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Introduction

Let V be a vector space of finite dimension d over some field F (in our com-
putations we will take F = Q the rational numbers or C the complex numbers).

In the classical theory of Schur–Weyl a major role is played by the action
of the symmetric group Sn on n elements on the nth tensor power V ⊗n by
exchanging the tensor factors. The algebra of operators on V ⊗n, generated by
these permutations will be denoted by Σn(d) and called a d–swap algebra. It is
the algebra formed by the elements which commute with the diagonal action of
GL(V ) or, if V is a Hilbert space, by the corresponding unitary group.

The name comes from the use, in the physics literature, to call swap the
exchange operator (1, 2) on V ⊗2.

In the literature on quantum information theory the states lying in Σn(d) are
called Werner states and widely used as source of examples, due to fundamental
work of the physicist R. F. Werner [13].

See for instance [4], [5], [6], [7] for applications to separability, entanglements
or the quantum max-cut problem.

A classical theorem, see [12], states that the corresponding algebra homo-
morphism F [Sn] → Σn(d) ⊂ End(V ⊗n) is injective if and only if dimV ≥ n.

iI wish to thank Felix Huber for pointing out the problem and some of the literature.
http://siba-ese.unisalento.it/ © 2025 Università del Salento
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When d = dimV < n the kernel of this map is the two sided ideal of F [Sn]
generated by the antisymmetrizer

Ad+1 :=
∑

σ∈Sd+1

εσσ, εσ the sign of the permutation.

If F has characteristic 0 the algebra F [Sn] decomposes as direct sum of matrix
algebras indexed by partitions, corresponding to the irreducible representations
of Sn. As for Σn(d) only the blocks relative to partitions of height ≤ d survive.

In the case d = dimV < n an interesting problem is to describe a basis of
Σn(d) formed by permutations. In fact in the physics literature there are several
examples of Hamiltonians lying in Σn(d). Thus it may be convenient to express
such Hamiltonian in a given special basis,

Moreover in Σn(d) we have the involution g 7→ g−1, if V is a Hilbert space
this coincides with adjuction. So we would like also to describe a basis of Σn(d)+

the subspace of symmetric elements made by permutations and also a basis of
self adjoint operators.

In [8] I have proved that a possible basis of Σn(d) is formed by the permu-
tations which are d+ 1–good. I recall this briefly.

By definition a permutation g, written as a string of numbers, is d+ 1–good
if and only if this string does not contain a decreasing subsequence of length
d+ 1.

By a beautiful Theorem of Schensted [11] this is equivalent to the fact that
the pair of tableaux associated to g is of height ≤ d.

This of course, by classical theory, is exactly the dimension of Σn(d) so it is
enough to prove that such permutations span Σn(d) and this, in [8] is done by
a straightening algorithm deduced from the relations.

Since the pair of tableaux associated to g−1 by the Robinson–Schensted
correspondence is obtained by exchanging that associated to g, it follows that
if g is d + 1–good so is g−1, and this gives also a basis g + g−1, where g is
d+ 1–good, for the symmetric elements.

We have also the basis g−g−1 for the antisymmetric elements, from which we
have a basis over the real numbers for self adjoint operators given by g+g−1and
i(g − g−1) , where g is d+ 1–good.

On the other hand, specially for d = 2, one may want to find a basis formed
by simpler type of elements. For this discussion the simplest elements are the
elements of order 2 (called involutions) which are permutations with cycles only
of order 2,1 and eigenvalues only ±1.

We call Σn(2) the n–swap algebra and denote it simply Σn. It is known that
dim Σn = Cn the nth Catalan number, see §2.1 for a simple proof.
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The list of the first 10 Catalan numbers is

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796

Definition 1. The set S of special permutations is formed by the involutions
and also by the permutations with cycles only of order 2,1 plus a single cycle of
order 3.

The 3 cycle can be further normalised to be increasing.

The main Theorem of this paper is the following

Theorem 1. (1) For each n the algebra Σn has a basis formed by special
elements.

(2) Σ+
n has a basis over C formed by involutions.

(3) The space of real and symmetric elements has a basis over R formed by
involutions.

Notice that items (2) and (3) are equivalent and follow from (1).
In fact the involutions are symmetric and if a permutation is of the form g =

ab with one 3 cycle a and the rest b is a product 2 or 1 cycles its symmetrization
is (g + g−1) = (a+ a−1)b.

If a is a 3 cycle in the algebra Σ3, by relation (1), we have that a + a−1 is
the sum of -1 and 3 transpositions. The claim follows.

In the same way (g − g−1) = (a − a−1)b gives bases for antisymmetric
elements, and together for self adjoint operators.

The dimensions of the real symmetric elements are, from n = 1 to n = 10

1, 2, 4, 10, 26, 76, 232, 750, 2494, 8524, · · ·

(see The On-Line Encyclopedia of Integer Sequences A007123 for many inter-
esting informations on this sequence).

On the other hand the number I(n) of involutions in Sn from n = 1 to
n = 10 is

I(n) = 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, · · ·

which is also equal (by the Robinson–Schensted correspondence) to the number
of standard Young tableaux with n cells (O.E.I.S A000085).

So a curious fact is that these two sequences coincide up to n = 7.

We have thus that the involutions are a basis of the real symmetric elements
for n ≤ 7 and after that they have linear relations.
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It would be interesting to understand these relations, they span a represen-
tation of Sn under conjugation. For n = 8 we have 14 relations and one may
ask if they form the irreducible representation of S8 associated to the partition
4,4.

The antisymmetric elements are spanned by elements of type ab−a−1b with
a a 3 cycle, which we can assume to be in increasing order, and b an involution.
There are

(
n
3

)
such 3 cycles in Sn and so

(
n
3

)
I(n− 3) such elements.(

n

3

)
I(n− 3) = 1, 4, 20, 60, 350, n = 3, · · · , 7

so there appear 4 relations already for n = 5 where the dimension of Σ5 is 42,
while the number of normalised special elements is 46. We will discuss these
relations in remark 5.

Remark 1. The set of special elements has the following compatibility with the
partial traces ti : End(V )⊗n → End(V )⊗n−1,

ti : x1 ⊗ · · ·xi ⊗ · · ·xn 7→ tr(xi)x1 ⊗ · · ·xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn.

The map ti, applied to a permutation decomposed into cycles, removes i from
the cycle in which it appears, and so a special element is mapped to a special
element. In case i is a fixed element removes i and multiplies by the dimension
of the space, in our case 2.

Notice that instead the partial trace of a 3–good element may be 3–bad as for
instance

t4({3, 4, 1, 2}) = {3, 2, 1}

where by {3, 4, 1, 2} we mean the permutation as string and not as cycle, in cycle
form {3, 4, 1, 2} = (1, 3)(2, 4) 7→ (1, 3)(2) = {3, 2, 1}.

Remark 2. Given a basis e1, e2, e3, e4 for the space End(V ) of linear operators
on V one has the dual basis fi, i = 1, · · · , 4 for the trace form tr(ab). That is
4 operators satisfying tr(eifj) = δij.

Then the operator (1, 2) : V ⊗ V → V ⊗ V can be written as

(1, 2) = e1 ⊗ f1 + e2 ⊗ f2 + e3 ⊗ f3 + e4 ⊗ f4.

Any involution being product of elements (i, j) can the be expressed using this
Formula in term of the basis.
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We have some freedom in the choice of the basis. The most common is the
basis by matrix units ei,j in which

(1, 2) = e1,1 ⊗ e1,1 + e1,2 ⊗ e2,1 + e2,1 ⊗ e1,2 + e2,2 ⊗ e2,2.

In particular in Physics are widely used the Pauli matrices.

σ0 :=

∣∣∣∣1 0
0 1

∣∣∣∣ , σx :=

∣∣∣∣0 1
1 0

∣∣∣∣ , σy :=

∣∣∣∣0 −i
i 0

∣∣∣∣ , σz :=

∣∣∣∣1 0
0 −1

∣∣∣∣
They are equal to the dual basis up to a scaling by 1

2 so that:

(1, 2) =
1

2
(σ0 ⊗ σ0 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz).

The proof of this Theorem is algorithmic. We give an algorithm which, given
as input a permutation σ ∈ Sn, produces a linear combination of elements in S
which in Σn equals to σ.

1 The algorithm

Usually we write the permutations in their cycle structure. Let us start with
the basic antisymmetrizer which vanishes in Σ3.

A = (1, 2, 3) + (1, 3, 2)− (1, 2)− (1, 3)− (2, 3) + 1

(1, 2, 3) + (1, 3, 2) = (1, 2) + (1, 3) + (2, 3)− 1. (1)

First remark that in S3 all permutations are special, moreover

(1, 3, 2) = −(1, 2, 3) + (1, 2) + (1, 3) + (2, 3)− 1. (2)

so a 3–cycle can be normalised.
In S4 we have the 4-cycles which are not special and we have to write them

as linear combination of special permutations in Σ4.
Notice that if we can do this for a single cycle we can do it for all cycles,

since permutations of the same cycle structure are conjugate and clearly the
space spanned by special permutations is closed under conjugation.

For any n > 3 we have the natural embedding of S3 in Sn as the permutations
on the first 3 elements. This induces an embedding of the basic antisymmetrizer
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A in the algebra of the symmetric group of Sn which we denote by An. This
element vanishes in the swap algebra Σn, and in C[Sn] generates the ideal of
relations for Σn. Thus in Σ4 we have the vanishing of

(2, 4)A4 = (4, 2, 3, 1) + (3, 4, 2, 1)− (4, 2, 1)− (3, 1)(4, 2)− (3, 4, 2) + (2, 4)

(3, 4)A4(2, 4) = (2, 3, 1) + (4, 1)(2, 3)− (2, 3, 4, 1)− (4, 2, 3, 1)− (2, 3) + (3, 4, 2)

A4(3, 4) = (2, 3, 4, 1) + (3, 4, 2, 1)− (1, 2)(3, 4)− (3, 4, 1)− (3, 4, 2) + (3, 4).

We then have, in Σ4, 0 = A4(3, 4)− (3, 4)A4(2, 4) that is

−2(2, 3, 4, 1) = (3, 4, 2, 1) + (4, 2, 3, 1)− (1, 2)(3, 4)− (3, 4, 1) (3)

−2(3, 4, 2) + (3, 4)− (2, 3, 1)− (4, 1)(2, 3) + (2, 3)

From the vanishing of (2, 4)A4 we deduce:

(4, 2, 3, 1) + (3, 4, 2, 1) = (4, 2, 1) + (3, 1)(4, 2) + (3, 4, 2)− (2, 4)

Substituting in (3) we deduce:

2(1, 2, 3, 4) = (4)

(1, 4)(2, 3) + (1, 2)(3, 4)− (1, 3)(4, 2)− (1, 4, 2)

+(1, 3, 4) + (2, 3, 4) + (1, 2, 3) + (2, 4)− (3, 4)− (2, 3).

The term (4, 2, 1) is not normalised, but it can be rewritten using Formula
(2).

−(4, 2, 1) = (1, 2, 4)− (1, 2)− (1, 4)− (2, 4) + 1

2(1, 2, 3, 4) = (5)

(1, 4)(2, 3) + (1, 2)(3, 4)− (1, 3)(4, 2) + (1, 2, 4)

+(1, 3, 4) + (2, 3, 4) + (1, 2, 3)− (1, 2)− (1, 4)− (3, 4)− (2, 3) + 1.

Since all 4 cycles are conjugate we deduce that statement (1) is true for S4.

Now notice the following general fact: consider two cycles (a,A), (a,B)
of lengths h, k respectively where A and B are strings of integers of lengths
h− 1, k − 1 respectively and disjoint. Then their product is the cycle of length
h+ k − 1:

(a,B)(a,A) = (a,A,B), e.g. (1, 2, 3)(1, 5, 4, 6) = (1, 5, 4, 6, 2, 3). (6)
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Thus take a cycle of length p > 4 and, up to conjugacy we may take

cp := (1, 2, 3, 4, 5, . . . , p) = (1, 5, . . . , p)(1, 2, 3, 4). (7)

In Σp we have thus that 2cp equals (1, 5, . . . , p) times the expression of Formula
(5).

But then applying again Formula (6) we see that the resulting formula is a
sum of permutations on p elements which are not full cycles.

By iterating then the operation on the cycles of length ` with 4 ≤ ` ≤ p− 1
we have a preliminary.

Proposition 2. The cycle cp (formula (7)) is a linear combination in Σp of
elements which contain only cycles of length 1,2,3.

Hence Σn is spanned by permutations which contain only cycles of length
1,2,3.

Example For p = 5, 6 we have for 2cp the formula obtained from Formula
(5):

2(1, 2, 3, 4, 5)
(7)
= 2(1, 5)(1, 2, 3, 4) =

(1, 4, 5)(2, 3) + (1, 2, , 5)(3, 4)− (1, 3, 5)(4, 2)− (1, 4, 2, 5) + (1, 3, 4, 5)

+ (3, 4, 2)(1, 5) + (1, 2, 3, 5) + (2, 4)(1, 5)− (3, 4)(1, 5)− (2, 3)(1, 5)

In the previous formula appear three 4-cycles, for which we can apply For-
mula (5) (see in the appendix, the expanded Formula (10)).

Notice that the final Formula must be invariant under conjugation by powers
of the cycle, but this only up to the relations in Σn.

2(1, 2, 3, 4, 5, 6)
(7)
= 2(1, 5, 6)(1, 2, 3, 4) = (8)

(1, 4, 5, 6)(2, 3) + (1, 2, 5, 6)(3, 4)− (1, 3, 5, 6)(4, 2)− (1, 4, 2, 5, 6) + (1, 3, 4, 5, 6)

+(3, 4, 2)(1, 5, 6) + (1, 2, 3, 5, 6) + (2, 4)(1, 5, 6)− (3, 4)(1, 5, 6)− (2, 3)(1, 5, 6).

Of course in the previous formulas appear 4-cycles, for which we can apply
Formula (5), and then 5-cycles, for which we can apply the final formula devel-
oped before. Notice now that in Formula (8) all terms are either special or can
be expanded into a linear combination of special elements, using the formulas
of 4 and 5–cycles, except the term (3, 4, 2)(1, 5, 6).

Remark 3. In order to prove Theorem 1 using Proposition 2 it is enough to
prove that, in S6, a permutation of type 3, 3 can be developed as linear combi-
nation of special elements.



46 C. Procesi

Proof. We apply recursively this reduction to a product of k disjoint 3-cycles. If
k is even we replace them all and if odd we remain with only one 3-cycle which
can be normalized if necessary using Formula (2). QED

The computation in S6 in principle is similar to that in S4 but now we have
to handle a priori many more relations and I had to be assisted by the software
”Mathematica” in order to discover the needed relations.

Let me sketch what I did.

1.1 The computation

A set of relations for Σ6 can be obtained from the antisymmetrizer A6 by
multiplication to the left and right by the 720 permutations. Actually it is not
necessary to use all permutations since there are 36 × 6 pairs which stabilyze
A6 up to sign

Finally using these reductions we have 2400 relations each a sum of 6 per-
mutations, of which 3 even and 3 odd.

Each 6–cycle c, appearing in these relations, needs to be developed by using
the appropriate conjugate of Formula (8) by the permutation which has as string
the same form of the cycle c and which conjugates the standard 6 cycle into c.

So a 6 cycle is replaced, using a conjugate of formula (8), by a permutation
of type 3, 3 plus a sum of special terms. In this way we obtain 2400 relations
which, by inspection contain either 0, 2 or 3 permutations of type 3, 3 and with
the remaining terms special.

The ones with 0, 2 permutations of type 3, 3 are linear combinations of
special permutations and cannot be used.

Remain 360 relations containing 3 permutations of type 3, 3, arising from
relations with two 6–cycles and one permutations of type 3, 3.

Remark 4. There are 40 permutations of type (3, 3) but using Formula (1) we
can normalise these elements.

If a 3 cycle (a, b, c) is not strictly increasing (up to cyclic equivalence) we
can replace it by a strictly increasing cycle introducing a sign and adding some
special permutations applying a conjugate of formula (1).

We then are reduced to 10 normalised permutations of type (3, 3).
We have several relations involving these normalised permutations plus spe-

cial elements and we have to eliminate in one relation all permutations of type
(3, 3) except one, thus obtaining the desired relation.
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1.2 The useful relations

Surprisingly in order to obtain the desired relation only the following 2
suffice:

(5, 6, 1)(3, 4)A6 =
(1, 2, 4, 3, 5, 6)+(1, 4, 3, 2, 5, 6)− (2, 5, 6, 1)(3, 4)− (4, 3, 5, 6, 1)− (5, 6, 1)(4, 3, 2)+(5, 6, 1)(3, 4)

(6, 1)(4, 5, 3)A6 =
(1, 2, 4, 5, 3, 6) + (1, 4, 5, 3, 2, 6)−(2, 6, 1)(4, 5, 3)− (4, 5, 3, 6, 1)− (6, 1)(4, 5, 3, 2) + (6, 1)(4, 5, 3)

In Formula (8) the contribution to the expansion of 2(1, 2, 3, 4, 5, 6) of an
element of type 3, 3 is +(3, 4, 2)(1, 5, 6).

Therefore the contributions of type 3, 3 of the 4 cycles of length 6 appearing
in the previous Formulas are obtained by conjugating (3, 4, 2)(1, 5, 6) with the
permutation which has as string the same form of the cycle.

We obtain:

2 (1, 2, 4, 3, 5, 6) = (3, 5, 4)(2, 6, 1) + · · · , 2 (1, 4, 3, 2, 5, 6) = (2, 5, 3)(4, 6, 1) + · · ·
2 (1, 2, 4, 5, 3, 6)= (5, 3, 4)(2, 6, 1) + · · · , 2 (1, 4, 5, 3, 2, 6) = (3, 2, 5)(4, 6, 1) + · · ·

So, by Formula (1), the previous elements can be written in Σ6 as

2 (1, 2, 4, 3, 5, 6) = −(3, 4, 5)(1, 2, 6) + · · · , 2 (1, 4, 3, 2, 5, 6) = −(2, 3, 5)(1, 4, 6) + · · ·
2 (1, 2, 4, 5, 3, 6)= (3, 4, 5)(1, 2, 6) + · · · , 2 (1, 4, 5, 3, 2, 6) = −(2, 3, 5)(1, 4, 6) + · · ·

where the · · · represent special elements.

Therefore the previous 2 relations multiplied by 2 are of the form

−(3, 4, 5)(1, 2, 6)− (2, 3, 5)(1, 4, 6) + 2(2, 3, 4)(1, 5, 6) + · · ·

(3, 4, 5)(1, 2, 6)− (2, 3, 5)(1, 4, 6)− 2(3, 4, 5)(1, 2, 6) + · · ·
(9)

Subtracting the second from the first one has the desired Formula:

0 = 2(2, 3, 4)(1, 5, 6) + · · ·

a relation with a single permutation 2(2, 3, 4)(1, 5, 6) of type (3, 3) and the re-
maining elements special.

This gives the desired expression, which is explicited in the Appendix.

2 Comments

2.1 The Formula dim Σn = Cn
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The nth Catalan number is 1
n+1

(
2n
n

)
. By the hook Formula it is easily seen

that this is the dimension of the irreducible representation of S2n associated to
a Young diagram with two rows of length n. This in turn appears as the isotypic
component of the SL(2) invariants in V ⊗2n, dimV = 2.

By identifying V with V ∗ as SL(2) representations we have an SL(2) linear
isomorphism between End(V ⊗n) = V ⊗n ⊗ V ∗⊗n and V ⊗2n which induces a
linear isomorphism with the respective invariants

Σn = EndSL(V )V
⊗n ' (V ⊗2n)SL(V ).

2.2 Several bases

Several bases formed by special elements can be obtained from Theorem 1,
so a main problem is to describe a best one by combinatorial means.

The main advantage of the special elements is that their eigenvalues are ±1
and the two primitive 3-roots of 1. They also are local in the sense that involve
only 2 tensor factors at a time, and at most a single instance of 3 tensor factors.

One should compare the complexity of the algorithm to express a permuta-
tion as linear combination of special ones to that of the algorithm to express a
permutation as linear combination of 3-good ones.

Some remarks on the algorithm to express a permutation as linear combi-
nation of 3-good ones.

(1) Permutations are ordered lexicographically.

(2) The 3-good permutations on n elements are in number Cn the nth Catalan
number.

(3) The last 3-good permutation is n, 1, 2, 3, · · · , n− 1.

The algorithm takes a permutation σ and checks recursively if there is a
string of 3 elements decreasing. If there is not one the permutation is 3-good.
Otherwise as soon as one encounters one such sequence, by applying the anti-
symmetrizer on these elements one obtains that σ is equivalent to a sum with
signs of 5 permutations which are lexicographically less than σ. This means that
if we have already developed the previous permutations as linear combination
of 3-good ones we immediately obtain the developments for σ. Notice that in
this development the coefficients are all integers.
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2.3 d ≥ 3

One may ask the same question for Σn(d) and d ≥ 3. The first problem is:
Determine the minimum m = m(d) so that Σm+1(d) is spanned by the

permutations which are NOT m+ 1–cycles.
This number m has also other interesting interpretations (see [1] page 331

for the interesting history of this question).
The same m is the maximum degree of the generators of invariants of d× d

matrices.
It is also the minimum degree for which, given an associative algebra R over

a field of characteristic 0, in which every element x satisfies xd = 0 one has
Rm(d) = 0.

The known estimates for m(d) are the lower bound m(d) ≥
(
d+1
2

)
due to

Kuzmin, see [3] or [2] and the upper bound m(d) ≤ d2 due to Razmyslov, see
[10] or [1]. Kuzmin conjectures that m(d) =

(
d+1
2

)
which has been verified only

for d ≤ 4.

2.4 Transpositions

Let us remark a simple fact

Proposition 3. The identity plus all transpositions give linearly independent
operators in all Σn(d).

Proof. Of course it is enough to prove this when d = 2, we do it by induction.
Assume we have a relation

0 = a · In +
∑
i<j

ai,j(i, j)

with In the identity on V ⊗n. Apply the partial trace t1 = t on the first factor
as in [9]

t : X1 ⊗X2 ⊗ . . .⊗Xn−1 ⊗Xn 7→ tr(X1)X2 ⊗ . . .⊗Xn−1 ⊗Xn.

As proved in that paper if Sn−1 is the subgroup of Sn fixing 1 we have

t(σ) = 2σ, ∀σ ∈ Sn−1 t(τ(1, i)) = τ, ∀τ ∈ Sn−1

So we have in V ⊗n−1.

0 = b · In−1 + 2
∑

1<i<j

ai,j(i, j), b = 2a+
∑
1<j

a1,j .



50 C. Procesi

By induction we have b = 0, ai,j = 0, ∀1 < i < j.
So the relation is among In and the n−1 transpositions (1, i), i = 2, n. Apply

the partial trace tn on the last factor obtaining in V ⊗n−1 that a1,j = 0, ∀j < n
and finally a relation among In and (1, n) which does not exist.

QED

3 Appendix A explicit formulas

In the formula for p = 5 we multiply by 2

4(1, 2, 3, 4, 5)
(7)
= 4(1, 5)(1, 2, 3, 4) =

2(1, 4, 5)(2, 3) + 2(1, 2, 5)(3, 4)− 2(1, 3, 5)(4, 2)− 2(1, 4, 2, 5) + 2(1, 3, 4, 5)

+ 2(3, 4, 2)(1, 5) + 2(1, 2, 3, 5) + 2(2, 4)(1, 5)− 2(3, 4)(1, 5)− 2(2, 3)(1, 5)

and develop the 4–cycles we obtain

−2(1, 4, 2, 5) + 2(1, 3, 4, 5) + 2(1, 2, 3, 5) =

(1, 2)(3, 5) + (1, 2)(4, 5)− (1, 3)(2, 5) + (1, 3)(4, 5)− (1, 4)(2, 5)− (1, 4)(3, 5)− (1, 5)(2, 4) + (1, 5)(3, 4)

+(1, 5)(2, 3) + (2, 4, 5) + (1, 2, 4) + (1, 3, 5) + (3, 4, 5) + (1, 3, 4) + (1, 3, 5) + (2, 3, 5) + (1, 2, 3)

−(2, 3)− 2(4, 5)− (3, 4)− 2(1, 2)− (2, 4)− (1, 3)− (3, 5)− (1, 5) + 3.

So the formula

4(1, 2, 3, 4, 5)
(7)
= 4(1, 5)(1, 2, 3, 4) = (10)

(1, 2)(3, 5) + (1, 2)(4, 5)− (1, 3)(2, 5) + (1, 3)(4, 5)− (1, 4)(2, 5)− (1, 4)(3, 5) + (1, 5)(2, 4)− (1, 5)(3, 4)

−(2, 3)(1, 5) + (2, 4, 5) + (1, 2, 4) + (1, 3, 5) + (3, 4, 5) + (1, 3, 4) + (1, 3, 5) + (2, 3, 5) + (1, 2, 3)

−(2, 3)− 2(4, 5)− (3, 4)− 2(1, 2)− (2, 4)− (1, 3)− (3, 5)− (1, 5) + 3

+2(1, 4, 5)(2, 3) + 2(1, 2, 5)(3, 4)− 2(1, 3, 5)(4, 2) + 2(2, 3, 4)(1, 5)

Remark 5. If we conjugate the previous Formula with the 5 powers of the cycle
(1, 2, 3, 4, 5) we obtain 5 different formulas for the same element, thus we get 4
relations as predicted in page 42.

Notice that instead Formula (5) for the 4–cycle, is invariant under these
conjugations and there are no relations.

The formula (8) for p = 6

8(1, 2, 3, 4, 5, 6)
(7)
= 8(1, 5, 6)(1, 2, 3, 4) = (11)

4(1, 4, 5, 6)(2, 3)+4(1, 2, 5, 6)(3, 4)−4(1, 3, 5, 6)(4, 2)−4(1, 4, 2, 5, 6)+4(1, 3, 4, 5, 6)

+4(3, 4, 2)(1, 5, 6)+4(1, 2, 3, 5, 6)+4(2, 4)(1, 5, 6)−4(3, 4)(1, 5, 6)−4(2, 3)(1, 5, 6).
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So expanding the terms containing 4 and 5-cycles: we finally have

8(1, 2, 3, 4, 5, 6)
(7)
= 8(1, 5, 6)(1, 2, 3, 4) = (12)

5− 2(1, 2)− 3(1, 3) + (1, 6) + (2, 3)− 2(1, 4)(2, 3)− 3(1, 6)(2, 3)− 3(2, 4) + 2(1, 3)(2, 4)− (1, 3)(2, 6)−
(1, 4)(2, 6) + (3, 4) − 2(1, 2)(3, 4) − 3(1, 6)(3, 4) − 2(2, 5)(3, 4) + 2(1, 6)(2, 5)(3, 4) − 2(1, 5)(2, 6)(3, 4) −
2(3, 5)+2(2, 4)(3, 5)−2(1, 6)(2, 4)(3, 5)−(3, 6)+(1, 2)(3, 6)−(1, 4)(3, 6)−2(1, 5)(3, 6)+2(1, 5)(2, 4)(3, 6)+
(1, 6)(4, 2)− 4(1, 6)(4, 5)− 2(2, 3)(4, 5) + 2(1, 6)(2, 3)(4, 5)− 2(4, 6) + (1, 2)(4, 6) + (1, 3)(4, 6)−
2(1, 5)(2, 3)(4, 6)−2(5, 6)+2(1, 3)(5, 6)−2(2, 3)(5, 6)+2(1, 4)(2, 3)(5, 6)+2(2, 4)(5, 6)−2(1, 3)(2, 4)(5, 6)−
2(3, 4)(5, 6) + 2(1, 2)(3, 4)(5, 6) + (1, 2, 3) + (1, 2, 4) + 2(3, 4)(1, 2, 5)− 2(1, 2, 6) + 2(3, 4)(1, 2, 6)+
2(3, 5)(1, 2, 6) + 2(4, 5)(1, 2, 6) + (1, 3, 4) + 2(1, 3, 5)− 2(2, 4)(1, 3, 5) + 2(1, 3, 6)− 2(2, 4)(1, 3, 6)−
2(2, 5)(1, 3, 6)+2(4, 5)(1, 3, 6)+2(2, 3)(1, 4, 5)+2(1, 4, 6)+2(2, 3)(1, 4, 6)−2(2, 5)(1, 4, 6)−2(3, 5)(1, 4, 6)+
2(1, 6)(2, 3, 5)+(2, 3, 6)+2(1, 6)(2, 4, 5)+(2, 4, 6)+2(3, 4)(2, 5, 6)+2(1, 6)(3, 4, 5)+(3, 4, 6)+2(3, 5, 6)−
2(2, 4)(3, 5, 6) + 2(2, 3)(4, 5, 6) + 4(1, 5, 6)(2, 3, 4)

Hence the final formula for the permutation of type 3,3 in term of special
elements obtained by the method explained in section 1.2 is:

8(4, 3, 2)(5, 6, 1) = (13)

(1, 2)−2(1, 3)+(1, 5)+4(1, 6)−3(2, 3)+2(1, 5)(2, 3)−2(1, 6)(2, 3)−3(2, 4)+2(1, 5)(2, 4)−2(1, 6)(2, 4)+

7(2, 5)− 2(1, 3)(2, 5)− 4(1, 4)(2, 5)− 6(1, 6)(2, 5)− 2(2, 6)− 2(1, 3)(2, 6) + 4(1, 4)(2, 6) + 2(1, 5)(2, 6) +

(3, 4) − 2(1, 5)(3, 4) − 2(1, 6)(3, 4) − 4(2, 5)(3, 4) − 4(3, 5) + 4(1, 4)(3, 5) + 4(2, 4)(3, 5) + 4(2, 6)(3, 5) −
4(1, 4)(2, 6)(3, 5) − 4(3, 6) + 4(1, 2)(3, 6) − 4(1, 4)(3, 6) − 4(2, 5)(3, 6) + 4(1, 4)(2, 5)(3, 6) − 2(4, 5) +

2(1, 2)(4, 5)+2(1, 3)(4, 5)+4(2, 3)(4, 5)+4(1, 3)(2, 6)(4, 5)+4(3, 6)(4, 5)−4(1, 2)(3, 6)(4, 5)−2(1, 2)(4, 6)+
2(1, 3)(4, 6)−4(1, 3)(2, 5)(4, 6)+4(1, 2)(3, 5)(4, 6)+6(5, 6)−4(1, 2)(5, 6)−4(4, 5)(1, 2, 3)+4(5, 6)(1, 2, 3)+

(1, 2, 5)− 4(3, 6)(1, 2, 5)− 2(1, 2, 6) + 4(4, 5)(1, 2, 6) + 2(1, 3, 6) + 4(2, 5)(1, 3, 6)− 4(4, 5)(1, 3, 6)−
4(3, 5)(1, 4, 2)+4(5, 6)(1, 4, 2)+4(2, 5)(1, 4, 3)−4(5, 6)(1, 4, 3)−4(2, 6)(1, 4, 5)+4(3, 6)(1, 4, 5)−(1, 5, 2)−
4(1, 5, 6)+ 8(3, 4)(1, 5, 6)+ 2(1, 6, 3)− 2(1, 6, 5)+ (2, 3, 5)+ 2(2, 3, 6)− 4(4, 5)(2, 3, 6)+ 4(1, 6)(2, 4, 3)−
(2, 4, 5) + 4(1, 6)(2, 4, 5) − (2, 5, 3) + 4(1, 6)(2, 5, 3) + (2, 5, 4) − 2(2, 5, 6) + 2(1, 4)(2, 5, 6) + 2(2, 6, 4) −
4(3, 5)(2, 6, 4)− 2(1, 4)(2, 6, 5) + (3, 4, 5)− 4(1, 6)(3, 4, 5) + 2(3, 4, 6)− (3, 5, 4) + 2(1, 2)(3, 5, 6)−
2(1, 4)(3, 5, 6) + 4(2, 5)(3, 6, 4)− 2(1, 2)(3, 6, 5) + 2(1, 4)(3, 6, 5)− 2(4, 5, 6)− 2(4, 6, 5)

3.1 The corresponding rules of substitution:

In writing an algorithm to transform any given permutation into a sum of
special elements one thus uses the following substitutional rules. From:

2(a, b, c, d) = (14)

(a, d)(b, c) + (a, b)(c, d)− (a, c)(d, b)− (a, d, b) + (a, c, d)

+(b, c, d) + (a, b, c) + (b, d)− (c, d)− (b, c).
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and:

(a,B)(a,A) = (a,A,B), e.g. (1, 2, 3)(1, 5, 4, 6) = (1, 5, 4, 6, 2, 3) (15)

for a cycle c := (a, b, c, d, A) of length n + 4, where A is of length n > 0, we
have

c := (a, b, c, d, A) = (a,A)(a, b, c, d) = (16)

(a, d,A)(b, c) + (a, b, A)(c, d)− (a, c, A)(d, b)− (a, d, b, A)

+(a, c, d, A) + (b, c, d) + (a, b, c, A) + (b, d)− (c, d)− (b, c).

This formula now contains only cycles of length < n+ 4.

By applying recursively these rules we arrive to a linear combination in
which no cycles of length > 3 appear. Now the only reduction to be made is if
there are pairs of 3-cycles. For these we finally repeat the final rule:

8(d, c, b)(e, f, a) = (17)

(a, b)− 2(a, c) + (a, e) + 4(a, f)− 3(b, c) + 2(a, e)(b, c)− 2(a, f)(b, c)− 3(b, d) +
2(a, e)(b, d) − 2(a, f)(b, d) + 7(b, e) − 2(a, c)(b, e) − 4(a, d)(b, e) − 6(a, f)(b, e) −
2(b, f)− 2(a, c)(b, f) + 4(a, d)(b, f) + 2(a, e)(b, f) + (c, d)− 2(a, e)(c, d)−
2(a, f)(c, d) − 4(b, e)(c, d) − 4(c, e) + 4(a, d)(c, e) + 4(b, d)(c, e) + 4(b, f)(c, e) −
4(a, d)(b, f)(c, e)− 4(c, f) + 4(a, b)(c, f)− 4(a, d)(c, f)− 4(b, e)(c, f) +
4(a, d)(b, e)(c, f)− 2(d, e) + 2(a, b)(d, e) + 2(a, c)(d, e) + 4(b, c)(d, e) +
4(a, c)(b, f)(d, e) + 4(c, f)(d, e)−4(a, b)(c, f)(d, e)−2(a, b)(d, f) + 2(a, c)(d, f)−
4(a, c)(b, e)(d, f) + 4(a, b)(c, e)(d, f) + 6(e, f) − 4(a, b)(e, f) − 4(d, e)(a, b, c) +
4(e, f)(a, b, c) + (a, b, e)−4(c, f)(a, b, e)−2(a, b, f) + 4(d, e)(a, b, f) + 2(a, c, f) +
4(b, e)(a, c, f)−4(d, e)(a, c, f)−4(c, e)(a, d, b) + 4(e, f)(a, d, b) + 4(b, e)(a, d, c)−
4(e, f)(a, d, c)− 4(b, f)(a, d, e) + 4(c, f)(a, d, e)− (a, e, b)− 4(a, e, f) +
8(c, d)(a, e, f) + 2(a, f, c)− 2(a, f, e) + (b, c, e) + 2(b, c, f)− 4(d, e)(b, c, f) +
4(a, f)(b, d, c) − (b, d, e) + 4(a, f)(b, d, e) − (b, e, c) + 4(a, f)(b, e, c) + (b, e, d) −
2(b, e, f) + 2(a, d)(b, e, f) + 2(b, f, d)− 4(c, e)(b, f, d)− 2(a, d)(b, f, e) + (c, d, e)−
4(a, f)(c, d, e) + 2(c, d, f)− (c, e, d) + 2(a, b)(c, e, f)− 2(a, d)(c, e, f) +
4(b, e)(c, f, d)− 2(a, b)(c, f, e) + 2(a, d)(c, f, e)− 2(d, e, f)− 2(d, f, e)

until we arrive at a linear combination of special elements.

4 Appendix B

4.1 The center

Given a partition λ ` n denote by Cλ the sum of all permutations with
cycles type λ.
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In C[Sn] these elements form a basis of its center but in Σn they are linearly
dependent, so it is interesting to extract from this list a basis for the center.
This is done in the next Proposition 4.

In fact both Σ2n and Σ2n+1 decompose into n+1 matrix blocks corresponding
to the partitions of n resp. n+1 with at most 2–rows of lengths h+k, h | 2h+k =
n.

Therefore the center of Σn has dimension n+ 1 with basis the central idem-
potents, unity of each block.

The dual of such a partition is of the form 2h1k with 2h + k = n, resp
2h+ k = n+ 1.

Proposition 4. The n+ 1 elements Cλ, λ = 2h1k form a basis for the center
of Σn.

Proof. By our formulas it is clear that the various Cλ, λ ` n are linear combina-
tions of those Cµ such that the dual µ̂ is the cycle partition of a special element.
Now for C3 the 2

(
n
3

)
3 cycles are naturally grouped into

(
n
3

)
pairs (a, b, c), (a, c, b)

and to their sum we apply Formula (1) so that

C3 =
3
(
n
3

)(
n
2

) C2 −
(
n

3

)
C1 = (n− 2)C2 −

(
n

3

)
C1,

3 · 2 · (n− 2)!

3! · (n− 3)!
= n− 2.

Similarly

C3,2k,1h = aC2k+1,1h+1 − bC2k,1h+3 = (k+ 1)(h+ 1)C2k+1,1h+1 −
(
h+ 3

3

)
C2k,1h+3 .

This proves that the n + 1 elements Cλ, λ = 2h1k span the center of Σn but,
since the center has dimension n+ 1 they are a basis.

The two coefficients a, b can be computed as follows. In general if we write
a partition as λ := 1h12h23h3 · · · khk , with hi the number of parts of length i,
we have that the number of permutations with cycles of length given by λ is
n!/zλ, zλ =

∏
ihi · hi!.

In order to compute a, b notice that in Sn, n = 2k + h the number of
permutations of type 2k, 1h is n!

2k·k!·h! , those of type 3, 2k, 1h is n!
3·2k·k!·h! .

Each of the
(
n
3

)
pairs of 3 cycles is multiplied by (n−3)!

2k·k!·h! permutations of

cycles type 2k, 1h, getting a total sum of 3
(
n
3

) (n−3)!
2k·k!·h! of permutations of cycles

type 2k+1, 1h+1 and minus
(
n
3

) (n−3)!
2k·k!·h! of permutations of cycles type 2k, 1h+3. So

a =
3
(
n
3

) (n−3)!
2k·k!·h!
n!

2k+1·(k+1)!·(h+1)!

, b =

(
n
3

) (n−3)!
2k·k!·h!
n!

2k·k!·(h+3)!



54 C. Procesi

a =
3 n!
6(n−3)!

(n−3)!
2k·k!·h!

n!
2(k+1)(h+1)2k·(k)!·h!

= (k + 1)(h+ 1), 2k + h = n− 3.

b =

(
n
3

) (n−3)!
2k·k!·h!
n!

2k·k!·(h+3)!

=

(
h+ 3

3

)
QED

Of course there are several combinatorial questions one can ask, about the
multiplication table of the previous elements or how to write them in terms of the
central idempotents, finally how to write a general Cλ as linear combination of
these central elements. Some of these questions can be answered as developments
of symmetric functions in 2 variables.

Let us discuss how to compute the coefficients for a general expansion

λ ` n, Cλ =

[n
2
]∑

k=0

aλ,kC2k,1n−2k .

Given λ := 1h12h23h3 · · · khk ` m, µ := (k + 1)p ` n define

λ+ µ := 1h12h23h3 · · · khk(k + 1)hk+1 ` m+ n, hk+1 = p. (18)

We have
zλ+µ = zλzµ.

Each permutation π of [1,m+n] of type λ+µ decomposes this set as [1,m+n] =
A ∪B, |A| = m, |B| = n and π restricted to A is of type λ while on B of type
µ. With obvious notations we may write

Cλ+µ: =
∑

A⊂[1,m+n]=A∪B, |A|=m

Cλ(A)Cµ(B)

=
∑
A

(

[m
2
]∑

i=0

aλ,iC2i,1m−2k(A))(

[n
2
]∑

j=0

aµ,jC2j ,1n−2j (B)). (19)

In this last sum the permutations of type 2`1m+n−2` arise from the contributions
aλ,iC2i,1m−2i(A)aµ,jC2j ,1m−2j (B) where i+ j = `. For each of these products we
have

aλ,im!/z2i,1m−2iaµ,jn!/z2j ,1n−2j
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The choice of k is i ≤ min([m2 ], `). The total is

Bλ+µ,` :=
∑

0≤i≤min([m
2
],`)

aλ,im!/z2i,1m−2iaµ,(`−i)n!/z2(`−i),1n−2(`−i)

thus from Formula (19)

aλ+µ,`(m+ n)!/zλ+µ =

(
m+ n

m

)
Bλ+µ,`.

aλ+µ = zλ
∑

0≤i≤min([m
2
],`)

aλ,iaµ,(`−i)
zµ

z2i,1m−2iz2(`−i),1n−2(`−i)

.

zµ
z2i,1m−2iz2(`−i),1n−2(`−i)

=
(k + 1)pp!

2ii!(m− 2i)!2(`−i)(`− i)!(n− 2(`− i))!
.

Next take a permutation of cycle type p` ` p·`. Consider first the decompositions
of [1, p · `] into ` subsets A1, · · · , A` each of length p. For such a decomposition
we have a contribution to Cp` of

Cp(A1)Cp(A2) · · ·Cp(A`) =
∏ [ p

2
]∑

k=0

ap,kC2k,1n−2k

continuing as before one obtains an explicit polynomial in the elements ap,k with
rational coefficients giving an expression for Cp` . So the last task is to give an
explicit formula for the elements ap,k.

This is done recursively starting from Formula (16)

cp := (1, 2, 3, 4, A) = (1, A)(1, 2, 3, 4) =

(1, 4, A)(2, 3) + (1, 2, A)(3, 4)− (1, 3, A)(4, 2)− (1, 4, 2, A)

+(1, 3, 4, A) + (2, 3, 4) + (1, 2, 3, A) + (2, 4)− (3, 4)− (2, 3) + 3C3.

We have
∑

σ∈Sp
σcpσ

−1 = p ·Cp the same sum applied to the terms on the right
hand side gives

p · Cp = 2(p− 2)C2,p−2 + (p− 1)C1,p−1 + 3(p− 3)!C1p−3,3 − 2(p− 2)!C1p−2,2

This is the basis for a recursion.
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