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1 Introduction

Over the last decades, many characterizations of geodesic spheres have been
obtained. The most famous one is the Alexandrov Theorem [2] which says that a
closed embedded hypersurface of the Euclidean space Rn+1 with constant mean
curvature must be a geodesic sphere. The hypothesis, that the hypersurface is be
embedded, cannot be removed as proved by many counter-examples constructed
by Wente [22], Kapouleas [10], Hsiang [6] or Hsiang-Teng-Yu [7] for instance.
Further, this result has been extended by Ros to scalar curvature [16] and then
higher order mean curvatures [17] and more generally for any concave function
of the principal curvatures by Korevaar [14]. In the same note, Korevaar also
explain that the proof of Alexandrov is also valid in the hyperbolic space and
the half-sphere. Another proof was given by Montiel and Ros [15]. Note that for
higher order mean curvatures, the necessity of the embedding is still an open
question.

Many other characterizations of geodesic spheres have been proved where
the embeddedness has been replaced by another assumption in addition of the
constancy of the mean curvature or more generally of one of the higher order
mean curvature. For instance, Bivens proved in [3] that if two consecutive higher
order mean curvatures are constant, then the hypersurface is a geodesic sphere.
This have been extend by [11] to the constancy of the ratio of two consecutive
higher order mean curvatures and finally by Koh and Lee to the ratio any two
higher order mean curvatures [12, 13]. As a consequence, if two higher order
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mean curvatures are constant, then the hypersurface is a geodesic sphere. In
[18] and [19], we were able to relax the hypothesis of the result of Bivens for
the first two mean curvature. Precisely, if the mean curvature is constant and
the second mean curvature H2 is almost constant, the conclusion also holds. We
first prove it in [18] for pointwise almost constancy of H2 and then in [19] if H2

is close to a constant for the Lp-norm. All these results hold in the three space
forms.

We introduce the following notations before stating the main result of this
note. Mn+1(δ) denotes the simply connected (n+ 1)-dimensional space form of
constant curvature δ, that is Mn+1(δ) is the Euclidean space Rn+1 if δ = 0, the
hyperbolic space Hn+1(δ) if δ < 0 and the upper half-sphere Sn+1

+ (δ) if δ > 0.
Let r(·) = d(p0, ·) be the distance function to a base point p0. We define the
position vector Z as Z = sδ(r)∇r, where ∇r is the gradient of r in Mn+1(δ)
and the functions cδ and sδ are defined by

cδ(t) =


cos(
√
δt) if δ > 0

1 if δ = 0

cosh(
√
−δt) if δ < 0

and sδ(t) =


1√
δ

sin(
√
δt) if δ > 0

t if δ = 0
1√
−δ sinh(

√
−δt) if δ < 0.

In the present note, we are interested in the following characterization due to
Hisung [8] for hypersurfaces of Euclidean spaces, but easily extended to spheres
and hyperbolic spaces. Consider (M, g) a closed, connected and oriented Rie-
manniann manifold isometrically immersed into Mn+1(δ). By the orientability
of M , there exists on M a globally defined normal unit vector field ν. We as-
sume that M is starshaped as a hypersurface, that is, the support function
〈Z, ν〉 never vanishes on M , and so has a fixed sign. If, in addition, the mean
curvature H is constant, then M is a geodesic sphere. Hsiung also showed the
same result for any higher order mean curvature Hk, 1 6 k 6 n. Our goal is
to relax the starshapedness assumption and obtain a new characterization of
geodesic spheres with a weaker assumption that we will call almost starshaped.
First, we will precise what we understand by almost starshaped. Let ρ0 be a
positive integer, we assume that there exists a smooth positive function ε such
that at any point of M , we have

〈Z, ν〉 6 −ρ0(1− ε). (1)

In the sequel, ε will be a function with small L1-norm such that the hypersurface
M is not necessarily starshaped since we allow the support function 〈Z, ν〉 to
be positive at some points but its positive part is small. Now, we can state the
main result of this note.

Theorem 1. Let n > 2 be an integer and ρ0 a positive real number. Let us
consider (Mn, g) a closed, connected and oriented Riemannian manifold of di-
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mension n isometrically immersed into Mn+1(δ) with second fundamental form
B and mean curvature H. If δ > 0, we assume in addition that M is contained
in a geodesic ball of radius R < π

2
√
δ
.

Let h > 0, then there exists a positive constant ε0 depending on n, h, δ, ‖B‖∞
and Vol(M), and also on R if δ > 0, so that if M has constant mean curvature
H = h and is almost starshaped in the sense of (1) with ‖ε‖1 6 ε0, then M is
a geodesic sphere.

2 Preliminaries

Let (Mn, g) be an n-dimensional closed, connected and oriented Riemannian
manifold isometrically immersed into the (n+ 1)-dimensional simply connected
real space form Mn+1(δ) of constant curvature δ. For more convenience, we
will denote in the sequel the metric g by 〈·, ·〉. The second fundamental form
II : TM ×TM −→ NM of the immersion of M into Mn+1(δ) is defined for any
vector fields U and V tangent to M by

∇UV = ∇UV + II(U, V ),

where∇ and∇ are the Riemannian connections on M and Mn+1(δ) respectively.
In other word, II is the normal part of ∇ over M . Since we consider an oriented
hypersurface, there exists a globally defined normal unit vector field ν on M
which allows us to view the second fundamental form as real-valued. Indeed,
the real-valued second fundamental form B of the immersion is the bilinear
symmetric form on TM defined for two vector fields U, V by

B(U, V ) = 〈II(U, V ), ν〉 = 〈∇UV, ν〉 = −〈∇Uν, V 〉.

In the sequel, we will denote by B the second fundamental form. Moreover, we
will denote by S the symmetric endomorphism associated with this the quadratic
form B defined by SU = −∇Uν. Note that S is called the shape operator or
the Weingarten operator .

From B (or S), we can define the mean curvature, which is simply the
normalized trace of S:

H =
1

n
tr (S).

Now, we recall the Gauss formula. For U, V,W,X ∈ Γ(TM),

R(U, V,W,X) = R(U, V,W,X) + 〈SU,W 〉 〈SV,X〉 − 〈SV,W 〉 〈SU,X〉 (2)

where R and R are respectively the curvature tensor of M and Mn+1(δ). By
taking the trace on U and W and for X = V , we get

Ric(V ) = Ric(V )−R(ν, V, ν, V ) + nH 〈SV, V 〉 −
〈
S2V, V

〉
. (3)
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By taking the trace a second time and since Mn+1(δ) has constant sectional
curvature δ, we have

Scal = n(n− 1)δ + n2H2 − ‖S‖2, (4)

or equivalently
Scal = n(n− 1)

(
H2 + δ

)
− ‖τ‖2, (5)

where τ = S − HId TM is the traceless part of the shape operator, also called
umbilicity tensor. If τ = 0, M is said totally umbilical.

Now, we define the higher order mean curvatures, for k ∈ {1, · · · , n}, by

Hk =
1(
n
k

)σ(S) =
1(
n
k

)σk(κ1, · · · , κn),

where σk is the k-th elementary symmetric polynomial and κ1, · · · , κn are the
eigenvalues of S, that is the principal curvatures of the immersion. By conven-
tion, we set H0 = 1 and from the definition, it is obvious that H1 is the mean
curvature H. We also remark from the twice traced Gauss formula (5) that

H2 =
1

n(n− 1)
Scal − δ. (6)

Hence, the equation (5) becomes H2 −H2 =
1

n(n− 1)
‖τ‖2 and thus H2 > H2.

We also recall the very useful Hsiung-Minkowski formula∫
M

(
Hk+1 〈Z, ν〉+ cδ(r)Hk

)
dvg = 0, (7)

for any k ∈ {0, · · · , n− 1} and where Z defined above is the position vector of
M . In particular, we will use in the proof of the theorem the first two formulas,
that is, ∫

M

(
H 〈Z, ν〉+ cδ(r)

)
dvg = 0, (8)

and ∫
M

(
H2 〈Z, ν〉+ cδ(r)H

)
dvg = 0. (9)

We can see for instance [1] or [5] for a proof. Note also that often in the lit-

terature, these formula are written

∫
M
Hk+1 〈Z, ν〉 dvg =

∫
M
cδ(r)Hkdvg, that

is with a different sign. This is due to our sign convention for the second fun-
damental form, namely B(U, V ) = −g

(
∇Uν, V

)
which implies that geodesic

spheres have positive constant mean curvature with respect to the inner normal
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vector field. Note that there is no need that the hypersurface bounds a domain
to get Hsiung-Minkowski formulas and so there is no canonical choice of the unit
normal vector field. However, if the mean curvature is positive and the hyper-
surface is suppose to be starshaped, then the first Hsiung-Minkowski formula
implies that the support function 〈Z, ν〉 is negative. That’s why we wrote the
almost starshapedness assumption as (1).

We finish this preliminaries section by recalling the following result that
we proved with Grosjean in [4]. It is very classical fact that totally umbilical
closed hypersurfaces of space forms are geodesic spheres. In [4], we proved a
result about the stability of this characterization, that if the hypersurface has
a sufficiently small umbilicity tensor, then the hypersurface is close to a sphere.
Namely, we proved

Theorem 2 (Grosjean-Roth [4]/ Hu-Xu [9]). Let (Mn, g) be an n-dimension-
al closed, connected and oriented Riemannian manifold isometrically immersed
into the (n+ 1)-dimensional simply connected real space form Mn+1(δ). Let us
assume also that M lies in a ball of radius R < π

2
√
δ

if δ > 0. Let ε < 1, r, q > n.

Then there exist positive constants:

• C and ε1 depending on n, q, δ, Vol(M), ‖B‖q and ‖H‖∞ and also on R
if δ > 0,

• α depending on n and q,

such that if ε 6 ε1 and

(i) ‖τ‖r 6 ‖H‖rε.

(ii)
∥∥H2 − ‖H‖2∞

∥∥
r/2
6 ‖H‖2rε,

then M is diffeomorphic and Cεα-quasi-isometric to S

(
p0, s

−1
δ

(
1√

‖H‖2∞+δ2

))
,

where p0 is the center of mass of M . Moreover, M is embbeded.

By Cεα-quasi-isometric, we mean that the diffeomorphism from M into the
desired sphere given by the theorem satisfies∣∣|dFx(u)|2 − 1

∣∣ 6 Cεα
for any x ∈M , u ∈ TxM and |u| = 1.

We also fix the notation for the integral norms. For p > 1 and f a continous
function over M , we define ‖f‖p by

‖f‖p =

(
1

Vol(M)

∫
M
|f |pdvg

) 1
p

.
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Moreover, in the statement of the result, ‖τ‖r is the Lr-norm of ‖τ‖, where ‖τ‖
is the pointwise norm of the tensor τ , that is,

‖τ‖r =

(
1

Vol(M)

∫
M
‖τ‖rdvg

) 1
r

.

This results has been proved first by the author with Grosjean but with the
condition that M lies into a ball of radius R < π

8
√
δ
. This result is based on a

pinching result for the first eigenvalue of the Laplacian. Later, in [9], Hu and
Xu improved this pinching result for the first eigenvalue of the Laplacian for
hypersurfaces of spheres with the condition that the hypersurface lies into a
ball of radius R < π

2
√
δ

which automatically improved this almost umbilicity

result. In the case where δ is positive, ε1 depends on R. This comes from the
improvement of Hu and Xu. More precisely, ε1 goes to zero as R goes to π

2
√
δ
. In

[20], the author with Scheuer were able to remove the second condition that the
mean curvature is close to its maximum (or some Lp-norm more generally). We
will use this result in Section 4 and will state it there. In the same paper [20],
by a conformal change of metric, they were also able to obtain a proximity to
sphere for almost umbilical hypersurfaces but only for Hausdorff distance and
so without embeddedness a priori. Nevertheless, since were are interesting here
with constant mean curvature hypersurfaces, Theorem 2 is enough for our use
since the second hypothesis of is trivially satisfied.

The embeddedness of M in the conclusion of Theorem 2 comes from the
fact that the diffeomorphism is explicitely constructed as the radial projection

onto the sphere S

(
p0, s

−1
δ

(
1√

‖H‖2∞+δ2

))
. A control on the second fundamental

form is needed to prove that this projection is a diffeomorphism. However, with
a control only of the mean curvature, we can just obtain proximity for Hausdorff
distance.

We also want to note that the constant ε0 of Theorem 2 depends in of
the quantities Vol(M), ‖B‖q and ‖H‖∞ in an scaling invariant way since the
dependence is in fact in Vol(M)‖B‖nq and Vol(M)‖H‖n∞. For the use we need
here, one can also remove the parameter q and get only a dependence on Vol(M)
and ‖B‖∞ instead of Vol(M), ‖B‖q and ‖H‖∞, also with invariance by scaling.

Now, we have all the ingredients to prove Theorem 1.

3 Proof of Theorem 1

The idea of the proof is to apply Theorem 2 to get embeddedness. Since we
assume that M has constant mean curvature, point (ii) is trivial and point (i)
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resumes to ‖τ‖r 6 hε, so that we just need to show that ‖τ‖r is small for some
r > n. We will show that for r = n+ 1.
First, we have

‖τ‖2(n+1)
n+1 =

(
1

Vol(M)

∫
M
‖τ‖(n+1)dvg

)2

=

(
1

Vol(M)

∫
M
‖τ‖n · ‖τ‖dvg

)2

.

By the Cauchy-Schwarz inequality, we get

‖τ‖2(n+1)
n+1 6

1

Vol(M)2

(∫
M
‖τ‖2ndvg

)(∫
M
‖τ‖2dvg

)
From this, we deduce immediately that

‖τ‖2(n+1)
n+1 6

1

Vol(M)
‖B‖2n∞

(∫
M
‖τ‖2dvg

)
. (10)

On the other hand, we have∫
M
‖τ‖2dvg =

ρ0
ρ0

∫
M
‖τ‖2dvg. (11)

From the almost starshapedness condition (1), we get

ρ0 6 −〈Z, ν〉+ ρ0ε,

which give together with (11)∫
M
‖τ‖2dvg 6

1

ρ0

∫
M
‖τ‖2 (−〈Z, ν〉+ ρ0ε) dvg

6
n(n− 1)

ρ0

∫
M

(
H2 −H2

)
(−〈Z, ν〉+ ρ0ε) dvg

6 −n(n− 1)

ρ0

∫
M

(
H2 −H2

)
〈Z, ν〉dvg + n(n− 1)×

×
∫
M

(
H2 −H2

)
εdvg (12)

where we have used the fact that−〈Z, ν〉+ρ0ε > 0 and ‖τ‖2 = n(n−1)
(
H2 −H2

)
to get the second line.
Now, we will estimate both terms of the right hand side. On one hand, since H
is constant equal to h, we have∫

M

(
H2 −H2

)
〈Z, ν〉dvg = h

∫
M
H〈Z, ν〉dvg −

∫
M
H2〈Z, ν〉dvg
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so, by the Hsiung-Minkowski formulas, we have∫
M

(
H2 −H2

)
〈Z, ν〉dvg = −h

∫
M
cδ(r)dvg −

∫
M
H2〈Z, ν〉dvg

= −h
∫
M
cδ(r)dvg +

∫
M
cδ(r)Hdvg

= −h
∫
M
cδ(r)dvg + h

∫
M
cδ(r)dvg

= 0 (13)

On the other hand, we obviously have H2 −H2 6 2‖B‖2∞.
Hence, (12) gives with this last estimate and (13)∫

M
‖τ‖2dvg 6 2n(n− 1)‖B‖2∞

∫
M
εdvg. (14)

Hence, from (10) and (14), we get

‖τ‖2(n+1)
n+1 6 2n(n− 1)‖B‖2(n+1)

∞ ‖ε‖1,

that is

‖τ‖n+1 6 (2n(n− 1))
1

2(n+1) ‖B‖∞‖ε‖
1

2(n+1)

1 . (15)

Now, we set ε0 =
(hε1)

2(n+1)

2n(n− 1)‖B‖2(n+1)
∞

, where ε1 is the constant of Theorem 2.

Hence, if ‖ε‖1 6 ε0,we get from (15) that

‖τ‖n+1 6 hε1,

and we deduce from Theorem 2 that M is embedded. Finally, we conclude
by using the Alexandrov Theorem, M is embedded and has constant mean
curvature so M is a geodesic sphere.

4 A result with higher order mean curvatures in Eu-
clidean spaces

As mentionned in the introduction, Hsiung showed that a closed connected
and oriented starshaped hypersurface of the Euclidean space Rn+1 with constant
higher order mean curvature Hr, r ∈ {2, . . . , n} is a geodesic sphere. This result
is also true if the ambient space is a half-sphere or a hyperbloic space. In this
last section, we will prove that the conclusion is still the same if we replace
starshaped by almost starshaped in the case of Euclidean spaces only. Precisely,
here is the result we can prove:
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Theorem 3. Let n > 2 and r ∈ {2, · · · , n− 1} be two integers. Let ρ0 be a
positive real number. Let us consider (Mn, g) a closed, connected and oriented
Riemannian manifold of dimension n isometrically immersed into the Euclidean
space Rn+1 so that the (r + 1)-th mean curvature Hr+1 is positive everywhere
on M .
Let h > 0, then there exists a positive constant ε0 depending on n, r, h, ‖B‖∞,
Vol(M) and infM (Hr+1;n,1) so that if M has constant r-th mean curvature Hr =
h and is almost starshaped in the sense of (1) with ‖ε‖1 6 ε0, then M is a
geodesic sphere.

This result has to be compared to Theorem 1. First of all, we assume here
that Hr is constant, but also that Hr+1 is positive everywhere on M . Such
an hypothesis is not require in Theorem 1, indeed, we do not assume that H2

is positive. Second there is an additional dependence of the constant ε0 here,
namely infM (Hr+1;n,1). This quantity Hr+1;n,1 is an extrinsic quantity defined
form the second fundamental form and is positive if Hr+1 is positive, which is
the case here. Finally, Theorem 3 Is valid for the Euclidean space only for the
moment. Our proof si based on the almost umbilicity result proved in [20] and
which gives embeddedness only in the case of Rn+1 as mentionned previously, in
the other space forms, we deduce by a conformal change of metric proximity for
Hausdorff distance only. However, it might be possible with other techniques
to obtain embeddedness in half-spheres or hyperbolic spaces. Note also that
Theorem 2 does not allow to conclude here since we have no control on the
mean curvature so that we don’t know if point (ii) is satisfied.

Before beginning the proof, we need to define the function Hr+1;n,1. Let
l ∈ {2, . . . , n} and i, j ∈ {1, . . . , n} three integers with i > j. Then, we can
define the extrinsic curvature term Hl;i,j by

Hl;i,j =
∂Hl

∂κi∂κj

where Hl is the l-th mean curvature and κi, κj are the i-th and j-th principal

curvatures (order by κ1 6 κ2 6 · · · 6 κn). The notation
∂Hl

∂κi∂κj
is to understand

in the sense that Hl is defined form the principal curvature by

Hl =
1(
n
l

)σl(κ1, . . . , κn)

and thus

Hl;i,j =
1(
n
l

)σl−2(κ1, . . . , κj−1, κj+1, . . . , κi−1, κi+1, . . . , κn).
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In the sequel, we will only be interested in Hr+1;n,1 =
1(
n
r+1

)σk−1(κ2, . . . , κn−1).
In [21], Scheuer showed that if Hr is positive then Hr+1;n,1 is also positive. Note
that the proof of this fact is by contradiction so that we do not have an explicit
inequality between Hr and Hr+1;n,1. Like for Theorem 1, we want to obtain
almost umbilicity. For this, we begin by giving the following lemma

Lemma 1. Let (Mn, g) be a closed, connected and oriented Riemannian
manifold of dimension n isometrically immersed into the Euclidean space Rn+1

so that the (r+ 1)-th mean curvature Hr+1 is positive everywhere on M . Then,
there exists a positive constant K depending on n, r,min

M
(Hr+1;n,1), min

M
(Hr)

and ‖B‖∞ so that

‖τ‖2 6 K
(
HHr −Hr+1

)
.

Proof: First, we recall the classical following inequalities between higher order
mean curvatures, for any k ∈ {1, . . . , n− 1},

H2
k −Hk+1Hk−1 > 0.

Moreover, we have a more precise estimate of the positivity of this term. Namely,

H2
k −Hk+1Hk−1 > cn‖τ‖2H2

k+1;n,1 (16)

where cn is a constant depending only on n. One can find the proof in [21] for
instance. We also recall the classical fact that since we assume that Hr+1 > 0,
then all the functions Hk are also positive for k ∈ {1, · · · , n − 1} and we have
in addition the so-called Maclaurin inequalities

H
1

k+1

k+1 6 H
1
k
k 6 · · · 6 H

1
2
2 6 H.

Thus, dividing by HkHk−1, (16) becomes

Hk

Hk−1
− Hk+1

Hk
> cn‖τ‖2

H2
k+1;n,1

HkHk−1
. (17)

Thus, by summing equation (17) for k from 1 to r, we get

H − Hr+1

Hr
> cn‖τ‖2

r∑
k=1

H2
k+1;n,1

HkHk−1
, (18)

and so

HHr −Hr+1 > cn‖τ‖2
(

r∑
k=1

H2
k+1;n,1

HkHk−1

)
Hr. (19)
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Moreover, we have HkHk−1 6 ‖B‖2k−1∞ . In addition, since Hr+1 is positive, then
all the function Hk are also positive and thus, as proved by Scheuer in [21],
the functions Hk;n,1 are also positive. In addition, since they are the normalized
symmetric polynomial evaluated for κ2, . . ., κn−1, they also satisfy the Maclaurin
inequality, up to a normalization constant, that is

(Hk;n,1)
1

k−2 > an,k (Hk+1;n,1)
1

k−1 ,

where an,k is a positive constant depending only on n and k, and so

(Hk;n,1)
1

k−2 > bn,k,r (Hr+1;n,1)
1

r−1 ,

where bn,k,r is a positive constant depending only on n, k and r. Note that the
exponents come from the fact that Hk;n,1 is the symmetric polynomial of degree
k − 2. Thus (19) gives

HHr −Hr+1 > cn‖τ‖2

 r∑
k=1

b
2(k−1)
n,k+1,rH

2(k−1)
r−1

r+1;n,1

‖B‖2k−1∞

Hr > C‖τ‖2, (20)

where C = cn min
16k6r

(
b
2(k−1)
n,k+1,r

) min
M

(Hr)

2‖B‖∞

r∑
k=1

min
M

(Hr+1;n,1)
1

r−1

‖B‖∞


2(k−1)

. This con-

cludes the proof of the lemma by setting K =
1

C
which depends only on n, r,

min
M

(Hr+1;n,1), min
M

(Hr) and ‖B‖∞. �

Now, we can prove Theorem3. The strategy is to show almost umbilicity with
the help of Lemma 1 in order to apply the following result that we proved with
Scheuer in [20].

Theorem 4 (Roth-Scheuer [20]). Let M be a closed, connected, oriented
hypersurface of Rn+1. Let p > n ≥ 2. Then there exist constants c and ε2,
depending on n, p, Vol(M), ‖B‖p as well as a constant α = α(n, p), such that
whenever there holds

‖τ‖p 6 ‖H‖pε2,

there also holds

dH(Σ, Sρ) 6
cαρ

‖H‖αp
‖τ‖αp = ρεα,

and M is diffeomorphic and εα-quasi-isometric to a sphere Sρ of approriate
radius ρ. In addition, M is embedded.
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As in the proof of Theorem 1, we will estimate the Ln+1-norm of the um-
bilicity tensor τ . We still start from(10), that is,

‖τ‖2(n+1)
n+1 6

1

Vol(M)
‖B‖2n∞

(∫
M
‖τ‖2dvg

)
.

The difference here is the way to estimate
∫
M ‖τ‖

2dvg. First, from the almost
starshapedness condition (1), we have like in the proof of Theorem 1,

ρ0 6 −〈Z, ν〉+ ρ0ε,

which give together with (11)∫
M
‖τ‖2dvg 6

1

ρ0

∫
M
‖τ‖2 (−〈Z, ν〉+ ρ0ε) dvg (21)

Now, we use Lemma 1 to obtain∫
M
‖τ‖2dvg 6

K

ρ0

∫
M

(HHr −Hr+1) (−〈Z, ν〉+ ρ0ε) dvg

6 −K
ρ0

∫
M

(HHr −Hr+1) 〈Z, ν〉dvg +K

∫
M

(HHr −Hr+1) εdvg

(22)

On one hand, we have∫
M

(HHr −Hr+1) 〈Z, ν〉dvg = h

∫
M
H〈Z, ν〉dvg −

∫
M
Hr+1〈Z, ν〉dvg

= −hVol(M) +

∫
M
Hrdvg

= −hVol(M) + hVol(M)

= 0 (23)

where we have used the first are (r + 1)-th Hsiung-Minkowksi formula and the
fact that Hr is constant equal to h. Note that we are now in the Euclidean space
so that in Hsiung-Minkowski formula, cδ is just 1 here.
On the other hand, we have clearly HHr −Hr+1 6 2‖B‖r+1

∞ , so that (22) gives∫
M
‖τ‖2dvg 6 2K‖B‖r+1

∞

∫
M
εdvg. (24)

Hence, reporting into (10), we obtain

‖τ‖2(n+1)
n+1 6 2K‖B‖2n+r+1

∞ ‖ε‖1 (25)
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that is

‖τ‖n+1 6 (2K)
1

2(n+1) ‖B‖
2n+r+1
2(n+1)
∞ ‖ε‖

1
2(n+1)

1 . (26)

we set ε0 =
h

2(n+1)
r ε

2(n+1)
2

2K‖B‖2n+r+1
∞

where ε2 is the constant of Theorem 4. Hence, if

‖ε‖1 6 ε0, we get from (26) that

‖τ‖n+1 6 h
1
r ε2

= ‖H
1
r
r ‖n+1ε2

6 ‖H‖n+1ε2.

We can apply Theorem 4 with p = n + 1 and we deduce in particular that M
is embedded. Since M has constant r-th mean curvature, by the Alexandrov
theorem for Hr prove by Ros [17], we conclude that M is a geodesic sphere.
Note that the constant ε0 depends only on the quantities announced in the
statement of the Theorem. Indeed, ε0 depends on n, r, h and ‖B‖∞ from its
expression. It depends also on K and ε2. First, ε2 is obtained form Theorem 4
with p = n+ 1 and so depends on n, Vol(M) and ‖B‖n+1. The dependence on
‖B‖n+1 can clearly be replaced by ‖B‖∞ when analysing the proof of Theorem
4. Finally, K comes from Lemma 1 and depends on n, r,min

M
(Hr+1;n,1), min

M
(Hr)

and ‖B‖∞. But Hr is constant equal to h hence min
M

(Hr) is nothing else but h

which concludes the proof.
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