
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932
Note Mat. 45 (2025) no. 1, 15–37. doi:10.1285/i15900932v45n1p15

An isomorphism between projective models of
toric and hyperplane graphic arrangements

Giovanni Gaiffi
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
giovanni.gaiffi@unipi.it

Oscar Papini
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle
Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
oscar.papini@isti.cnr.it

Viola Siconolfi
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona
4, 70126 Bari, Italy
viola.siconolfi@poliba.it

Received: 14.03.2025; accepted: 19.04.2025.

Abstract. This paper presents a bridge between the theories of wonderful models associated
with toric arrangements and wonderful models associated with hyperplane arrangements. In
a previous work, the same authors noticed that the model of the toric arrangement of type
An−1 associated with the minimal building set is isomorphic to the one of the hyperplane
arrangement of type An associated again with the minimal building set; it is natural to ask if
there exist similar isomorphisms between other families of arrangements. The aim of this paper
is to study one such family, namely the family of arrangements defined by graphs. The main
result states that there is indeed an isomorphism between the model of the toric arrangement
defined by a graph Γ and the model of the hyperplane arrangement defined by the cone of Γ,
provided that a suitable building set is chosen.
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1 Introduction

In this paper we highlight a bridge between wonderful models of toric ar-
rangements and wonderful models of subspace arrangements. In particular we
point out some cases where the wonderful model of a toric arrangement is iso-
morphic to the wonderful model of an associated hyperplane arrangement. In
these cases both the involved arrangements are graphic arrangements.
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1.1 Historical sketches

A subspace arrangement is a collection of subspaces in a vector space V .
Analogously, a toric arrangement is a collection of subtori in an algebraic torus
T . In both cases, in this paper we will assume that the base field is C. We say that
an arrangement is divisorial if all its elements have codimension 1. A wonderful
model for an arrangement is a variety whose big open dense set is isomorphic
to the complement of the arrangement and whose boundary is a divisor with
normal crossings. The construction of a model associated with an arrangement
depends on the choice of a building set, i.e. a particular subset of the lattice
of intersections of the arrangement that satisfies some combinatorial properties.
More precise definitions will be provided in Section 2.

The construction of wonderful models of subspace arrangements was first
described in the seminal papers [12; 13]. The initial motivation was the study of
Drinfeld’s construction in [18] of special solutions of the Knizhnik-Zamolodchikov
equations with some prescribed asymptotic behavior, but it was soon pointed
out that the models are geometric objects with their own great interest. For
instance in the case of a complexified root arrangement of type An the minimal
model coincides with the moduli spaces of stable curves of genus 0 with n + 2
marked points.

In [13] De Concini and Procesi showed, using a description of the cohomology
rings of the projective wonderful models to give an explicit presentation of a
Morgan algebra, that the mixed Hodge numbers and the rational homotopy
type of the complement of a complex subspace arrangement depend only on
the intersection lattice (viewed as a ranked poset). The cohomology rings of the
models of complex subspace arrangements were also studied in [24; 36] and, in
the real case, in [19; 33]. The case of arrangements associated with complex
reflection groups was studied from different point of views in [27] and in [6].

The connections between the geometry of these models and the Chow rings
of matroids were pointed out first in [22] and then in [1], where they also played
a crucial role in the study of some relevant log-concavity problems. The relations
with toric and tropical geometry were enlightened for instance in [2; 16; 21].

The study of toric arrangements started in [29]. In [15] and [14] the role
of toric arrangements as a link between partition functions and box splines is
pointed out. In [7], it was shown, extending the results in [4; 5] and [31], that
in the divisorial case the data needed in order to state the presentation of the
rational cohomology ring of the complement M(A) of a toric arrangement A
is fully encoded in the poset given by all the connected components of the
intersections of the layers. It follows that in the divisorial case the combinatorics
of this poset determines the rational homotopy ofM(A).

One of the motivations for the construction of projective wonderful models of
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a toric arrangement A in [9], in addition to the interest in their own geometry,
was that they could be an important tool to explore the generalization of the
above mentioned results to the non-divisorial case.

Indeed the presentation of the cohomology ring of these models described
in [10] was used in [30] to construct a Morgan differential algebra which deter-
mines the rational homotopy type ofM(A). We notice that these models, and
therefore their associated Morgan algebras, depend not only on the initial combi-
natorial data, but also on some choices. In [11] a new differential graded algebra
was constructed as a direct limit of the above mentioned differential Morgan
algebras: it has a presentation which depends only on a set of initial discrete
data extracted from A, and it can be used to prove that in the non-divisorial
case the rational homotopy type ofM(A) depends only on these data.

1.2 A bridge between the two families of models

It is well-known that a root system defines both a hyperplane arrangement
and a toric arrangement, so it is natural to study the projective wonderful mod-
els associated with them. In [25], the authors noticed that the model of the toric
arrangement of type An−1 associated with the minimal building set is isomor-
phic to the one of the hyperplane arrangement of type An associated with the
minimal building set. In this work we extend this result by studying a wider
family of arrangements, namely the graphic arrangements (see Definitions 6 and
7). In particular, given a graph Γ we consider the toric arrangement defined by
Γ and the hyperplane arrangement defined by the cone of Γ (see Definition 5).
It turns out that, by choosing two convenient building sets, the wonderful mod-
els associated with these two arrangements are isomorphic. The proof that we
present relies on two key observations:

(1) both their complements can be realised as the complement of the same
projective hyperplane arrangement in a suitable projective space;

(2) the constructions of both the toric and the hyperplane models can be
translated as the construction of the model associated with this projective
hyperplane arrangement, with the only difference being the order of the
blowups of the elements of the building set.

1.3 Structure of the paper

The paper is structured as follows: in Section 2 we recall the definitions
and constructions related to projective models associated with hyperplane and
toric arrangements; in Section 3 we introduce the graphic arrangements and
study the construction of the models associated with the toric and hyperplane
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graphic arrangements, focusing our attention on the choice of the building set;
Section 4 is devoted to our main result, namely the proof of the isomorphism
between the model of the toric arrangement associated with a graph Γ and
the one of the hyperplane arrangement associated with the cone of Γ; Section 5
concludes the paper by showing how our main result can be applied to particular
families of graphic arrangements to uncover interesting equalities between known
combinatorial objects.

Remark 1. We will use the two superscripts ( )T and ( )H to denote the
objects relative to the fields of toric and hyperplane arrangements respectively.

2 Compact models of hyperplane and toric arrange-
ments

Both hyperplane/subspace arrangements and toric ones can be seen as special
cases of arrangements of subvarieties. Following [28], in this section we recall
the main definitions and constructions of projective wonderful models in this
more general setting, and afterwards we translate them in the context of the
hyperplane and toric arrangements.

Definition 1 (see [28, Definition 2.1]). Let X be a non-singular algebraic
variety. An arrangement of subvarieties of X is a finite set Λ of non-singular
closed connected subvarieties properly contained in X such that

(1) for every two Λi,Λj ∈ Λ, either Λi ∩ Λj is a disjoint union of elements of
Λ or Λi ∩ Λj = ∅;

(2) if Λi ∩Λj 6= ∅, the intersection is clean, i.e. it is non-singular and for every
y ∈ Λi ∩ Λj we have the following conditions on the tangent spaces:

Ty(Λi ∩ Λj) = Ty(Λi) ∩ Ty(Λj).

We denote byM(Λ) the complement of the arrangement Λ in X, i.e.

M(Λ) := X \
⋃

Λi∈Λ

Λi.

If for every two Λi,Λj ∈ Λ the intersection Λi ∩ Λj is either empty or con-
nected, the arrangement is called simple. For the rest of this paper we will only
deal with simple arrangements, therefore from now on this hypothesis will always
be implicitly assumed.

The key ingredient for the construction of the model is the notion of building
set, of which we give two definitions (see [28, Definition 2.2]).
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Definition 2. Let Λ be an arrangement of subvarieties. A subset G ⊆ Λ is a
building set for Λ if for every L ∈ Λ\G the minimal elements (w.r.t. the inclusion)
of the set {G ∈ G | L ⊂ G} intersect transversally and their intersection is L.
These minimal elements are called the G-factors of L.

Definition 3. Let G be a set of connected, closed, non-singular subvarieties
of a variety X and let Λ(G) be the set of all the connected components of all
the possible non-empty intersections of elements of G (i.e. the arrangement of
subvarieties induced by G). We say that G has the property of being building if
it is building for Λ(G) according to Definition 2.

A similar definition of building set can be given in a purely combinatorial
setting, namely in the context of meet-semilattices (see [20]).

Remark 2. Definition 3 remarks that being building is an intrinsic prop-
erty of the combinatorics of a set of subvarieties. In fact, while the induced
arrangement is unique for a chosen set of subvarieties G, there may exist differ-
ent building sets for a chosen arrangement Λ—however, if G is building for Λ,
then G is also building according to Definition 3 since in this case Λ(G) = Λ.

Finally, starting from a non-singular variety X, an arrangement of subvari-
eties Λ and a building set G for Λ, consider the locally closed embedding

M(Λ) −→
∏
G∈G

BlGX (1)

where BlGX is the blowup of X along G.
Definition 4 (see [28, Definition 1.1]). The closure of the image of the

morphism (1) is the wonderful model associated with X, Λ and G and it is
denoted by Y(X,Λ,G). If Λ is the arrangement induced by G we will simply
write Y(X,G).

Theorem 1 (see [28, Theorem 1.3]). Let G be a building set in an algebraic
variety X. Let us order the elements G1, . . . , Gm of G in such a way that for
every 1 ≤ k ≤ m the set Gk := {G1, . . . , Gk} is building. Then if we set X0 := X
and Xk := Y(X,Gk) for 1 ≤ k ≤ m, we have

Xk = Bl
G̃k
Xk−1,

where G̃k denotes the dominant transform of Gk in Xk−1. In particular Y(X,G)
is obtained for k = m.

Remark 3. (1) Any total ordering of the elements of a building set G =
{G1, . . . , Gm} which refines the ordering by inclusion, that is i < j if
Gi ⊂ Gj , satisfies the condition of Theorem 1.
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(2) It follows from the preceding constructions that M(Λ) is the open dense
set of Y(X,Λ,G) and that the boundary of Y(X,Λ,G) is the union of the
non-singular irreducible divisors DG provided by the transforms of every
G ∈ G. The intersection of any subset of these divisors is non-empty if
and only if the corresponding subset of G is G-nested (see Definition 9). If
this intersection is non-empty, then it is transversal. (See also [28, Theo-
rem 1.2].)

2.1 Models for hyperplane arrangements

Let V = Cn as a vector space. An arrangement of subspaces A is a finite
family of linear subspaces in V . We point out that A is central, i.e. 0 belongs to
every subspace of A, and we can assume that A is essential, i.e.

⋂
H∈AH = {0}.

The poset of intersections of A is the set of all the possible intersections of the
elements of A, including the whole space V obtained as the empty intersection,
partially ordered by reverse inclusion. It is denoted by L(A) and it is a lattice
(because A is central).

Since A is central, its projectivization A is well-defined as an arrangement
of projective subspaces in P(V ) = Pn−1. Given a building set G for L(A), a
projective wonderful model associated with A is the closure of the image of the
locally closed embedding

M(A) −→ P(V )×
∏
G∈G

P(V/G)

(see [13]) and we denote this model as YH(A,G). This construction is equiva-
lent to the one in Definition 4 by noticing that L(A) forms an arrangement of
subvarieties in Pn−1 according to Definition 1.

2.2 Models for toric arrangements

Let T = (C∗)n be an algebraic complex torus and let X∗(T ) be its group of
characters. For χ ∈ X∗(T ), let xχ : T → C∗ be the corresponding character on
T . A layer in T is a subvariety of T of the form

K(Γ, φ) := {t ∈ T | xχ(t) = φ(χ) for all χ ∈ Γ} (2)

where Γ < X∗(T ) is a split direct summand and φ : Γ→ C∗ is a homomorphism.
A toric arrangement A is a (finite) set of layers {K1, . . . ,Kr} in T .

The poset of layers of A is the set of all the connected components of the
possible intersections of the elements of A, including the whole torus T obtained
as the empty intersection, partially ordered by reverse inclusion. It is denoted
by C(A).
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Following [9], in order to construct a projective wonderful model associated
with A, first we embed the torus T in a suitable toric variety X∆ with associated
fan ∆. In particular, a toric variety X∆ is good for A if every layer of C(A) has
an equal sign basis with respect to the fan ∆.

Let C(A) be the set of the closures of the layers of C(A) in X∆; it can be
proven that this set forms an arrangement of subvarieties in X∆ according to
Definition 1; therefore, given a building set G for C(A), we can define a projective
wonderful model associated with A according to Definition 4. We denote this
model as YT (A,G), where the dependence on X∆ is left implicit.

3 Graphic arrangements and their models

In this section we present the hyperplane and toric arrangements associated
with some graphs and introduce the ingredients to build the projective wonderful
models that we are going to study in Section 4.

We identify a graph with the pair (V, E) where V is its set of vertices and
E ⊂ V ×V is its set of edges. We assume all graph to be simple, undirected and
without loops. Moreover we will consider only graphs with at least two vertices.

A key concept that will be widely used in this work is that of the cone of a
graph. For convenience we report here the definition.

Definition 5. Let Γ = (V, E) be a graph with V = [n] := {1, . . . , n}. The
cone of Γ, denoted with Γ̂, is a graph with vertices V̂ = [n] ∪ {0} and edges

Ê = E ∪ {(0, j) | j ∈ [n]}.

In the following definitions, let v = (1, . . . , 1) of suitable length.
Definition 6. Identify Cn−1 with Cn/(Cv). Given a graph Γ = (V, E) with

V = [n], we define the associated hyperplane arrangement AH(Γ) in Cn−1 as the
set of hyperplanes {Hij}(i,j)∈E where Hij = {(x1, . . . , xn) ∈ Cn | xi = xj}/(Cv).

Definition 7. Identify (C∗)n−1 with (C∗)n/(C∗v). Given a graph Γ = (V, E)
with V = [n], we define the associated toric arrangementAT (Γ) in (C∗)n−1 as the
set of layers {Kij}(i,j)∈E where Kij = {(t1, . . . , tn) ∈ (C∗)n | tit−1

j = 1}/(C∗v).
Notice that Kij is a layer according to (2)—in fact, in this case we have that

Kij = K(Γij , φij), where

• Γij is the subgroup of X∗((C∗)n−1) = Zn−1 = Zn/(Zv) generated by
eij/(Zv), where eij ∈ Zn is the vector that has 1 in the i-th coordinate,
−1 in the j-th coordinate, and 0 elsewhere;

• φij is the trivial homomorphism that maps every element of Γij to 1 ∈ C∗.
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An arrangement that arises from a graph as in Definition 6 or Definition 7
is also called graphic arrangement.

Example 1. The (hyperplane or toric) arrangement of type An−1 is a
graphic arrangement associated with Kn, i.e. the complete graph on n vertices.
Indeed, any graphic arrangement can be viewed as a subarrangement of it.

For the remainder of the section, let Γ be a graph on n vertices. Notice
that by construction the poset of intersections L(AH(Γ)) and the poset of layers
C(AT (Γ)) are isomorphic and, in fact, we can provide a further characterization.
Consider the poset of set partitions of [n] ordered by refinement and denote it
by Πn.

Proposition 1. Given a subset I ⊆ [n], let Γ(I) be the subgraph of Γ induced
by I. Let Πn(Γ) ⊆ Πn be the subposet such that π = {π1, . . . , πk} ∈ Πn(Γ) iff
Γ(π`) is connected for each ` = 1, . . . , k. The poset L(AH(Γ)) (and consequently
C(AT (Γ))) is isomorphic to Πn(Γ).

Proof. Let π = {π1, . . . , πk} ∈ Πn(Γ). We define Hπ ∈ L(AH(Γ)) as

Hπ =

k⋂
`=1

 ⋂
eij∈E(Γ(π`))

Hij

 (3)

where E(Γ(π`)) is the set of edges of Γ(π`). Since π ∈ Πn(Γ), this definition is
equivalent to

Hπ = {(x1, . . . , xn) ∈ Cn | xi = xj if exists ` s.t. {i, j} ⊆ π`}/(Cv).

On the other hand, let H ∈ L(AH(Γ)). It is described by a set of equations
xi1 = · · · = xis ,

. . .

xj1 = · · · = xjt ,

where the indices in each row belong to disjoint subsets of [n]. Notice that by
definition two indices can belong to the same row of equations only if there is a
path in Γ connecting the corresponding vertices. Define the partition

πH = {{i1, . . . , is}, . . . , {j1, . . . , jt}}

(eventually completed with singletons corresponding to the variables not ap-
pearing in the equations) which, by the previous remark, belongs to Πn(Γ).

Now it is an exercise to prove that the two maps

L(AH(Γ)) −→ Πn(Γ)
H 7−→ πH

and Πn(Γ) −→ L(AH(Γ))
π 7−→ Hπ
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are inverse of each other. QED

Remark 4. We can compute the codimension of any H ∈ L(AH(Γ)) from
πH :

codim(H) =
∑
B∈πH

(#(B)− 1) .

We now study some particular projective wonderful models associated with
graphic arrangements, starting with the choice of the building set.

Definition 8. Let G be the subset of either C(AT (Γ)) or L(AH(Γ)), depend-
ing on the context, whose elements are the subtori/subspaces G such that the
corresponding partition πG has exactly one non-singleton block. In this case,
if there is no ambiguity, we will use the symbol πG also to denote the only
non-singleton block of the partition.

Proposition 2. G is a building set.

Proof. Let H /∈ G and let B1, . . . , B`, ` ≥ 2, be the non-singleton blocks of
the associated partition πH . We claim that the minimal elements (w.r.t. the
inclusion of subspaces) of GH := {G ∈ G | H ⊂ G} are G1, . . . , G`, where Gi is
such that πGi = Bi for i = 1, . . . , `. This is clear from the fact that at partition
level we are looking for the coarsest partitions with only one non-singleton block
that are finer than πH .

From this it follows easily that H = G1 ∩ · · · ∩ G` and this intersection is
transversal. QED

Remark 5. As shown in [25], in the case of Γ = Kn this building set corre-
sponds to the minimal one, i.e. the building set of irreducibles. However, this is
not true in general. For example, suppose that the graph Γ contains the edges
(1, 2) and (2, 3) but not (1, 3): in this case the element G ∈ G whose block is
πG = {1, 2, 3} is not irreducible as a subspace.

When we consider the cone Γ̂, the corresponding building set Ĝ, defined as in
Definition 8, admits a useful description in terms of the building set G associated
with Γ.

Proposition 3. Let

ι : Πn(Γ) −→ Πn+1(Γ̂)
{π1 . . . , πk} 7−→ {{0}, π1, . . . , πk}

where we consider the elements of Πn+1(Γ̂) as partitions of {0, 1, . . . , n}. Then
each element of Ĝ ⊆ Πn+1(Γ̂) is associated with a partition of one of the following
forms:
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(1) ι(G) for some G ∈ G;

(2) {{0}∪S, {i1}, . . . , {ik}} for some S ∈ P([n])\{∅} where [n]\S = {i1, . . . , ik}.

Proof. In fact, the partitions of type 1. and 2. above are exactly the ones with
a single non-singleton block that induces a connected subgraph of Γ̂. QED

We now have all the ingredients to introduce projective wonderful models
associated with a graphic hyperplane/toric arrangement.

Let us begin with the toric case; as we have seen in Section 2, the starting
point is a good toric variety. As noticed in [9], for any graphic toric arrangement
whose graph has n vertices there is a canonical choice of such a variety: the one
associated with the fan ∆ induced by the Weyl chambers of the root system
of type An−1. In the end, following the construction recalled in Section 2, we
obtain the projective wonderful model YT (Γ,G) := YT (AT (Γ),G).

In the hyperplane setting we do not consider the arrangement AH(Γ) and
instead we study AH(Γ̂), the arrangement associated with the cone Γ̂, and the
building set Ĝ defined above, obtaining the model YH(Γ̂, Ĝ) := YH(AH(Γ̂), Ĝ). In
the next section we investigate the relationship between YT (Γ,G) and YH(Γ̂, Ĝ).

4 The isomorphism between the models

Let Γ be a graph on n vertices and let G be the building set defined in
Definition 8. As spoiled by the title of this section, we want to prove the following
result:

Theorem 2. The two models YT (Γ,G) and YH(Γ̂, Ĝ) are isomorphic.

Proof. The first step of the proof consists in noticing that the complement
M(AT (Γ)) can be realized as the complement of a subspace arrangement in
a suitable projective space.

As in the beginning of Section 3, let v = (1, . . . , 1) and let E ⊆ [n] × [n] be
the set of edges of Γ. We identify (C∗)n−1 = (C∗)n/(C∗v) with

P(Cn) \
n⋃
i=1

{ti = 0}

where t1, . . . , tn are the projective coordinates on P(Cn). The map is given by

(C∗)n/(C∗v) −→ P(Cn) \
n⋃
i=1

{ti = 0}

[(t1, . . . , tn)] 7−→ [t1, . . . , tn]
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where on the left the notation with square brackets denotes the class of (t1, . . . , tn)
in the quotient. Under this identification, the complementM(AT (Γ)) is the same
as the complement of an arrangement A′ in Pn−1 = P(Cn) whose projective hy-
perplanes are

(i) {ti = 0}, for i = 1, . . . , n;

(ii) {ti = tj}, for (i, j) ∈ E .

For convenience, we recall again the construction of the model YT (Γ,G)
provided by [9]:

(1) first, we embed the torus (C∗)n/(C∗v) in the toric variety X∆ associated
with the Coxeter fan ∆ of type An−1;

(2) then, we blow up all the closures of the layers of G in an order that refines
inclusion.

As a consequence of the identification of AT (Γ) with a projective arrange-
ment in Pn−1, the construction just outlined is equivalent to the following:

(1) first, we obtain from Pn−1 the toric variety X∆ by blowing up the intersec-
tions of the subspaces of A′ of type (i) in any order that refines inclusion
(see for example [3, Section 2], [32, Section 3]);

(2) then we blow up the (proper transforms of the) elements of G, obtained
as intersections of the subspaces of type (ii), in any order that refines
inclusion.

Now we focus on the construction of the model YH(Γ̂, Ĝ) for the hyperplane
arrangement AH(Γ̂). At first we build its projectivization in an opportune way.
Recall that AH(Γ̂) is an arrangement in an n-dimensional space: if we choose to
view it in the space

N := {(0, x1, . . . , xn) | xi ∈ C} ⊆ Cn+1,

then its projectivization in P(N), with coordinates [x1, . . . , xn] omitting the
leading zero, has the following projective hyperplanes:

• {xi = 0}, for i = 1, . . . , n;

• {xi = xj}, for (i, j) ∈ E .
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In other words, we obtain the same projective arrangement A′ as the toric case.
Let us characterise the elements of Ĝ in this setting. Let π be a partition in

Πn+1(Γ̂) with only one non-singleton block. If 0 does not belong to this block,
we will denote the corresponding subspace in Ĝ by Hπ; otherwise we will denote
the subspace by Mπ. Notice that these two cases correspond to the subspaces of
type 1. and type 2. respectively in Proposition 3.

With this notation, we have that the elements of type Mπ correspond to the
intersections of the subspaces of type (i) in the toric setting, and the elements
of type Hπ correspond to the elements of G. With this in mind, we can conclude
that the toric and hyperplane models are isomorphic if we can build the model
YH(Γ̂, Ĝ) by blowing up in P(N) ' Pn−1 the subspaces of Ĝ in the same order
as the one described in the construction of the toric model YT (Γ,G), i.e. if we
can reorder the elements of Ĝ = {G1, . . . , Gm} in the following way:

(1) first, we put all the subspaces of typeMπ in any order that refines inclusion
(say that these are G1, . . . , Gt0);

(2) then, we put all the subspaces of type Hπ in any order that refines inclu-
sion (say that these are Gt0+1, . . . , Gm); notice that by construction the
segment Ĝtt0+1 := {Gt0+1, . . . , Gt} is building for every t = t0 + 1, . . . ,m.

According to [28, Theorem 1.3], this is an admissible ordering of the elements
of Ĝ if the initial segment Ĝt = {G1, . . . , Gt} is building for every t = 1, . . . ,m.
Let us prove this, distinguishing two cases.
Case 1. If all the subspaces in Ĝt are of type Mπ, then any intersection of
elements of Ĝt is still of type Mπ and belongs to Ĝt since the ordering refines the
inclusion. This implies that Ĝt is building.
Case 2. If at least one subspace in Ĝt is of type Hπ (notice that in this case
all the subspaces of type Mπ are in Ĝt), then let L be the intersection of some
elements of Ĝt; after having removed the non-minimal subspaces, it has the form

L = L1 ∩ · · · ∩ Lk (4)

where k ≥ 1, L1 is either of type Mπ1 or of type Hπ1 , all the other Li’s are of
type Hπi and the non-singleton blocks of π1, . . . , πk are pairwise disjoint. We
notice that all the Li’s belong to Ĝt:

• we already know that it is true for the subspaces of type Mπ;

• for the subspaces of type Hπ, this is true because each Li of type Hπi

appears as a Ĝtt0+1-factor of the intersection of some elements of Ĝtt0+1,
and Ĝtt0+1 is building.
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Moreover the partition corresponding to L is given by the disjoint union of
the non-singleton blocks of π1, . . . , πk completed with the remaining singletons,
so (4) is a transversal intersection. This ends the proof that Ĝt is building.

In conclusion, we have proven that the constructions in the toric case and in
the hyperplane case are the same, therefore Theorem 1 can be applied and this
shows that, up to isomorphism, YT (Γ,G) and YH(Γ̂, Ĝ) are the same. QED

5 Applications

In this section we present two examples of noteworthy graphic arrangements
and the models associated with them. Both the examples lead to a geometric
proof of an equality involving Eulerian polynomials.

5.1 A known example: The complete graph

Let Kn be the complete graph on n vertices. As already mentioned, both
in the hyperplane case and in the toric one the graphic arrangement associated
with it is the arrangement of Coxeter type An−1, which is well-known (see for
example [24; 36] for the hyperplane case and [17; 32; 34; 35] for the toric one).

In this case it is trivial to notice that K̂n = Kn+1, so a straightforward
application of Theorem 2 gives the following corollary, which has already been
announced (without a proper proof) in [25, Section 5].

Corollary 1. The model YT (Kn,G) associated with the toric arrangement
of type An−1 is isomorphic to the model YH(Kn+1, Ĝ) associated with the hyper-
plane arrangement of type An.

5.2 Disjoint union of pairs of complete graphs

Let Kn,m be the graph obtained as the disjoint union of Kn and Km, namely
the graph on n+m vertices {1, . . . , n+m} such that (i, j) is an edge if and only
if either i, j ≤ n or i, j > n (see Figure 1 for an example).

By Theorem 2, the toric model associated with Kn,m is isomorphic to the
projective hyperplane model associated with K̂n,m, and in particular

H∗(YT (Kn,m,G),Z) ∼= H∗(YH(K̂n,m, Ĝ),Z).

We will count the elements of two monomial bases of the two rings, obtained
using the description of [24; 36] in the hyperplane case and [25] in the toric case.
To do so, we briefly recall the main tools needed for these constructions.

Definition 9. Let Λ be a (simple) arrangement of subvarieties and let G be
a building set for Λ. A subset S ⊆ G is called (G-)nested if for any set of pairwise
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Figure 1. The graph K3,4 and its cone K̂3,4.

non-comparable (w.r.t. the inclusion) elements {A1, . . . , Ak} ⊆ S, with k ≥ 2,
there is an element in Λ of which A1, . . . , Ak are the G-factors.

In the case of graphic arrangements, considering the building set G of Defi-
nition 8, the nested sets are {Hπ1 , . . . ,Hπj} such that the non-singleton blocks
of {π1, . . . , πj} are pairwise either comparable or disjoint.

Definition 10. A function f : G → N is (G)-admissible if it has both the
following properties:

(1) supp f is G-nested;

(2) for every A ∈ supp f we have f(A) < dimMf (A) − dimA, where Mf (A)
is the (connected) intersection of the elements of supp f that properly
contain A.

Notice that the function such that f(A) = 0 for every A ∈ G is admissible.
For each element G ∈ G, let TG be a polynomial variable. The admissible

monomial associated with an admissible function f is

mf =
∏
G∈G

T
f(G)
G .

Theorem 3 ([24, Theorem 2.1]; see also [36]). The set

{mf | f G-admissible}

is a monomial basis for H∗(YH(A,G),Z).
In the toric case, let X∆ be a good toric variety for A and let R be the set

of its rays; moreover, for each ray r, let Cr be a polynomial variable.
Theorem 4 (see [25, Theorem 4.7]). The set

{bmf | f G-admissible, b ∈ Bf}
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is a monomial basis for H∗(YT (A,G),Z), where Bf ⊆ Z[Cr | r ∈ R] is a
monomial basis of H∗(X∆(f),Z) (here ∆(f) is a suitable subfan of ∆ defined
by supp f).

Remark 6. Recall that for graphic toric arrangements we can choose the
fan ∆ = ∆n−1 induced by the Weyl chambers of the root system of type An−1;
in this case, for any G-admissible function f we have that ∆(f) is isomorphic to
a fan of the form ∆k−1 for some k ≤ n, i.e. it is again a fan associated with a
root system of type Ak−1. In particular we know that their Poincaré polynomials
are given by Eulerian polynomials.

Finally, to count the elements of the monomial bases we just need to recall
from [25] the definitions of admissible trees and admissible forests.

Definition 11. An admissible tree on m leaves is a labeled directed rooted
tree such that

• it has m leaves, each labeled with a distinct non-zero natural number;

• each non-leaf vertex v has kv ≥ 3 outgoing edges, and it is labeled with
the symbol qi where i ∈ {1, . . . , kv − 2}.

By convention, the graph with one vertex and no edges is an admissible tree on
one leaf (actually the only one). The degree of an admissible tree is the sum of the
exponents of the labels of the non-leaf vertices. Denote by λ(q, t) the generating
function of the admissible trees, i.e. the series whose coefficient of qitk/k! counts
the number of admissible trees of degree i on k leaves (see [24; 36]).

Definition 12. An admissible forest on n leaves is the disjoint union of
admissible trees such that the sets of labels of their leaves form a partition of
{1, . . . , n}. The degree of an admissible forest is the sum of the degrees of its
connected components.

Let us consider the graphic toric arrangement associated with Kn,m and let
G be building set of Definition 8. Let ATn−1 and ATm−1 be the two toric graphic
arrangements associated with Kn and Km respectively; it is easy to show that
every G-nested set S can be uniquely written as the disjoint union of a Fn−1-
nested set S1 and a Fm−1-nested set S2, where Fn−1 and Fm−1 are the “building
sets of irreducible elements” for ATn−1 and ATm−1 (see [25, Section 5.1]), and on
the other hand every such union gives rise to a G-nested set. Moreover, there is
a bijection Ψ between the set of G-admissible functions and the set

{(f1, f2) | f1 is Fn−1-admissible, f2 is Fm−1-admissible}

given by Ψ(f) = (f |S1 , f |S2) if supp f = S1 t S2 as above. In other words, there
is a grade-preserving bijection between the set of G-admissible functions and
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the set of pairs (F1, F2) of admissible forests on n and m leaves respectively
(where deg(F1, F2) := degF1 + degF2). Finally, it is not hard to prove that,
given a G-admissible function f corresponding to the pair (F1, F2), the fan ∆(f)
is of the form ∆`−1, where ` is the total number of connected components of
F1 and F2, therefore there is a bijection between Bf and the permutations in
S` that is grade-preserving provided that we choose any Eulerian statistic on S`
as the degree of a permutation. In conclusion, a basis for the Z-cohomology of
YT (Kn,m,G) is in one-to-one correspondence with the set of triples (F1, F2, σ)
where F1 is an admissible forest on n leaves, F2 is an admissible forest on m
leaves, and σ is a permutation in S` as above. This proves that, if we define the
(exponential) generating function of the family

ΦT (q, x, y) :=
∑
n,m≥1

Poin(YT (Kn,m,G), q)
xn

n!

ym

m!
,

we have that

ΦT (q, x, y) =
∑

`1,`2≥1

Poin(X∆`1+`2−1
, q)

λ`1(q, x)

`1!

λ`2(q, y)

`2!

=
∑

`1,`2≥1

A`1+`2(q)

q

λ`1(q, x)

`1!

λ`2(q, y)

`2!
, (5)

where A`(q) is the `-th Eulerian polynomial, defined as

A`(q) :=


∑̀
k=1

A(`, k)qk, ` ≥ 1,

1, ` = 0

(see [8]; A(`, k) is the number of permutations in S` with k − 1 descents, for
` ≥ 1 and 1 ≤ k ≤ `).

Remark 7. In the previous formula, as well as from now on, q is a polyno-
mial variable with degree 2.

We now write a series similar to (5) in the hyperplane scenario. Let K̂n,m

be the cone of Kn,m, and let Ĝ the building set as in Definition 8. As usual,
we identify an element G ∈ Ĝ with a subset of {0, 1, . . . , n + m}, i.e. the single
non-singleton block of the partition πG. In this case the blocks relative to the
elements of Ĝ can only be of one of the following types:

(1) a subset of {1, . . . , n};

(2) a subset of {n+ 1, . . . , n+m};
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(3) any subset containing 0 of cardinality at least 2.

In particular, in any Ĝ-nested set S the elements of type (3) form a linear chain
with respect to the inclusion, and the set S \ {elements of S of type (3)} can be
written as a disjoint union of a Fn−1- and a Fm−1-nested sets.

Once again, the concept of admissible forests can be used to describe the
Ĝ-admissible functions, albeit with a slight modification.

Definition 13. A special admissible forest of type (n,m) is an admissible
forest on n+m+ 1 leaves, numbered from 0 to n+m, such that

• its connected components not containing the leaf 0 are admissible trees
with leaf labels either contained in {1, . . . , n} or contained in {n+1, . . . , n+
m};

• the connected component containing the leaf 0 has the following property:
all the connected components of the graph obtained by removing the leaf
0 and all the nodes that have 0 among their descendants are admissible
trees with leaf labels either contained in {1, . . . , n} or contained in {n +
1, . . . , n+m}.

In fact, a special admissible forest defines a Ĝ-admissible function f in the
following way: each internal node v represents an element Gv ∈ Ĝ (in particular,
πGv is the set of the labels of the leaves descending from v); the set S = {Gv |
v internal node} is a Ĝ-nested set which is the support set of f ; if qi is the label
associated with the node v then f(Gv) = i.

In conclusion, a basis for the Z-cohomology of YH(K̂n,m, Ĝ) is in grade-
preserving one-to-one correspondence with the set of special admissible forests
of type (n,m). Therefore we can study the (exponential) generating function

ΦH(q, x, y) :=
∑
n,m≥1

Poin(YH(K̂n,m, Ĝ), q)
xn

n!

ym

m!
,

which is equal to ∑
n,m≥1

∑
F

qdegF x
n

n!

ym

m!

where F varies in the set of special admissible forests of type (n,m).
Now notice that a special admissible forest of type (n,m) can be obtained

from two (regular) admissible forests F1 and F2 on n and m leaves respectively
(where we relabel the leaves of the second one with the numbers n+1, . . . , n+m)
by choosing which of their trees are “attached” to the leaf 0 and how. This
information is given by a permutation in S`1+`2 , where `1 and `2 are the number
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of trees of F1 and F2. To show how, we recall some definitions taken mainly
from [23; 26].

Given an ordered list of distinct numbers (not necessarily a permutation),
say σ = [σ1, . . . , σN ], we denote by inv(σ) the set of inversions of σ:

inv(σ) := {(i, j) | 1 ≤ i < j ≤ N, σi > σj}.

Definition 14. A hook is an ordered list of distinct non-zero natural num-
bers η = [t1, . . . , th], with h ≥ 2, such that t1 > t2 and t2 < t3 < · · · < th (this
second condition applies only for h ≥ 3).

Remark 8. (1) Given s numbers 1 ≤ j1 < · · · < js ≤ N and i ∈
{1, . . . , s− 1} there is a unique way to sort {j1, . . . , js} so that they form
a hook with exactly i inversions, namely [ji+1, j1, . . . , ji, ji+2, . . . , js].

(2) There exists a unique way to write a list of distinct numbers σ as a concate-
nation σ = p η1 · · · ηk where each ηi is a hook and p is a list of increasing
numbers. This is called the hook factorization of σ. For example, the hook
factorization of σ = [1, 2, 8, 4, 3, 7, 9, 6, 5] ∈ S9 is

[1, 2, 8][7, 3, 4, 9][6, 5].

Notice that it is possible to have k = 0, if σ is an increasing sequence; also
it may happen that p = ∅ (σ = [3, 1, 2] is an example with k = 1).

Definition 15. Let σ be a list of distinct numbers. The statistic lec is defined
as

lec(σ) =
k∑
i=1

#inv(ηi)

where p η1 · · · ηk is the hook factorization of σ.
For example if σ = [1, 2, 8, 4, 3, 7, 9, 6, 5] ∈ S9, we have lec(σ) = 2 + 1 = 3.
Lemma 1. There exists a one-to-one correspondence between the set of

triples (F1, F2, σ) where

• F1 is an admissible forest on n leaves and with `1 trees;

• F2 is an admissible forest on m leaves and with `2 trees;

• σ is a permutation in S`1+`2;

and the set of special admissible forests of type (n,m). This correspondence is
grade-preserving provided that we define deg(F1, F2, σ) := deg(F1) + deg(F2) +
lec(σ).
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Figure 2. Top: two admissible forests on 8 and 9 leaves respectively, each with
four connected components. Bottom: the special admissible forest of type (8, 9)
that can be obtained from the two forests above and the permutation σ =
[1, 5, 6, 7, 3, 8, 2, 4].

Proof. We only show the algorithm that associates a triple (F1, F2, σ) with a
special admissible forest, which is similar to the one described in [25]. The reader
can refer to Figure 2 to see an example.
Preliminary step. We define a total order on the set of trees of F1 and F2 in
the following way: given two trees τ , τ ′, we say that τ < τ ′ if

(1) τ belongs to F1 and τ ′ belongs to F2;

(2) if τ and τ ′ belong to the same forest, the minimum label of the leaves in
τ is smaller than the minimum label of the leaves in τ ′.

Let {τ1, . . . , τ`1} and {τ`1+1, . . . , τ`1+`2} be the trees of F1 and F2 ordered this
way. Moreover, write σ as an ordered list [σ(1), . . . , σ(`1 + `2)] and let p η1 · · · ηk
be its hook factorization.
Step 1. Consider the last hook ηk and let i1 = #inv(ηk). Create a tree τ (1)

0

with a new internal vertex, labelled with qi1 , to which the roots of the trees
{τj | j ∈ ηk} are attached as well as the zero-labelled leaf.
Step 2. Consider the second-to-last hook ηk−1 and let i2 = #inv(ηk−1). Create
a tree τ (2)

0 with a new internal vertex, labelled with qi2 , to which the roots of
the trees {τj | j ∈ ηk−1} are attached as well as the root of τ (1)

0 .
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Next steps. Continue with the other hooks, considering them from the last to
the first. The part p of the hook factorization, if present, determines the trees
that will not be attached to τ0. QED

The key observation is that, if we define the bivariate exponential generating
function of the lec statistic

L(q, x, y) :=
∑

k1,k2≥1

 ∑
σ∈Sk1+k2

qlec(σ)

 xk1

k1!

yk2

k2!
,

then the coefficient of qdx`1y`2/(`1!`2!) in L(q, λ(q, x), λ(q, y)) counts exactly the
triples (F1, F2, σ) as above and such that deg(F1, F2, σ) = d. As a consequence,
we have that

ΦH(q, x, y) =
∑

`1,`2≥1

∑
σ∈S`1+`2

qlec(σ)λ
`1(q, x)

`1!

λ`2(q, y)

`2!
. (6)

By Theorem 2 we know that the two series ΦT (q, x, y) and ΦH(q, x, y) are equal,
and so are the two right-hand sides of (5) and (6). Now, λ(q, t) is invertible
with respect to the composition if viewed as a series in Z[q][[t]] (in fact λ(q, t) =
t + qt3/3! + (q + q2)t4/4! + · · · ). By composing by λ−1 twice both (5) and (6)
we finally obtain

A`(q)

q
=

∑
σ∈S`

qlec(σ).

In other words, the isomorphism between YT (Kn,m,G) and YH(K̂n,m, Ĝ) pro-
vides yet another proof of the fact that the lec statistic is Eulerian.
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