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Abstract. In this paper, we assume that G is a finite group with socle PSL(3, q) and G acts
on the projective points of 2-dimensional projective geometry PG(2, q), q is a prime power.
By using a new method, we show that G possesses no genus one group if q > 13. Furthermore,
we study the connectedness of the Hurwitz space Hin

r (G) for a given group G, genus one and
q ≤ 13.
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1 Introduction

Let X be a compact connected Riemann surface of genus g and that f : X →
P1 is a meromorphic function where P1 is the Riemann sphere. For every mero-
morphic function, there is a number N such that the fiber f−1(q) is of size N
for all but finitely many points q ∈ P1. The number N is called the degree of
f . So every compact Riemann surface can be made into the branched cover-
ing of P1. The points p are called the branch points of f if |f−1(p)| < N . It
is well known that the set of branch points is finite and it will be denoted by
B = {p1, ..., pr}. For q ∈ P1 \B, the fundamental group π1(P1 \B, q) is a group
which is generated by all homotopy classes of loops γi winding once around the
point pi. γi are subject to the relation that γ1 . . . γr = 1 in π1(P1 \ B, q). The
explicit and well known construction of Hurwitz shows that a Riemann surface
X with N branching coverings of P1 is defined in the following way: consider
the preimage f−1(q) = {x1, ..., xN}, every loop in γ in P1 \B can be lifted to N
paths γ̃1, · · · , γ̃N where γ̃i is the unique path lift of γ and γ̃i(0) = xi for every
i. The endpoints γ̃i(1) also lie over q. That is

G = ⟨x1, x2, ..., xr⟩ (1.1)
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r∏
i=1

xi = 1, xi ∈ G# = G \ {1}, i = 1, ..., r (1.2)

r∑
i=1

ind xi = 2(N + g − 1) (1.3)

where ind xi is the minimal number of 2-cycles needed to express xi as
a product. Equation (1.2) is called the Riemann Hurwitz formula. A transitive
subgroup G ≤ SN is called a genus g group if there exist x1, ..., xr ∈ G satisfying
(1.1), (1.1) and (1.2) and then we call (x1, ..., xr) the genus g tuple of G.

A subset Y of Ω is a block for G if for all g ∈ G either Y g = Y or Y g∪Y = ∅.
The action of G is primitive if it is transitive and all blocks are trivial. If the
action of G on Ω is primitive, we call G a primitive genus g group.

A group G is said to be almost simple if it contains a non-abelian simple
group S such that S ≤ G ≤ Aut(S). In [7], Kong worked on almost simple
groups whose socle is a projective special linear group. Moreover, she gave a
complete list for some almost simple groups of Lie rank 2 up to ramification
type in her PhD thesis for genus 0,1 and 2 system. Furthermore, she showed
that the almost simple groups with socle PSL(3, q) do not posses genus low
tuples if q ≥ 16. In [8], Mohammed Salih gave the classification of some almost
simple groups with socle PSL(3, q) for g = 0 up to braid action and diagonal
conjugation. Our calculations are done with the aid of GAP; see [11].

We will now describe the work carried out in this paper. In the second section
we review some basic concepts and results will be used later. In the third section,
we provide some basic facts for computing fixed points and generating tuples.
Moreover, we show that the almost simple groups with socle PSL(3, q) do not
posses genus one tuples if q ≥ 13. In the fourth section, we show that the
connectedness of the almost simple groups with socle PSL(3, q) if q ≤ 13.

2 Preliminary results

Assume that G is a finite permutation group of degree N and xi ∈ G \ {1}.
The signature of the r-tuple x = (x1, ..., xr) is the r-tuple d = (d1, ..., dr) where
di = o(xi). We assume that di ≤ dj if i ≤ j, because of braid action on x. The
center of GL(n, q) is the set of all scalar matrices and denoted by Z(GL(n, q)).
The projective general linear group and the projective special linear group are
defined by PGL(n, q) = GL(n,q)

Z(GL(n,q)) and PSL(n, q) = SL(n,q)
Z(SL(n,q)) respectively

where Z(SL(n, q)) = SL(n, q) ∩ Z(GL(n, q)).
Let Ω be the set of the projective points of projective geometry PG(n −

1, q) that is the set of 1-dimensional subspaces of vector space over a finite
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field GF (q). So we have |Ω| = qn−1
q−1 . Moreover, PGL(n, q) and PSL(n, q) act

primitively on Ω. In this paper, we take n = 3, so we have |Ω| = q2 + q + 1.

The following result will tell us the tuple x can not generate G, where G =
PGL(3, q) or PSL(3, q) if 2., 3. and 4. below hold. So, setting A(d) =

∑r
i=1

di−1
di
,

we have A(d) ≥ 85
42 .

Proposition 1. [2] Assume that a group G acts transitively and faithfully
on Ω and |Ω| = N . Let r ≥ 2, G = ⟨x1, ..., xr⟩,

∏r
i=1 xi = 1 and o(xi) = di > 1,

i = 1, ..., r. Then one of the following holds:

(1)
∑r

i=1
di−1
di

≥ 85
42 .

(2) r = 4, di = 2 for each i = 1 and G
′′
= 1.

(3) r = 3 and (up to permutation)(d1, d2, d3) =

(a) (3, 3, 3), (2, 3, 6) or (2, 4, 4) and G
′′
= 1.

(b) (2, 2, d) and G is dihedral.

(c) (2, 3, 3) and G ∼= A4.

(d) (2, 3, 4) and G ∼= S4.

(e) (2, 3, 5) and G ∼= A5.

(4) r = 2 and G is cyclic.

For a permutation x of the finite set Ω, let Fix(x) denote the fixed points
of x on Ω and f(x) = |Fix(x)| is the number of fixed point of x. Note that the
conjugate elements have the same number of fixed points.

The following result provides a useful connection between fixed points and
indices.

Lemma 1. [2] If x is a permutation of order d on a set of size N , then
ind x = N − 1

d

∑
y∈⟨x⟩ f(y) where ⟨x⟩ is the cyclic group generated by x.

The fixed point ratio of x is defined by fpr(x) = f(x)
N . The codimension of

the largest eigenspace of a linear transformation ḡ in GL(n, q) is denoted by
v(ḡ).

The classification of non identity elements in PGL(3, q) by their fixed points
can be found in Table 1 in [7], we have two cases. If v(ḡ) = 1, then g fixes q+1
or q+2 points. Otherwise, it fixes at most 3 points. From this fact, we will show
that there are no genus g systems for PSL(3, q) and PGL(3, q) when q > 25
and g ≤ 2.
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Table 1: Number of Fixed points

v(ḡ)
Type of eigenspaces

of ḡ ∈ GL(n, q)
Number of fixed

points of g ∈ PGL(3, q)

3 no eigenspace 0
2 one 1-dimensional eigenspace 1
1 one 1-dimensional eigenspaces q + 1
2 two 1-dimensional eigenspaces 2
1 one 1-dimensional and one 2-dimensional eigenspaces q + 2
2 three one dimensional eigenspaces 3

3 Existence of genus g system

The following lemma is well known in [14, 6]

Lemma 2. (1) If 1
N

∑r
i=1

∑di−1
j=1

f(xj)
di

< A(d) − 2, then d is not genus
zero system.

(2) If 1
N

∑r
i=1

∑di−1
j=1

f(xj)
di

̸= A(d)− 2, then d is not genus one system.

(3) If 1
N

∑r
i=1

∑di−1
j=1

f(xj)
di

> A(d)− 2, then d is not genus two system.

Now, we are going to apply Lemma 2, to exclude all signatures which do not
have a genus g ≤ 2 system. As a result, we will obtain Theorem 1.

Let F be the set of elements with q + 1 or q + 2 fixed points in PGL(3, q).

So we have fpr(x) ≤
{ q+3

N if x ∈ F
3
N if x /∈ F

Assume that α = q2+q+2
N and γ = 3

N . Combining the Riemann Hurwitz formula
as done in [7], we obtain the following inequality

A(d) ≤ 2 + ϵ+ β(α− γ)

1− γ
(3.4)

where ϵ ≤ 2
N and β =

∑r
i=1

|⟨xi⟩#∩F |
di

and ⟨xi⟩# is the set of all elements in the
group generated by xi except the identity [7].

If α = γ in inequality (2.4), then we obtain the following

A(d) ≤ 2 + ϵ

1− α
(3.5)

and we have fpr(x) ≤ α.

The following result is an interesting tools to compute β.
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Lemma 3. (Scott Bound)[15] Let G ≤ GL(n, q). If a triple x = (x1, x2, x3)
satisfies G = ⟨x1, x2, x3⟩ and x1x2x3 = 1, then v(xi) + v(xj) ≥ n where i ̸= j
and 1 ≤ i, j ≤ 3. In particular if n ≥ 3 and i ̸= j, then v(xi) ≥ 2 or v(xj) ≥ 2.

Now bound β for the tuple x = (x1, ..., xr) can be computed by the following
formula which exists in [7].

β ⩽
∑
xi∈F

di − 1

di
+

∑
xi /∈F

di − ϕ (di)− 1

di
.

Notice that Lemma 3 will tell us for the tuple of length 3, that at most one
element lies in F .

Now consider PGL(3, q) and PSL(3, q). Let q ≥ 16, then using inequality
(3.5), we have A(d) ≤ 548

255 . If r ≥ 4, then A(d) ≥ A((2, 2, 2, 3)) = 13
6 . But

548
255 <

13
6 . So the number of branch points r must be 3.

Now we are looking for signatures which satisfy the inequality 85
42 ≤ A(d) ≤

32
15 . This leads d only can be (2, 3, d3) with 7 ≤ d3 ≤ 57, (2, 4, d3) with 5 ≤ d3 ≤
10, (2, 5, d) with 5 ≤ d ≤ 7, (3, 3, d) with 4 ≤ d ≤ 6.

Now, we compute β for all signatures which satisfy 85
42 ≤ A(d) ≤ 32

15 .

d = β ⩽
(2, 3, n) with 7 ⩽ n ⩽ 57 41

30

(2, 4, n) with 5 ⩽ n ⩽ 10 5
4

(2, 5, n) with 5 ⩽ n ⩽ 7 13
10

(3, 3, n) with 4 ⩽ n ⩽ 6 7
6

In the above table the maximum β is 41
30 . Now set β ≤ 41

30 and q ≥ 16. We
substitute both of them in inequality (2.4) and we obtain that A(d) ≤ 3572243

1702740 .
From this, we find all signatures d, which are the following:

d = β ⩽
(2, 3, n) with 7 ⩽ n ⩽ 15 5

4

(2, 4, n) with 4 ⩽ n ⩽ 5 5
4

(3, 3, 4) 11
12

Again, we choose the maximum β in the above table which is β ≤ 5
4 . So we

put β ≤ 5
4 and q ≥ 16 in inequality (2.4) and hence A(d) ≤ 3012

1445 . Therefore, all
signatures are (2, 3, d3) with 7 ≤ d3 ≤ 14, (2, 4, 5), (2, 4, 6), (3, 3, 4).

Finally, for each signature d we can compute β andA(d) and put in inequality
(2.4). So we can solve it and obtaining the values of q.

Here we reduce the prime powers and give the new version of Theorem 7 in
[7].
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Theorem 1. If PGL(3, q) or PSL(3, q) possesses genus g ≤ 2 system, then
one of the following is hold:

(1) q ≤ 13;

(2) d and q as shown in the following table

d β A(d) q

(2,3,7) 1/2 85/42 16,17,19,23,25
(2,3,8) 7/8 49/24 16,17,19,23
(2,3,10) 7/6 31/15 16
(2,4,5) 3/4 41/20 16,17
(2,4,6) 5/4 25/12 16

The following results are devoted to compute indices of elements of order 2,
3, 4, 5, 7 and 8 in PSL(3, q) which will be used in Equation (1.2). This tells us
the given signature possess genus g group or not. Let ed be an element of order
d in G.

Lemma 4. In G = PSL(3, q).

(1) If 2 ∤ q, then f(e2) = q + 2, ind e2 =
q2−1
2 .

(2) If 2 | q, then f(e2) = q + 1 and ind e2 =
q2

2 .

Proof. The proof can be found in [7]. QED

Lemma 5. In G = PSL(3, q).

(1) If q ≡ 2 mod 3, then f(e3) = 1, ind e3 =
2
3(q

2 + q).

(2) If q ≡ 0 mod 3, then f(e3) ∈ {1, q + 1}, ind e3 ∈ {2
3(q

2 + q), 23(q
2)}.

(3) If q ≡ 1 mod 3, then f(e3) ∈ {0, 3, q+2}, ind e3 ∈ {2
3(q

2 + q+1), 23(q
2 +

q − 2), 23(q
2 − 1)}.

Proof. The proof can be found in [7]. QED

Lemma 6. In PSL(3, q).

(1) If q ≡ 1 mod 4, then f(e4) ∈ {3, q + 2}, f(e24) = q + 2 and ind e4 ∈
{3q2+2q−5

4 , 34(q
2 − 1)}.

(2) If q ≡ 3 mod 4, then f(e4) = 1, f(e24) = q + 2 and ind e4 =
3q2+2q−1

4 .

(3) If q ≡ 0 mod 4, then f(e4) = 1, f(e24) = q + 1 and ind e4 =
3q2+2q

4 .
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Proof. Suppose element e4 has order 4 inG. Now ind e4 =
3N−(2f(e4)+f(e24))

4 .

(1) Since 4|q − 1, then ē4 is conjugate to one of the following:

α 0 0
0 β 0
0 0 1

,

where α = β−1 where α is a fixed element of order 4 or

α 0 0
0 α 0
0 0 β


where α2 = β−1 where α is a fixed element of order 4. The associated
eigen spaces of α, β and 1 have dimensions 1,1 and 1. Thus f(e4) = 3
or the associated eigen spaces of α and β have dimensions 1 and 2. So
f(e4) = q + 2. Also ē4

2 is conjugate to−1 0 0
0 −1 0
0 0 1

. From Lemma 5, we have f(e24) = q+2 fixed points. There-

fore, ind e4 ∈ {3q2+2q−5
4 , 34(q

2 − 1)}.

(2) Since ē4 is conjugate to one of the following:

1 0 0
0 0 p− 1
0 1 0

, where q = pk.

The associated eigen space of 1 has dimension 1. Thus f(e4) = 1. Also ē4
2

is conjugate to

−1 0 0
0 −1 0
0 0 1

. From Lemma 5, we have f(e24) = q + 2

fixed points. Therefore, ind e4 =
3q2+2q−1

4 .

(3) The proof is similar to part 2.

QED

Lemma 7. In PSL(3, q).

(1) If q ≡ 1 mod 5, then f(e5) ∈ {3, q+2} and ind e5 ∈ {4
5(q

2+q−2), 45(q
2−

1)}.

(2) If q ≡ 4 mod 5, then f (e5) = 1 and ind e5 =
4
5(q

2 + q).

(3) If q ≡ 0 mod 5, than f(e5) ∈ {1, q + 1} and ind e5 ∈ {4
5(q

2 + q), 45q
2}.

Proof. The proof is similar as Lemma 6. QED

Lemma 8. In PSL(3, q).

(1) If q ≡ 2 or 4 mod 7, then f(e7) = 0 and ind e7 =
6
7(q

2 + q + 1).
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(2) If q ≡ 6 mod 7, then f(e7) = 1 and ind e7 =
6
7(q

2 + q).

(3) If q ≡ 0 mod 7, than f(e7) ∈ {1, q + 1} and ind e7 ∈ {6
7(q

2 + q), 67q
2}.

(4) If q ≡ 0 mod 7, than f(e7) ∈ {3, q + 2} and ind e7 ∈ {6
7(q

2+q−2), 67(q
2−

1)}.

Proof. The proof is similar as Lemma 6. QED

Lemma 9. In PSL(3, q).

(1) If q ≡ 7 or 3 mod 8, then f(e8) = 1 = f(e28), f(e
4
8) = q + 2 and ind e8 =

7q2+6q−1
8 .

(2) If q ≡ 5 mod 8, then f(e8) = 1, f(e28) = f(e48) = q + 2 andind e8 =
7q2+4q−3

8 .

(3) If q ≡ 1 mod 8, than f(e8) ∈ {3, q + 2} , f(e48) = q + 2 and ind e8 ∈
{7
8(q

2 − 1), 7q
2+6q−13

8 }.

Proof. The proof is similar as Lemma 6. QED

Lemma 10. In PSL(3, q).

(1) If q ≡ 5 mod 6, then f(e6) = 1 = f(e26), f(e
3
6) = q + 2 and ind e8 =

5q2+4q+3
6 .

(2) If q ≡ 8 mod 9, then f(e9) = 1 = f(e39) and ind e9 =
4
3(q

2 + q).

(3) If q ≡ 6 mod 10, than f(e10) = 2, f(e210) = q + 2, f(e10) = q + 1 and

ind e10 =
9q2+4q−8

10 .

Proof. The proof is similar as Lemma 6. QED

Proposition 2. In PSL(3, q), there is no generating tuple of genus g ≤ 2
if 16 ≤ q ≤ 25.

Proof. From Theorem 1, we have to deal with some possible signatures
in the different groups PSL(3, q). Since PSL(3, q) does not contain an element
of order 7 where q = 17, 19, there is no signature (2,3,7) in PSL(3, q). For
q = 23, 25, the signature (2, 3, 7) does not satisfy equation (1.1). If q = 16, then
there is no signature (2,3,8) in PSL(3, 16). For q = 17, 19, 23, the signature
(2, 3, 8) does not satisfy equation (1.1). We can compute the indices of elements
of order 2,3,4,5,6,9 and 10 by Lemma 4,..., Lemma 10. The sum of the indices
of the signatures (2,3,9),(2,3,10), (2,4,5) and (2,4,6) do not fit the Riemann
Hurwtiz formula (1.2). This completes the proof. QED
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Now we are considering q ≤ 13 and g = 1, we will find all tuples which
satisfy equations (1.1),(1.1) and (1.2) and then classify them up to braid action
and diagonal conjugation in the next section.

Let Ci be the conjugacy class of xi. Then the multi set of non trivial conju-
gacy classes C̄ = {C1, ..., Cr} in G is called the ramification type of the branched
cover f .

The following example show how to achieve the generating tuples and braid
orbits for the group PSL(3, 4).

Example 1. We use the GAP and package MAPClASS to illustrate some
of these computations more concretely. Let G = PSL(3, 4) be the projective
special linear group, acting on 21 points. First, we find the tuples satisfy the
Riemann Hurwitz formula (1.2).

gap> LoadPackage( "mapclass", false );

true

gap> rts:=[];

[ ]

gap> k:=AllPrimitiveGroups(DegreeOperation,21);

[ PGL(2, 7), A(7), S(7), PSL(3, 4)=M(21), PSigmaL(3, 4), PGL(3, 4),

PGammaL(3, 4), A(21), S(21) ]

gap> g:=k[4];

PSL(3, 4)=M(21)

gap> m:=MaximalSubgroupClassReps(a);;

gap> d:=List(m,x->Index(a,x));

[ 21, 21, 56, 56, 56, 120, 120, 120, 280 ]

gap> ccl:= ConjugacyClasses( g );;

gap> reps:= List( ccl, Representative );;

gap> orders:= List( reps, Order );;

gap> Ind:= pi -> NrMovedPoints( pi ) - Sum( CycleStructurePerm( pi ), 0 );;

gap> ind:= List( reps, Ind );

[ 0, 16, 16, 12, 18, 18, 8, 14, 14, 14 ]

gap> N:=21;;

gap> cand:= RestrictedPartitions( 2*N, Set( ind{ [ 2 .. Length( ind ) ] } ) );;

gap> for l in cand do

> UniteSet( rts, Set( Cartesian( List( l, x -> Positions( ind, x ) ) )

,SortedList));> od;

gap> rts;

[ [ 2, 4, 8 ], [ 2, 4, 9 ], [ 2, 4, 10 ], [ 2, 5, 7 ], [ 2, 6, 7 ],

[ 3, 4, 8 ],[ 3, 4, 9 ], [ 3, 4, 10 ], [ 3, 5, 7 ], [ 3, 6, 7 ],

[ 4, 4, 5 ], [ 4, 4, 6 ], [ 4, 7, 7, 8 ], [ 4, 7, 7, 9 ], [ 4, 7, 7, 10 ],

[ 5, 7, 7, 7 ], [ 6, 7, 7, 7 ], [ 8, 8, 8 ], [ 8, 8, 9 ], [ 8, 8, 10 ],
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[ 8, 9, 9 ], [ 8, 9, 10 ], [ 8, 10, 10 ], [ 9, 9, 9 ], [ 9, 9, 10 ],

[ 9, 10, 10 ], [ 10, 10, 10 ] ]

Pick one example of the ramification type C̄ = (2A, 2A, 2A, 7A). Find the braid
orbits if its exist.

gap> cand:=rts[16];

[ 5, 7, 7, 7 ]

gap> orbs:= GeneratingMCOrbits( g, 0, reps{ cand } : OutputStyle:=

"silent" );;

gap> Length(orbs);

7

gap> tup:= orbs[1].TupleTable[1].tuple;

[ (1,9,3,14,8,15,11)(2,12,16,10,17,4,18)(5,7,19,20,13,6,21),

(1,9)(2,18)(3,12)(4,14)(7,19)(8,10)(11,16)(20,21), (2,3)(5,8)

(6,20)(7,18)(10,17)(11,12)(15,21)(16,19),

(3,4)(5,16)(7,18)(8,21)(9,11)(13,20)(14,17)(15,19) ]

gap> g = Group( tup );

true

gap> Product( tup );

()

gap> Sum( List( tup, Ind ) );

42

The tuple of type C̄ passes Equations (1.1),(1.1) and (1.2). So it is a genus one
system. It has 3 braid orbits of length 1.

4 On the Hurwitz space Hin
r (G, C̄)

Let Ci be the conjugacy class of xi. Then the multi set of non trivial con-
jugacy classes C̄ = {C1, ..., Cr} in G is called the ramification type of the
branched cover f [9]. Now we define the subset N (C̄) = {(x1, ..., xr) : G =
⟨x1, ..., xr⟩,

∏r
i=1 xi = 1, ∃σ ∈ Sn such that xi ∈ Ciσ for all i} which is called

the Nielsen class of C̄ [5]. From now on we assume that g = 1 and we give some
results which tells us whether or not the Hurwitz space Hin

r (G, C̄) is connected.
This will be done by both the calculations of GAP (Groups, Algorithms, Pro-
gramming) software and Proposition 2.4 in [8]. Proposition 2.4 tells us there is a
one to one correspondence between components of HA

r (C̄) and the braid orbits
on NA(C̄). In particular, Hin

r (G, C̄) is connected if and only if there is only one
braid orbit. The algorithm which will be used here, can be found in [10].
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Proposition 3. If G is isomorphic to one of the following groups: PGL(3, 4),
PSL(3, 4), PSL(3, 4).2, PSL(3, 4).22, PSL(3, 4).21, PSL(3, 4).23, PSL(3, 4).D12,
PSL(3, 4).6, PSL(3, 4).S3, PSL(3, 5).2, PSL(3, 7), PΣL(3, 4) and g = 1, then
Hin

r (G, C̄) is disconnected.

Proof. Since we have at least two braid orbits for some ramification type C̄ and
the Nielsen classesN (C̄) are the disjoint union of braid orbits. From Proposition
2.4 in [8], we obtain that the Hurwitz space Hin

r (G, C̄) is disconnected. QED

Proposition 4. If G is isomorphic to one of the following groups: PSL(3, 5),
PSL(3, 7), PΓ(3, 8), PSL(3, 9), PΓL(3, 9), PΓL(3, 13) and g = 1 then Hin

r (G, C̄)
is connected.

Proof. Since we have just one braid orbit for all ramification types C̄ and the
Nielsen classes N (C̄) are the disjoint union of braid orbits. From Proposition
2.4 in [8], we obtain that the Hurwitz space Hin

r (G, C̄) is connected. QED

The proof of the following results are similar to the previous results.

Proposition 5. If r ≥ 4, g = 1 and G is isomorphic to one of the following
groups: PSL(3, 2), PSL(3, 3), PSL(3, 3).2, then Hin

r (G, C̄) is connected.

Proposition 6. If r ≥ 5, g = 1 and G = PΓL(3, 4), then Hin
r (G, C̄) is

connected where C̄ ̸= (2B, 2B, 6A, 8A).

5 Appendix

Throughout this section, N.O means number of orbits, L.O means length of
the orbis and GOS means Genus one System. The number pb means b copies of
p. Note that PSL(3, 2) ∼= PSL(2, 7), which is almost simple group of lie rank
one.
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Table 2: GOSs for Almost Simple Groups of Lie Rank Two

(4A,4A,8B) 10 1 (4A,4A,8A) 10 1
(4A,6B,8B) 6 1 (4A,6A,8A) 9 1
(6A,6A,8B) 8 1 (6A,6A,8B) 8 1
(2A,8B,13D) 1 1 (2A,8B,13C) 1 1
(2A,8B,13B) 1 1 (2A,8B,13A) 1 1
(2A,8A,13D) 1 1 (2A,8A,13C) 1 1
(2A,8A,13B) 1 1 (2A,8A,13A) 1 1
(3B,4A,13D) 1 1 (3B,4A,13C) 1 1
(3B,4A,13B) 1 1 (2A,4A,13A) 1 1
(3B,6A,13D) 1 1 (3B,6A,13C) 1 1
(3B,6A,13B) 1 1 (2A,6A,13A) 1 1
(3B,3A,13D) 1 1 (3B,3A,13C) 1 1
(3B,3A,13B) 1 1 (2A,3A,13A) 1 1
(3A,4A,8B) 1 1 (3A,4A,8A) 1 1
(3A,6A,8B) 1 1 (3A,6A,8A) 1 1
(3A,3A,8B) 1 1 (3A,3A,8A) 1 1

(2A,3B,6A,6A) 1 128 (2A,3A,3B,6A) 1 144
(2A,3B,3A,3A) 1 128 (2A,3B,4A,6A) 1 140

PSL(3, 3) (2A,3A,3B,4A) 1 140 (2A,3B,4A,4A) 1 156
n = 13 (2A,2A,6A,8A) 1 136 (2A,2A,6A,8B) 1 136

(2A,2A,3B,13A) 1 13 (2A,2A,3B,13B) 1 13
(2A,2A,3B,13C) 1 13 (2A,2A,3B,13D) 1 13
(2A,2A,3A,8A) 1 144 (2A,2A,3A,8B) 1 144
(2A,2A,4A,8A) 1 152 (2A,2A,4A,8B) 1 152

(2A,2A,2A,3B,6A) 1 2124 (2A,2A,2A,3B,3B) 1 2232
(2A,2A,2A,3B,4A) 1 2352 (2A,2A,2A,2A,8A) 1 2304

(2A,2A,2A,2A,2A,3B) 1 36720 (2A,2A,2A,2A,8B) 1 2304

(4B,4B,4A) 1 1 (2B,6A,6B) 6 1
(2B,4A,12B) 3 1 (2B,4A,12A) 3 1

PSL(3, 3).2 (2A,6A,6B) 4 1 (2B,4A,8A) 3 1
n = 52 (2A,2A,2B,4A) 1 62

PSL(3, 3).2, n = 117 (2B,4A,6B) 4 1

PSL(3, 3).2, n = 234 (2B,3B,8B) 3 1

(3A,3A,7B) 24 1 (3A,3A,7A) 24 1
(3A,4C,5B) 16 1 (3A,4C,5A) 16 1
(3A,4B,5B) 16 1 (3A,4B,5A) 16 1
(3A,4A,5B) 16 1 (3A,4A,5A) 16 1
(4B,4C,4C) 4 1 (4B,4B,4C) 4 1
(4A,4C,4C) 4 1 (4A,4B,4C) 2 1
(4A,4B,4B) 4 1 (4A,4A,4C) 4 1
(2A,5B,7B) 9 1 (4A,4A,4B) 4 1

PSL(3, 4) (2A,5B,7A) 9 1 (2A,5A,7B) 9 1
n = 21 (2A,4C,7B) 2 1 (2A,5A,7A) 9 1

(2A,4C,7A) 2 1 (2A,5A,5B) 6 1
(2A,4B,7B) 2 1 (2A,4B,7A) 2 1

(2A,2A,3A,4B) 2 192,168 (2A,2A,3A,4A) 2 192,168
(2A,2A,3A,4C) 2 192,168 (2A,2A,2A,7A) 7 216,42

(2A,2A,2A,7B) 7 216,42

PSL(3, 4).2 (2A,3A,10B) 2 1 (2A,3A,10B) 2 1
n = 105 (2A,4A,6A) 8 1

PSL(3, 4).2 (2B,4B,6A) 8 1
n = 120 (2B,3A,10A) 2 1 (2B,3A,10B) 2 1
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Table 3: GOSs for Almost Simple Groups of Lie Rank Two

group and degree ramification type N.O L.O ramification type N.O L.O

PSL(3, 4).S3, n = 280 (2A,3A,8A) 2 1 (2A,3C,8B) 2 1

PSL(3, 4).6 ,n = 120 (2B,3D,12B) 1 1 (2B,3C,12A) 1 1

PSL(3, 4).D12, n = 120 (2D,4C,6A) 7 1 (2B,2A,2D,3A) 1 11

PSL(3, 4).23 ,n = 56 (2B,5A,8A) 2 1 (2B,6A,7B) 2 1
(2B,4B,14A) 1 1 (2B,6A,7A) 2 1
(2B,4B,14B) 1 1

PSL(3, 4).21, n = 56 (2A,4B,10A) 1 1 (2B,4B,10B) 1 1
(2A,4A,8A) 2 1 (2B,2A,2A,4B) 1 28
(2A,4A,10A) 1 1 (2B,4A,10B) 1 1
(2A,4B,8B) 2 1

PSL(3, 4).22, n = 56 (2B,4B,8EA) 4 1

(3C,3D,4A) 2 1 (3D,3D,6B) 2 1
(3C,4A,6B) 12 1 (3D,6B,6B) 18 1
(6B,6B,6B) 54 1 (3C,3C,6A) 2 1
(3D,4A,6A) 12 1 (4A,6A,6B) 54 1
(3C,6A,6A) 18 1 (6A,6A,6A) 54 1
(3B,3E,21D) 1 1 (3B,3E,21B) 1 1
(3B,3D,7B) 1 1 (3B,3D,7A) 1 1
(3B,3C,15C) 1 1 (3B,3C,15A) 1 1

PGL(3, 4),n = 21 (3B,4A,15D) 1 1 (3B,4A,15B) 1 1
(3B,6B,7B) 3 1 (3B,6B,7A) 3 1
(3B,6A,15C) 1 1 (3B,6A,15A) 1 1
(3A,3E,21C) 1 1 (3A,3E,21A) 1 1
(3A,3D,15D) 1 1 (3A,3D,15B) 1 1
(3A,3C,7B) 1 1 (3A,3C,7A) 1 1
(3A,4A,15C) 1 1 (3A,4A,15A) 1 1
(3A,6B,15B) 1 1 (3A,6B,15D) 1 1
(3A,6A,7B) 1 1 (3A,6A,7A) 1 1
(2A,3D,21C) 1 1 (2A,3D,21A) 1 1
(2A,3C,21D) 1 1 (2A,3C,21B) 1 1
(2A,6B,21C) 1 1 (2A,6B,21A) 1 1
(2A,6A,21D) 1 1 (2A,6A,21B) 1 1
(2A,3B,3B,6A) 1 18 (2A,3B,3B,3D) 1 18
(2A,3A,3B,4A) 2 18 (2A,3A,3A,6B) 1 18
(2A,3A,3A,3C) 1 18

(4B,6A,6B) 102 1 (4B,3B,6B) 40 1
(3A,6B,8A) 10 1 (3A,4B,14B) 3 1
(2A,6B,21A) 5 1 (3A,4B,14A) 3 1
(2A,6B,21B) 5 1 (2A,8A,15A) 2 1

(2A,8A,15B) 2 1
(2A,2A,4A,6A) 1 480 (2A,2A,2B,21A) 1 21

(2A,2A,2AB,21B) 1 21 (2A,2A,4A,3B) 1 96
PΓL(3, 4), n = 21 (2A,3A,3C,4B) 1 144 (2A,3A,3A,6B) 1 96

(2A,2A,3B,3B) 1 44 (2A,2A,3B,6A) 1 264
(2A,2A,6A,8A) 2 192,672 (2A,2A,3A,15A) 1 20
(2A,2A,3A,7A) 1 21 (2A,2A,3A,15B) 1 20
(2A,2A,3A,7B) 1 21 (2A,2A,4B,6B) 1 1152
(2B,2A,3A,8A) 1 40 (2B,2A,3B,4B) 1 204
(2B,2A,4B,6A) 1 480 (2A,2A,2B,3B,3B) 1 456

(2A,2A,2A,2A,3B) 1 2952 (2A,2A,2A,2A,6A) 1 10656
(2A,2A,2A,2A,4A) 1 4224 (2A,2A,2A,2B,4B) 1 5760

(2A,2A,2A,2A,2A,2A) 1 131200
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Table 4: GOSs for Almost Simple Groups of Lie Rank Two

group and degree ramification type N.O L.O ramification type N.O L.O

(4A, 4C, 6A) 8 1 (4A,4B,6A) 40 1
(4A,4A,5A) 18 1 (2B,8A,8A) 2 1
(2B,6A,14B) 7 1 (2B, 6A, 14A) 7 1
(3A,4A,8A) 16 1 (3A,6A,6A) 70 1
(2A, 5A,14B) 3 1 (2A,5A,14A) 3 1
(2A, 8A,7B) 2 1 (2A,8A,7A) 2 1

(2B,2B,4B,4B) 2 128,104 (2A,2B,4B,4C) 1 192
PΣL(3, 4),n = 21 (2A,2B,4B,4A) 1 40 (2A,2B,3A,6A) 2 1682

(2A,2B,2B,14A) 2 142 (2A,2B,2B,14B) 2 142

(2A,2A,4A,6A) 1 72 (2A,2A,4C,4C) 1 64
(2A,2A,3A,5A) 3 40,40,50 (2A,2A,4A,4C) 1 40

(2A,2A,2B,2B,3A) 2 864,756 (2A,2A,2A,2B,4B) 1 336
(2A,2A,2A,2A,4C) 1 384

(4B,4C,8B) 1 1 (3A,4B,5B) 1 1
(3A,4B,10A) 1 1 (3A,4B,8B) 1 1
(3A,4B,6A) 1 1 (3A,4B,5B) 1 1
(3A,4A,10A) 1 1 (3A,4A,8A) 1 1
(3A,4A,6A) 1 1 (4A,4C,8A) 1 1
(2A,4C,31J) 1 1 (2A,4C,31I) 1 1
(2A,4C,31H) 1 1 (2A,4C,31G) 1 1
(2A,4C,31F) 1 1 (2A,4C,31E) 1 1
(2A,4C,31D) 1 1 (2A,4C,31C) 1 1
(2A,4C,31A) 1 1 (2A,4C,31B) 1 1

PSL(3, 5), n = 31 (2A,8B,20B) 1 1 (2A,8A,20A) 1 1
(2A,8B,12B) 1 1 (2A,8B,12A) 1 1
(2A,8A,12B) 1 1 (2A,8A,12A) 1 1
(2A,3A,31A) 1 1 (2A,3A,31B) 1 1
(2A,3A,31C) 1 1 (2A,3A,31D) 1 1
(2A,3A,31E) 1 1 (2A,3A,31F) 1 1
(2A,3A,31G) 1 1 (2A,3A,31H) 1 1
(2A,3A,31I) 1 1 (2A,3A,31J) 1 1

(2A,2A,4B,5A) 1 1 (2A,2A,3A,4B) 1 33
(2A,2A,4A,5A) 1 1 (2A,2A,3A,4A) 1 33

PSL(3, 5).2 ,n = 186 (2B,3A,8A) 14 1

PSL(3, 7), n = 57 (2A,2A,2A,14A) 2 3,3
(2A,3A,19A) 3 1 (2A,3A,19B) 3 1
(2A,3A,19C) 3 1 (2A,3A,19D) 3 1
(2A,3A,19E) 3 1 (2A,3A,19F) 3 1

(3B,3D,6E) 1 1 (3B,4A,6C) 1 1
(3A,3C,6E) 1 1 (3A,4A,6D) 1 1

PGL(3, 7), n = 57 (2A,6D,12A) 1 1 (2A,6C,12B) 1 1
(2A,3D,42B) 1 1 (2A,3D,24B) 1 1
(2A,3D,24C) 1 1 (2A,3C,42A) 1 1
(2A,3C,24D) 1 1 (2A,3C,24C) 1 1

(2A,4A,14F) 1 1 (2A,4A,14E) 1 1
(2A,4A,14D) 1 1 (2A,4A,14C) 1 1

PΓL(3, 8),n = 73 (2A,4A,14A) 1 1 (2A,4A,14B) 1 1
(2A,3A,21A) 1 1 (2A,3A,21B) 1 1
(2A,3A,21C) 1 1 (2A,3A,21D) 1 1
(2A,3A,21E) 1 1 (2A,3A,21F) 1 1

(2A,3B,24D) 1 1 (2A,3B,24C) 1 1
PSL(3, 9), n = 91 (2A,3B,24A) 1 1 (2A,3B,24B) 1 1

PΓL(3, 9),n = 57 (2A,3B,16D) 1 1 (2A,3B,16C) 1 1

PΓL(3, 13),n = 183 (2A,3B,12N) 1 1 (2A,3B,12L) 1 1
(2A,3A,12M) 1 1 (2A,3A,12K) 1 1
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