 0 we write

BA(x0, δ) := (x0 − δ, x0 + δ) ∩A, B∗A(x0, δ) := (x0 − δ, x0 + δ) ∩ (A\{x0}).

A will denote the closure of A ⊂ R in the usual topology of R, A′ its set of
accumulation points and Int(A) its interior. The lateral limits will we written
as f(a±) := limx→a± f(x).

Definition 2.1. Let f : A ⊂ R → R. We say that l ∈ R is an oscillation limit
of f at x0 ∈ A′ if there exists a sequence (xn)n∈N ⊂ A\{x0} such that xn → x0
and limn→∞ f(xn) = l. We denote by L(f, x0) the oscillation of f at x0, that
is, the set of oscillation limits of f at x0.

The properties of oscillation limits are well known. In particular, we will use
the next result.

Proposition 2.2. Let f : A ⊂ R → R and x0 ∈ A′. Then L(f, x0) is closed

and L(f, x0) =
⋂

δ∈R+

f
(
B∗A(x0, δ)

)
.
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3 The Darboux Property

Definition 3.1. Let I ⊂ R be an interval. We say a function f : I → R is
a Darboux function, that it satisfies the Darboux property or that it satisfies
the intermediate value property if for every interval [a, b] ⊂ I we have that
Jf(a), f(b)K ⊂ f([a, b]). That is, if f reaches every value between f(a) and f(b)
between a and b.

It is immediate to show that this definition is equivalent to the following
statement.

Lemma 3.2. Let I ⊂ R be an interval. f : I ⊂ R → R is a Darboux function
if and only if for every interval J ⊂ I we have that f(J) is also an interval.

In this way, the topological nature of the Darboux property is clear: a func-
tion is a Darboux function if it preserves connectedness. Many functions we
usually work with satisfy the intermediate value property. The Intermediate
Value Theorem establishes that a continuous function defined on an interval
is a Darboux functions and, Darboux’s Theorem, that the same goes for the
derivative of a function.

Albeit simple, this notion is not in general comfortable to work with. Among
other things, the Darboux property is not closed under addition, not even in
the case one of the functions is continuous [3].

From now on we will assume that a, b ∈ R, a < b, so [a, b] is a nondegenerate
interval.

Proposition 3.3. Let f : [a, b] → R be a Darboux function, x0 ∈ [a, b]. Then
L(f, x0) is a closed interval and f(x0) ∈ L(f, x0).

Proof. We already know that L(f, x0) is closed. On the other hand, given δ ∈
R+, we have that B[a,b](x0, δ) is an interval, so f(B[a,b](x0, δ)) is an interval
containing f(x0). Thus, if f(B[a,b](x0, δ)) is a nondegenerate interval,

f(B∗[a,b](x0, δ)) ⊃ f(B[a,b](x0, δ))\{f(x0)} = f(B[a,b](x0, δ)).

Taking into account that

f(B∗[a,b](x0, δ)) ⊂ f(B[a,b](x0, δ)),

we have that
f(B∗[a,b](x0, δ)) = f(B[a,b](x0, δ)).

On the other hand, if f(B[a,b](x0, δ)) is degenerate,

f(B[a,b](x0, δ)) = {f(x0)} = f(B∗[a,b](x0, δ)) = f(B∗[a,b](x0, δ)).
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In either case,

f(B∗[a,b](x0, δ)) = f(B[a,b](x0, δ))

is an interval. Thus,

L(f, x0) =
⋂
δ∈R+

f(B∗[a,b](x0, δ)) =
⋂
δ∈R+

f(B[a,b](x0, δ)) 3 f(x0)

is also an interval since it is an intersection of intervals (the intersection of
convex sets is convex). QED

The next proposition is the key to extend the Darboux property beyond the
open interval.

Proposition 3.4. Let f : [a, b] → R be a Darboux function on (a, b). Then f
is a Darboux function on [a, b] if and only if f(a) ∈ L(f, a) and f(b) ∈ L(f, b).

Proof. If f is a Darboux function on [a, b], then, by Proposition 3.3, we have
that f(a) ∈ L(f, a) and f(b) ∈ L(f, b).

Let us assume that f is a Darboux function on (a, b) and f(b) ∈ L(f, b).
Let us verify that for every interval I ⊂ (a, b] such that b ∈ I f(I) is also an
interval. Assume, on the contrary, that I ⊂ (a, b] is an interval but f(I) is not.
Then I is nondegenerate and, since f is a Darboux function on (a, b), f(I\{b})
is an interval, so b ∈ I. Let r ∈ R+ be such that (b− r, b) ⊂ I\{b}. Hence, either
f(b) > sup f(I\{b}) or f(b) < inf f(I\{b}). Let us assume the first case as the
second is analogous. In that case, there exists ε ∈ R+ such that f(b)− f(x) > ε
for every x ∈ I\{b}, that is, f(I\{b}) ⊂ (−∞, f(b)− ε]. Now,

L(f, b) =
⋂
δ∈R+

f(B∗[a,b](b, δ)) =
⋂
δ<r

f(b− δ, b) ⊂ (−∞, f(b)− ε].

Thence, f(b) 6∈ L(f, b) and we arrive to a contradiction.

Analogously, if f(a) ∈ L(f, a), for every interval I ⊂ [a, b) such that a ∈ I
we have that f(I) is an interval. Thus, if f(a) ∈ L(f, a) and f(b) ∈ L(f, b), for
every interval I ⊂ [a, b], dividing it into two if necessary, we conclude that f(I)
is an interval. QED

Corollary 3.5. Let f, g : [a, b]→ R be such that f and g are Darboux functions
on [a, b], f + g is a Darboux function on (a, b) and f is continuous at a and b.
Then, f + g is a Darboux function on [a, b].

Proof. By Proposition 3.4, it is enough to verify that f(a) + g(a) ∈ L(f + g, a)
and f(b) + g(b) ∈ L(f + g, b). We check this for b, as for a is analogous. Since g
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is a Darboux function on [a, b], there exists (xn) ⊂ (a, b) such that xn → b and
g(xn)→ g(b). Hence, by the continuity of f at b, we have that f(xn) + g(xn)→
f(b) + g(b), so f(b) + g(b) ∈ L(f + g, b). QED

Remark 3.6. Although we have assumed that f is continuous at a and b, we
could have assumed that f is continuous at a and g continuous at b.

4 Mean value theorems

Before proving a general version Rolle’s Theorem we will show that a positive
derivative implies the function is increasing. Usually, this is shown to be a
consequence of the mean value theorem, but it is not necessary to arrive to
this result.

Theorem 4.1. Let f : [a, b]→ R be continuous on [a, b] and differentiable from
the right on (a, b). If f ′+ ≥ (>) (≤) (<) (=) 0 on (a, b), then f is increasing
(strictly increasing) (decreasing) (strictly decreasing) (constant) on [a, b]. We
have also the analogous result for derivatives from the left.

Proof. Assume, in the first place, that f ′+ > 0 in (a, b). Observe that f cannot
be constant on any nondegenerate compact interval [x, y] ⊂ [a, b], for in that
case f ′ = 0 on (x, y), contradicting the hypothesis. Assume that f is not strictly
increasing on [a, b]. Then there exist x̃, ỹ ∈ [a, b], x̃ < ỹ such that f(x̃) > f(ỹ).
We have two cases: either f(x̃) > f(ỹ) and in this case we take x = x̃, y = ỹ;
or f(x̃) = f(ỹ). In this second case, since f cannot be constant on [x̃, ỹ], there
exists z ∈ (x̃, ỹ) such that f(z) 6= f(x̃) = f(ỹ), so, either f(z) > f(ỹ) and we
take x = z, y = ỹ, or f(z) < f(x̃) and we take x = x̃, y = z. In any case, we
have that f(x) > f(y). Since f is continuous at x, there exists δ ∈ R+ such that
f(t) > f(y) for every t ∈ [x, x+ δ).

Consider the set

X = {t ∈ [x, y] : f(s) < f(x), s ∈ [t, y]}.

y ∈ X and X is bounded from below by x, so there exists c = inf X. By the
continuity of f , f(c) = f(x), so a < x 6 c < y. Hence, we have that f(t) < f(x)
for every t ∈ (c, y]. Thus, for every t ∈ (c, y],

0 >
f(t)− f(c)

t− c
. (4.1)

Since c ∈ (x, y), there exists f ′+(c) and, taking the limit in inequality (4.1) when
t→ c+, we have that f ′+(c) 6 0, which is a contradiction.
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Assume now the case where f ′+ > 0 in (a, b). Let gε(x) := f(x) + ε x for
ε ∈ R+ fixed. (gε)

′
+ = f ′+ + ε > 0, so, using what we have already proven, we

deduce that gε is strictly increasing, that is, given x, y ∈ [a, b], x < y we have
that

gε(x) = f(x) + ε x < f(y) + ε y = gε(y).

Since ε was fixed arbitrarily, taking the limit ε→ 0+ in f(x) + ε x < f(y) + ε y
we have that f(x) 6 f(y), as we wanted to prove.

The results for f ′− > 0 and f ′− > 0 are proven in an analogous way. Those
for the inequalities < and 6 are obtained changing f by −f . The result for the
equality is obtained by combining those with 6 and >. QED

Now we are ready to prove Rolle’s Theorem.

Theorem 4.2 (Rolle’s theorem). Let [a, b] ⊂ R be a nondegenerate interval,
f : [a, b]→ R a Darboux function on [a, b] differentiable on (a, b). If f(a) = f(b),
then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Assume, by contradiction, that f ′(x) 6= 0 for every x ∈ (a, b). Then,
by Darboux’s Theorem, f ′ has strictly positive or negative sign on (a, b) (for,
otherwise, it would vanish at some point). Assume, without loss of generality,
that f ′ > 0. That is, f is increasing on (a, b) —just apply Theorem 4.1 to every
[x, y] ⊂ (a, b). Thus, either f(a+) exists, and then L(f, a) = {f(a+)}, or it
diverges to infinity, and therefore L(f, a) = ∅. On the other hand, since f is
a Darboux function, by Proposition 3.3, f(a) ∈ L(f, a), so L(f, a) = {f(a+)}
and f(a) = f(a+), that is, f is continuous at a. With the same reasoning we
conclude that f is continuous at b. Since f is increasing on (a, b) and continuous
on [a, b], it is increasing on [a, b]. But f is not constant for, otherwise, f ′(x) = 0
for every x ∈ (a, b), so we conclude that f(b) > f(a), which contradicts the
hypothesis. QED

Applying Theorem 4.2 we obtain Lagrange’s mean value theorem.

Theorem 4.3 (Lagrange’s mean value theorem). Let f : [a, b] → R be a
Darboux function on [a, b] differentiable on (a, b). Then, there exists c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let

g(x) = −f(b)− f(a)

b− a
(x− a),
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and

h(x) = f(x) + g(x).

Since f and g are Darboux functions on [a, b], h is a Darboux function on (a, b)
(for f + g is continuous on (a, b)) and g is continuous at a and b, we can assert,
by Corollary 3.5, that h is a Darboux function on [a, b]. It is now enough to
apply Theorem 4.2 to h. QED

Similarly, we obtain Cauchy’s (or extended) mean value theorem.

Theorem 4.4 (Cauchy’s mean value theorem). Let f, g : [a, b] → R be
differentiable on (a, b) and such that the function

h(x) := (g(b)− g(a))f(x)− (f(b)− f(a))g(x)

is a Darboux function on [a, b]. Then, there is c ∈ (a, b) such that

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c).

Remark 4.5. Following Corollary 3.5, in order to guarantee that the function
h occurring in Theorem 4.4 is a Darboux function, it would be enough to ask f
or g to be continuous at a and b.

It is only natural to wonder whether Theorem 4.4 holds if we change the
hypothesis “h is a Darboux function” by “f and g are Darboux functions”. The
following example shows that this is not the case.

Example 4.6. Let

f(x) :=

sin

(
1

x

)
, x ∈

(
0,

6

π

]
,

0, x = 0,

g(x) :=

sin

(
1

x

)
+
π

6
x, x ∈

(
0,

6

π

]
,

1, x = 0.

f and g are differentiable on
(
0, 6π

]
and, given that L(f, 0) = L(g, 0) = [−1, 1],

f and g are Darboux functions. Also, for every c ∈
(
0, 6π

)
, we have that(

g

(
6

π

)
− g(0)

)
f ′(c)−

(
f

(
6

π

)
− f(0)

)
g′(c) = − π

12
6= 0,

so the conclusion of Theorem 4.4 does not hold.
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5 Taylor’s Theorem

The path to prove Taylor’s theorem is less straightforward. This was to
be expected as the usual hypotheses in its statement include “f is n times
continuously differentiable on [a, b]”, something we want to downgrade to “f
is a Darboux function on [a, b]”. The proof of Taylor’s Theorem will rest on
Lemma 5.1 below.

Lemma 5.1. Let f : [a, b]→ R be a Darboux function on [a, b] and differentiable
on [a, b). Then, for every c ∈ (0,+∞) the function g(x) = f(x) + c f ′(x)(b−x),
x ∈ [a, b) satisfies L(f, b) ⊂ L(g, b).

Proof. Since f is a Darboux function, f(b) ∈ L(f, b), which also is an interval.

Case 1: L(f, b) = {f(b)}. Let (xn)n∈N ⊂ (a, b) be such that xn → b. We now
show that f(xn) → f(b). First, observe that there cannot exist a subsequence
(f(xnk

))k∈N converging to a limit L ∈ R, L 6= f(b), as this would imply L ∈
L(f, b). Likewise, we cannot have a subsequence f(xnk

)→ ±∞, because, given
that f satisfies the Darboux property, this would imply that L(f, b) contains
either [f(b),∞) or (−∞, f(b)]. Thus, any subsequence of (f(xn))n∈N either fails
to converge in [−∞,∞] (with the topology of a compact interval) or converges
to f(b).

Suppose, for contradiction, that f(xn) 6→ f(b). Then there exists ε ∈ R+

such that |f(xn)−f(b)| ≥ ε for infinitely many n. Therefore, f(xn) ∈ [−∞, f(b)−
ε] ∪ [f(b) + ε,∞] for infinitely many n. Since [−∞, f(b) − ε] ∪ [f(b) + ε,∞] is
compact in [−∞,∞], there exists a subsequence (f(xnk

))k∈N converging to some
L ∈ [−∞, f(b) − ε] ∪ [f(b) + ε,∞], contradicting the earlier conclusion. Thus,
we must have f(xn)→ f(b).

Using Theorem 4.3, for every n ∈ N there exists yn ∈ (xn, b) such that
f ′(yn) = (f(b) − f(xn))/(b − xn). Hence, yn → b and, for the same reasons
that guarantee that f(xn) → f(b), we have that f(yn) → f(b). Given that
0 < b−yn

b−xn < 1,

lim
n→∞

g(yn) = lim
n→∞

[f(yn) + c f ′(yn)(b− yn)]

= lim
n→∞

[
f(yn) + c (f(b)− f(xn))

b− yn
b− xn

]
= f(b).

Therefore, f(b) ∈ L(g, b).

Case 2: L(f, b) is a nondegenerate interval. Let y0 ∈ Int(L(f, b)). Then there
exist α, β ∈ L(f, b) such that α < y0 < β. Let (xn)n∈N, (yn)n∈N, (zn)n∈N ⊂ (a, b),
be such that xn, yn, zn → b, f(xn)→ y0, f(yn)→ α, f(zn)→ β. Let N ∈ N be
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such that

|α− f(yn)| , |y0 − f(cn)| , |β − f(zn)| < min{y0 − α, β − y0}
2

,

for every n > N . Then, f(yn) < f(xn) < f(zn) for every n > N . Taking
subsequences if necessary, we can assume that f(yn) < f(xn) < f(zn) for every
n ∈ N. Now, for a given n ∈ N, we define kn := inf{k ∈ N : zk > xn}. Let

x̃n := sup{x ∈ [xn, zkn ] : f(x) = f(xn)},
z̃n := inf{x ∈ [xn, zkn ] : f(x) = f(zkn)}.

By the definition of kn, x̃n, z̃n and the continuity of f on [a, b) we have that
x̃n < z̃n, f(x̃n) = f(xn), f(z̃n) = f(zkn) and

f([x̃n, z̃n]) = [f(x̃n), f(z̃n)] = [f(xn), f(zn)].

Using Theorem 4.3, for every n ∈ N there exists bn ∈ (x̃n, z̃n) such that
f ′(bn) = (f(z̃n)− f(x̃n))/(z̃n − x̃n) > 0. Thus,

g(bn) =f(bn) + c f ′(bn)(b− bn)

=f(bn) + c
f(z̃n)− f(x̃n)

z̃n − x̃n
(b− bn) > f(x̃n) = f(xn).

Furthermore, we have that (bn)n∈N → b. We repeat the process and define, for
a given n ∈ N, jn := inf{j ∈ N : yj < xn}. Let

x̂n := sup{x ∈ [yjn , xn] : f(x) = f(xn)},
ŷn := inf{x ∈ [xn, yjn ] : f(x) = f(yjn)}.

By definition of jn, x̂n, ŷn and the continuity of f we have that x̂n < ŷn,
f(ŷn) = f(yjn), f(x̂n) = f(xn) and

f([ŷn, x̂n]) = [f(ŷn), f(x̂n)] = [f(yjk), f(xn)].

By Theorem 4.3, for every n ∈ N there exists an ∈ (x̂n, ŷn) such that f ′(an) =
(f(ŷn)− f(x̂n))/(ŷn − x̂n) < 0. Thus,

g(an) =f(an) + c f ′(an)(b− an)

=f(an) + c
f(ŷn)− f(x̂n)

ŷn − x̂n
(b− an) < f(x̂n) = f(xn).

Furthermore, we have that (an)n∈N → b.
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We now build a sequence (cn)n∈N in the following way. Given n ∈ N there
exists m ∈ N such that an < bm. Since g is a Darboux function on [an, bm]
(because g = h′ where h(x) = (1 + c)

∫ x
x1
f(y) d y + c f(x)(b− x) for x ∈ [x1, b))

and g(an) < f(xn) < g(bm), we deduce that there exists cn ∈ (an, bm) such that
g(cn) = f(xn). Then, (cn)n∈N → b and g(cn)→ y0.

We conclude that y0 ∈ L(g, b) and, thus, Int(L(f, b)) ⊂ L(g, b). Since L(g, b)
is closed, L(f, b) ⊂ L(g, b), and the proof is finished. QED

In order to state Taylor’s theorem we first review the definition of Taylor’s
polynomial and reminder.

Definition 5.2. Let n ∈ N, f : A ⊂ R → R n times differentiable on x0 ∈ A.
We define Taylor’s polynomial of degree n centered at x0 as the polynomial

Pn, x0(x) =
n∑
k=0

fk)(x0)

k!
(x− x0)k

=f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + · · ·+ fn)(x0)

n!
(x− x0)n.

We define Taylor’s reminder of order n at x0 as the function

Rn, x0(x) = f(x)− Pn, x0(x), x ∈ A.

That is, f(x) = Pn, x0(x) +Rn, x0(x) for every x ∈ A.

Theorem 5.3 (Taylor’s Theorem). Let n ∈ {0, 1, . . . }; [a, b] ⊂ R; x, x0 ∈
[a, b]; f : [a, b]→ R a Darboux function on [a, b] which is n+1 times differentiable
on (a, b) and n times differentiable at x0; and h ∈ C1(Jx0, xK,R) such that
h′(y) 6= 0 for every y ∈ Lx0, xM. Then there exists cx0, x ∈ Lx0, xM such that

Rn, x0(x) =
fn+1)(cx0, x)

n!
(x− cx0, x)n

h(x)− h(x0)

h′(cx0, x)
.

Proof. Let

g(y) =


n∑
k=0

fk) (y)

k!
(x− y)k, y ∈ Jx0, xK\{x},

f(x), y = x.

Let us check that g is a Darboux function. If x ∈ (a, b) then this is straightfor-
ward because f is n+ 1 times differentiable on (a, b), so g would be continuous.
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Let us consider now the case x = b (the case x = a would be analogous). Define,
for every j ∈ {0, 1, . . . , n},

gj(y) :=


j∑

k=0

fk) (y)

k!
(b− y)k, y ∈ [x0, b),

f(b), y = b.

Observe that g0 = f |[x0,b) and, for j ∈ {0, 1, . . . , n− 1} and y ∈ [x0, b),

g′j(y)(b− y) =f ′(y)(b− y) +

j∑
k=1

[
fk+1) (y)

k!
(b− y)k+1 − fk) (y)

(k − 1)!
(b− y)k

]

=
f j+1) (y)

j!
(b− y)j+1.

Hence,

gj+1(y) =

gj(y) +
1

j + 1
g′j(y)(b− y), y ∈ [x0, b),

f(b), y = b.

Since f is a Darboux function, f(b) ∈ L(f, g) so, using Lemma 5.1 for c = 1,
f(b) ∈ L(g1, b) and, therefore, g1 is a Darboux function. Applying Lemma 5.1
iteratively we conclude that all gj are Darboux functions and, in particular,
gn = g.

Since h is continuous on Jx0, xK, g and h satisfy the hypothesis of Theo-
rem 4.4 on Jx0, xK –see Remark 4.5, and we deduce that there exists cx0, x ∈
(x0, x) such that

g(x)− g(x0) = g′(cx0, x)
h(x)− h(x0)

h′(cx0, x)
.

On the other hand, for y ∈ Lx0, xM, we have that

g(y) = f(y) +
n∑
k=1

fk)(y)

k!
(x− y)k and g′(y) =

fn+1)(y)(x− y)n

n!
.

Hence,

g(x)− g(x0) =
fn+1)(cx0, x)

n!
(x− cx0, x)n

h(x)− h(x0)

h′(cx0, x)
.

By the definition of g we have that g(x)− g(x0) = f(x)−Pn, x0(x) =: Rn, x0(x),
which ends the result. QED
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The above version of Taylor’s theorem leaves open the choice of the function
h and thus the type of remainder to use. The following corollary recovers some
of the most frequently used remainders. For more expressions of the remainder
see [4].

Corollary 5.4 (Taylor’s remainder). Under the hypothesis of Theorem 5.3,

(1) If h(y) = (x− y)n+1,

Rn, x0(x) =
fn+1)(cx0, x)

(n+ 1)!
(x− x0)n+1 (Lagrange’s form);

(2) If h(y) = y − x0,

Rn, x0(x) =
fn+1)(cx0, x)

n!
(x− cx0, x)n(x− x0) (Cauchy’s form);

(3) If fn+1) is continuous on (a, b) and

h(y) =

∫ y

x0

fn+1)(z)

n!
(x− z)n d z,

Rn, x0(x) =

∫ x

x0

fn+1)(z)

n!
(x− z)n d z (integral form).
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