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Introduction

In the present paper, we deal with the classes Sω(RN ) of ultradifferentiable
rapidly decreasing functions of Beurling type, where ω is a non-quasianalytic
weight function in the sense of Braun, Meise and Taylor [9]. Björck [5] intro-
duced in 1966 the global classes Sω(RN ) of ultradifferentiable functions, using
weights ω in the sense of Beurling. In the last years, many authors focused their
interest on this setting, studying many properties of Sω(RN ) (see [6, 7, 8, 11],
for instance, and the references therein). In [1, 2], the authors introduced and
studied the space OM,ω(RN ) of the slowly increasing functions and the space
OC,ω(RN ) of the very slowly increasing functions in the setting of ultradifferen-
tiable function spaces of Beurling type. For instance, in [1, 2], the authors proved
that OM,ω(RN ) is the space of the multipliers of Sω(RN ) and of its dual S ′

ω(RN )
and that the strong dual O′

C,ω(RN ) of OC,ω(RN ) is the space of the convolutors
of Sω(RN ) and of its dual S ′

ω(RN ). Schwartz [18] started in 1966 the study of
multipliers and convolutors of the space S(RN ) of rapidly decreasing functions,
because of the importance of their application to the study of partial differential
equations. Many authors also introduced and studied particular aspects of the
spaces of multipliers and of convolutors for ultradifferentiable classes of rapidly
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decreasing functions of Beurling or Roumieu type in the sense of Komatsu [16]
(see, f.i., [12, 15]).

In this paper we continue the study of the space OC,ω(RN ) started in [1, 2],
showing that it is a sequentially retractive (LF)-space (Section 3) and hence,
complete. We point out that from a functional point of view, establishing or
not the completeness of an (LF)-space is a very difficult task. It is still an open
problem posed by Grothendieck (see, e.g., [4, p.78]) if a regular (LF)-space is
complete.

As a first step towards the main result of the paper, we prove in §2.1 a
general criterion to establish the sequential retractivity of a quasi-regular (LF)-
space (see Proposition 2). In order to apply this criterion to our case, we show in
Section 3 that on the dual space O′

C,ω(RN ) the strong topology, the projective

topology and the topology induced as a subspace of Lb(Sω(RN )) coincide, where
Lb(Sω(RN )) denotes the space of all continuous linear operators from Sω(RN )
into itself, endowed with the topology of the uniform convergence on bounded
subsets of Sω(RN ) (see Proposition 9).

1 Definitions and preliminary results

1.1 (LF)-spaces

Let E be a locally convex Hausdorff space (lcHs, briefly). As usual, we denote
by E′

β its topological dual endowed with the strong topology.

An (LF)-space is a lcHs E which is an inductive limit E = ind→
n
En of an

inductive sequence {En}n∈N of Fréchet spaces, i.e., En ↪→ En+1 continuously
for all n ∈ N, E = ∪n∈NEn and E is endowed with the finest locally convex
Hausdorff topology such that the inclusions E ↪→ En are continuous.

Let us recall some necessary definitions. An (LF)-space E = ind→
n
En is said

to be quasi-regular if for every bounded subset B of E, there exist n ∈ N and a
bounded subset C of En such that B ⊆ C, where the closure is taken in E. We
say that E = ind→

n
En is regular if every bounded subset in E is contained and

bounded in En, for some n ∈ N. Regular (LF)-spaces are clearly quasi-regular
and complete (LF)-spaces are regular.

Moreover, an (LF)-space E = ind→
n
En is said to be: compactly retractive

if for every compact subset K of E, there exists m ∈ N such that K ⊂ Em
and it is compact there; boundedly retractive if every bounded subset B of E
is contained in some step En and the topologies of E and En coincide on B;
sequentially retractive if every convergent sequence in E is contained in some
step En and converges there.

We point out that, due to Grothendieck’s factorization theorem, all the
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conditions introduced above do not depend on the defining inductive spectrum
of E. We refer the reader to [19, 20] for more details.

The following theorem due to Wengenroth for (LF)-spaces (see [20, Theorem
6.4]) shows the equivalence of some the properties introduced above.

Theorem 1. For an (LF)-space E = ind→
n
En the following conditions are

equivalent:

(1) E is boundedly retractive;

(2) E is compactly retractive;

(3) E is sequentially retractive.

Furthermore, sequentially retractive (LF)-spaces are complete (see [20, Corol-
lary 2.8]) and hence, regular.

We recall that if E = ind→
n
En is an (LF)-space, then the canonical linear

map j : E′
β → proj←

n
(En)

′
β, f 7→ (f|En

)n∈N, (where the projective limit is formed
with respect to the natural restrictions (En+1)

′
β → (En)

′
β, g 7→ g|En

) is a con-
tinuous and surjective isomorphism. But in general, j is not an open map. By
standard duality arguments, one shows the following fact.

Proposition 1. Let E = ind→
n
En be an (LF)-space. Then E is quasi-

regular if, and only, if E′
β = proj←

n
(En)

′
β topologically.

Proof. See, for example, [14] or [17, §22.6 and 22.7]. QED

Now, we give a simple criterion to establish the sequential retractivity of a
quasi-regular (LF)-space.

Proposition 2. Let E = ind→
n
En be a quasi-regular (LF)-space. Suppose

that there exists a Fréchet space F such that E ↪→ F continuously and

(*) for all n ∈ N and for every bounded absolutely convex subset B of En, the
spaces En+1 and F induce the same topology on B.

Then E is a sequentially rectractive (LF)-space.

Proof. Let {xj}j∈N be a null sequence in E. Then there exists a bounded ab-
solutely convex subset B0 of E such that {xj}j∈N ∪ {0} ⊂ B0. Since E is a
quasi-regular (LF)-space, there exist n ∈ N and a bounded absolutely convex

subset C of En such that B0 ⊆ C
E
. We observe that by assumption, the se-

quence {xj}j∈N also converges to 0 in F .

For a fixed x ∈ C
E
, there exists a net {cα}α ⊂ C such that cα → x in E and

hence, in F . Accordingly, {cα}α is a Cauchy net of F . Since En+1 and F induce
the same uniformity on C, it follows that {cα}α is also a Cauchy net of En+1.
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But, En+1 is a Fréchet space. So, we get that there exists y ∈ En+1 such that
cα → y in En+1 and hence, in F . Therefore, x = y. By the arbitrariness of x, it

follows that B0 ⊂ En+1 and that B0 is bounded in En+1, since B0 ⊆ C
En+1 ⊂

En+1.

Now, En+2 and F induce the same topology on every bounded subset of
En+1 and hence, on B0. Since {xj}j∈N ⊂ B0 and xj → 0 in F , it follows that
xj → 0 in En+2. This completes the proof. QED

1.2 The spaces Sω(RN), OM,ω(RN) and OC,ω(RN)

We first give the definition of non-quasianalytic weight function in the sense
of Braun, Meise and Taylor [9] suitable for the Beurling case, i.e., we also con-
sider the logarithm as a weight function.

Definition 1. A non-quasianalytic weight function is a continuous increas-
ing function ω : [0,∞) → [0,∞) satisfying the following properties:

(α) there exists K ≥ 1 such that ω(2t) ≤ K(1 + ω(t)) for every t ≥ 0;

(β)
∫∞
1

ω(t)
1+t2

dt <∞;

(γ) there exist a ∈ R, b > 0 such that ω(t) ≥ a+ b log(1 + t), for every t ≥ 0;

(δ) φω(t) = ω ◦ exp(t) is a convex function.

We recall some known properties of the weight functions that shall be useful
in the following (the proofs can be found in the literature):

(1) Condition (α) implies that

ω(t1 + t2) ≤ K(1 + ω(t1) + ω(t2)), ∀t1, t2 ≥ 0.

Observe that this condition is weaker than subadditivity (i.e., ω(t1 + t2) ≤
ω(t1)+ω(t2)). The weight functions satisfying (α) are not necessarily subadditive
in general.

(2) By condition (γ), we have that

e−λω(t) ∈ Lp(RN ), ∀λ ≥ N + 1

bp
.

Given a non-quasianalytic weight function ω, we define the Young conjugate
φ∗
ω of φω as the function φ∗

ω : [0,∞) → [0,∞) by

φ∗
ω(s) := sup

t≥0
{st− φω(t)}, s ≥ 0.
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There is no loss of generality to assume that ω vanishes on [0, 1]. Therefore, φ∗
ω

is convex and increasing, φ∗
ω(0) = 0 and (φ∗

ω)
∗ = φω. Furthermore, φ

∗
ω(t)
t is an

increasing function in (0,∞) and in particular, for every s, t ≥ 0 and λ > 0 the
following chain of inequalities holds true:

2λφ∗
ω

(
s+ t

2λ

)
≤ λφ∗

ω

( s
λ

)
+ λφ∗

ω

(
t

λ

)
≤ λφ∗

ω

(
s+ t

λ

)
. (1.1)

We now introduce the ultradifferentiable function spaces which will be con-
sidered in this paper: Sω(RN ), OM,ω(RN ) and OC,ω(RN ).

Following Björk [5] we define:

Definition 2. Let ω be a non-quasianalytic weight function. We denote by
Sω(RN ) the set of all functions f ∈ L1(RN ) such that f, f̂ ∈ C∞(RN ) and for
all λ > 0 and α ∈ NN0 we have

∥ exp(λω)∂αf∥∞ <∞ and ∥ exp(λω)∂αf̂∥∞ <∞ ,

where f̂ denotes the Fourier transform of f . The elements of Sω(RN ) are called
ω-ultradifferentiable rapidly decreasing functions of Beurling type. We denote by
S ′
ω(RN ) the dual of Sω(RN ) endowed with its strong topology.

The space Sω(RN ) is a Fréchet space with different equivalent systems of
seminorms (see [2, Proposition 2.4], [7, Theorem 4.8] and [6, Theorem 2.6]). In
the following, we will use the following systems of norms generating the Fréchet
topology of Sω(RN ):

qλ,µ(f) := sup
α∈NN

0

∥ exp(µω)∂αf∥∞ exp

(
−λφ∗

ω

(
|α|
λ

))
, λ, µ > 0, f ∈ Sω(RN ),

(equivalently, the sequence of norms {qm,n}m,n∈N) or, for any 1 ≤ p < ∞ and
λ, µ > 0,

σλ,µ,p(f) :=

 ∑
α∈NN

0

∥ exp(µω)∂αf∥pp exp
(
−pλφ∗

ω

(
|α|
λ

)) 1
p

, f ∈ Sω(RN ),

(equivalently, the sequence of norms {σm,n,p}m,n∈N).
We point out that the space Sω(RN ) is a nuclear Fréchet space, see, f.i., [8,

Theorem 3.3] or [11, Theorem 1.1].
We refer the reader to [9] for the definition and the main properties of the

ultradifferentiable function spaces Eω(Ω), Dω(Ω) and their duals of Beurling
type in the sense of Braun, Meise and Taylor. We only recall that for an open
subset Ω of RN , the space Eω(Ω) is defined as

Eω(Ω) := {f ∈ C∞(Ω): pK,m(f) <∞ ∀K ⋐ Ω, m ∈ N} ,
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where

pK,m(f) := sup
x∈K

sup
α∈NN

0

|∂αf(x)| exp
(
−mφ∗

ω

(
|α|
m

))
.

Eω(Ω) is a nuclear Fréchet space with respect to the lc-topology generated by the
system of seminorms {pK,m}K⋐Ω,m∈N (see [9, Proposition 4.9]). The elements
of Eω(Ω) are called ω-ultradifferentiable functions of Beurling type on Ω.

The spaces OM,ω,p(RN ) and OC,ω,p(RN ), for 1 ≤ p ≤ ∞, have been intro-
duced in [1, 2], as follows.

Definition 3. Let ω be a non-quasianalytic weight function.

(a) For m,n ∈ N and 1 ≤ p ≤ ∞, we denote by Om
n,ω,p(RN ) the space of all

functions f ∈ C∞(RN ) such that

rm,n,∞(f) := sup
α∈NN

0

sup
x∈RN

|∂αf(x)| exp
(
−nω(x)−mφ∗

ω

(
|α|
m

))
<∞, if p = ∞,

rpm,n,p(f) :=
∑
α∈NN

0

∥ exp(−nω)∂αf∥pp exp
(
−pmφ∗

ω

(
|α|
m

))
<∞, if 1 ≤ p <∞.

The space (Om
n,ω,p(RN ), rm,n,p) is a Banach space for all m,n ∈ N and 1 ≤ p ≤

∞.

(b) For 1 ≤ p ≤ ∞, the space OM,ω,p(RN ) is defined by

OM,ω,p(RN ) :=
∞⋂
m=1

∞⋃
n=1

Om
n,ω,p(RN )

and it is endowed with its natural lc-topology, i.e.,OM,ω,p(RN ) = proj←
m

Om
ω,p(RN )

is the projective limit of the (LB)-spaces Om
ω,p(RN ) := ind→

n
Om
n,ω,p(RN ),m ∈ N.

We denote by O′
M,ω,p(RN ) the dual of OM,ω,p(RN ), endowed with its strong

topology.

(c) For 1 ≤ p ≤ ∞, the space OC,ω,p(RN ) is defined by

OC,ω,p(RN ) :=
∞⋃
n=1

∞⋂
m=1

Om
n,ω,p(RN )

and it is endowed with its natural lc-topology, i.e.,OC,ω,p(RN ) = ind→
n
On,ω,p(RN )

is an (LF)-space, where On,ω,p(RN ) := proj←
m
Om
n,ω,p(RN ) is a Fréchet space for

any n ∈ N. We denote by O′
C,ω,p(RN ) the dual of OC,ω,p(RN ), endowed with its

strong topology.
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In the following, the spacesOm
n,ω,∞(RN ),Om

ω,∞(RN ),On,ω,∞(RN ),OM,ω,∞(RN )
andOC,ω,∞(RN ) are simply denoted byOm

n,ω(RN ),Om
ω (RN ),On,ω(RN ),OM,ω(RN )

and OC,ω(RN ) respectively (also rm,n,∞ is simply denoted by rm,n), for any
m,n ∈ N. The elements of OM,ω(RN ) (of OC,ω(RN ), resp.) are called slowly in-
creasing functions of Beurling type (very slowly increasing functions of Beurling
type, resp.).

Recall that the inclusionsDω(RN ) ↪→ Sω(RN ) ↪→ OC,ω(RN ) ↪→ OM,ω(RN ) ↪→
Eω(RN ) are well-defined, continuous with dense range, see [1, Theorems 3.8,
3.9 and 5.2(1)]. Hence, the inclusions E ′

ω(RN ) ↪→ O′
M,ω(RN ) ↪→ O′

C,ω(RN ) ↪→
S ′
ω(RN ) ↪→ D′

ω(RN ) are also well-defined and continuous. Furthemore, the in-
clusions OM,ω(RN ) ↪→ S ′

ω(RN ) and OC,ω(RN ) ↪→ S ′
ω(RN ) are continuous.

Concerning the spaces OM,ω(RN ) and OC,ω(RN ) introduced above we have
the following result (see [2, Proposition 3.8]).

Proposition 3. Let ω be a non-quasianalytic weight function. Then the
following properties are satisfied:

(1) Om
ω (RN ) = Om

ω,p(RN ) and On,ω(RN ) = On,ω,p(RN ) algebraically and topo-
logically for every 1 ≤ p <∞ and m,n ∈ N;

(2) OM,ω(RN ) = OM,ω,p(RN ) and OC,ω(RN ) = OC,ω,p(RN ) algebraically and
topologically for every 1 ≤ p <∞.

In particular, the space OM,ω(RN ) is the space of multipliers of Sω(RN ) (see
[1, Theorem 4.4]).

Proposition 4. Let ω be a non-quasianalytic weight function. Then the
space OM,ω(RN ) is the space of multipliers of Sω(RN ), i.e., f ∈ OM,ω(RN ) if,
and only if, fg ∈ Sω(RN ) for all g ∈ Sω(RN ). Moreover, if f ∈ OM,ω(RN ),
then the linear operator Mf : Sω(RN ) → Sω(RN ) defined by Mf (g) := fg, for
g ∈ Sω(RN ), is continuous.

Furthemore, by a result of Debrouwere and Neyt [10, Theorem 5.3] we have

Proposition 5. Let ω be a non-quasianalytic weight function. Then the
space OM,ω(RN ) is ultrabornological.

Thanks to Proposition 4, the space OM,ω(RN ) can be identified with the
subspace of L(Sω(RN )) whose elements are the multipliers Mf . So, the space
OM,ω(RN ) can be endowed with the topology τb induced by Lb(Sω(RN )), where
Lb(Sω(RN )) denotes the space of all continuous linear operators from Sω(RN )
into itself, endowed with the topology of the uniform convergence on bounded
subsets of Sω(RN ). But, by Proposition 5 the induced topology τb coincides with
the natural topology of OM,ω(RN ).

The space O′
C,ω(RN ) is the space of convolutors of Sω(RN ) (see [2, Theorem

5.3]).
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Proposition 6. Let ω be a non-quasianalytic weight function satisfying the
condition log(1 + t) = o(ω(t)) as t → ∞. Then O′

C,ω(RN ) is the space of con-

volutors of Sω(RN ), i.e., T ∈ O′
C,ω(RN ) if, and only if, T ⋆ f ∈ Sω(RN ) for all

f ∈ Sω(RN ). Moreover, the linear operator CT : Sω(RN ) → Sω(RN ) defined by
CT (f) := T ⋆ f , for f ∈ Sω(RN ), is continuous.

We point out that by [2, Theorem 5.3,(1) ⇒ (2)], for any non-quasianalytic
weight function ω, if T ∈ O′

C,ω(RN ), then the convolutor CT ∈ L(Sω(RN )).
Hence, O′

C,ω(RN ) can be always identified with a subspace of L(Sω(RN )), whose
elements are the convolutors CT .

Finally, we recall that if ω is a non-quasianalytic weight function satisfying
the condition log(1 + t) = o(ω(t)) as t → ∞, the Fourier transform is a topo-
logical isomorphism from O′

C,ω(RN ) onto OM,ω(R
N ) (see [2, Theorem 6.1]). In

particular, for all T ∈ O′
C,ω(RN ) and f ∈ Sω(RN ) the convolution T ⋆f satisfies

the following property:
F(T ⋆ f) = f̂F(T ). (1.2)

We conclude this section by showing that the Fourier transform is also a
topological isomorphism when O′

C,ω(RN ) is endowed with the topology τb in-

duced by Lb(Sω(RN ))
Proposition 7. Let ω be a non-quasianalytic weight function satisfying the

condition log(1 + t) = o(ω(t)) as t → ∞. Then the Fourier transfom F is a
topological isomorphism from (O′

C,ω(RN ), τb) onto OM,ω(RN ).

Proof. For a fixed net {Ti}i∈I ⊂ O′
C,ω(RN ), we observe that in view of (1.2) the

following equality holds true:

F(Ti ⋆ g) = ĝF(Ti), g ∈ Sω(RN ), i ∈ I.

Moreover, Ti ⋆ g ∈ Sω(RN ) for every g ∈ Sω(RN ) and i ∈ I. Since F is a topo-
logical isomorphism from Sω(RN ) onto itself, if we set fi := F(Ti) ∈ OM,ω(RN )
for i ∈ I, then Ti → T in (O′

C,ω(RN ), τb) for some T ∈ O′
C,ω(RN ) if, and only if,

Ti ⋆ g → T ⋆ g in Sω(RN ) uniformly on bounded subsets of Sω(RN ) if, and only
if, F(Ti ⋆ g) → F(T ⋆ g) in Sω(RN ) uniformly on bounded subsets of Sω(RN )
if, and only if, ĝfi → ĝf in Sω(RN ) uniformly on bounded subsets of Sω(RN ),
where f := F(T ), if, and only if, fi → f in OM,ω(RN ), being the topology of
OM,ω(RN ) equal to the one induced by Lb(Sω(RN )) as observed above. QED

2 OC,ω(RN) is a sequentially retractive (LF)-space

The aim of this section is to establish that OC,ω(RN ) is a sequentially re-
tractive Montel (LF)-space. To do this, we collect some auxiliary results.
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Lemma 1. Let m,n ∈ N and 1 < p <∞. Then the following properties are
satisfied:

(1) The Banach space Om
n,ω,p(RN ) is reflexive;

(2) T ∈ (Om
n,ω,p(RN ))′ if, and only if, T ∈ D′

ω(RN ) and there exists {fα}α∈NN
0
⊂

Lp
′
(RN , exp(nω(x))dx) such that

T =
∑
α∈NN

0

∂αfα and
∑
α∈NN

0

∥ exp(nω)fα∥p
′

p′ exp

(
p′mφ∗

ω

(
|α|
m

))
<∞,

(2.3)
being p′ the conjugate exponent of p.

Moreover, the space (Om
n,ω,p(RN ))′ endowed with the norm

r′m,n,p(T ) := inf


 ∑
α∈NN

0

∥ exp(nω)fα∥p
′

p′ exp

(
p′mφ∗

ω

(
|α|
m

)) 1
p′
 ,

where the infimum is taken over all {fα}α∈NN
0

⊂ Lp
′
(RN , exp(nω(x))dx) satis-

fying (2.3), is the strong dual of the Banach space Om
n,ω,p(RN ).

Proof. It is straightforward. QED

Lemma 2. Let ω be a non-quasianalytic weight function and 1 ≤ p < ∞.
Then the inductive spectrum {On,ω,p(RN )}n∈N is reduced, i.e., for all n ∈ N the
space On,ω,p(RN ) is dense in On+1,ω,p(RN ).

Proof. The result follows from [2, Proposition 4.2(3) and Remark 4.3]. QED

In view of Lemmas 1 and 2, for any 1 < p <∞ the family {On,ω,p(RN )}n∈N
is a reduced inductive spectrum of reflexive Fréchet spaces. Accordingly, the
strong dual O′

n+1,ω,p(RN ) of On+1,ω,p(RN ) is continuously included in the strong

dual O′
n,ω,p(RN ) of On,ω,p(RN ) for all n ∈ N, and O′

C,ω(RN ) = O′
C,ω,p(RN ) =

∩n∈NO′
n,ω,p(RN ). So, we can consider on O′

C,ω(RN ) the projective topology τpr
defined by the projective spectrum {O′

n,ω,p(RN )}n∈N, i.e., (O′
C,ω(RN ), τpr) =

proj←
n
O′
n,ω,p(RN ). The topology τpr does not depend on p, because of the fact

that OC,ω(RN ) = OC,ω,p(RN ) for all 1 < p < ∞. As it is well known, the
inclusion (O′

C,ω(RN ), τβ) ↪→ (O′
C,ω(RN ), τpr) is continuous, where τβ denotes

the strong topology of O′
C,ω(RN ). In the following, we show that also τpr = τβ

on O′
C,ω(RN ). To see this, we first establish the following fact, which is valid for

every non-quasianalytic weight function ω.
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Proposition 8. Let ω be a non-quasianalytic weight function. Then the
inclusion (O′

C,ω(RN ), τpr) ↪→ (O′
C,ω(RN ), τb) is continuous, where τb denotes

the locally convex topology induced on O′
C,ω(RN ) by Lb(Sω(RN )) .

Proof. For all n ∈ N, set Un := {f ∈ Sω(RN ) : qn,n(f) ≤ 1}. Then {Un}n∈N
is a basis of closed absolutely convex 0-neighborhoods of Sω(RN ). Taking into
account that (O′

C,ω(RN ), τpr) = proj←
n
O′
n,ω,2(RN ), it suffices to show that for

all n ∈ N and every bounded, closed absolutely convex subset B of Sω(RN ), the
set

M(B,Un) := {T ∈ O′
C,ω(RN ) : T ⋆ f ∈ Un ∀f ∈ B}

contains
◦
C (the polar taken in O′

C,ω(RN )), for some bounded subset C of

On′,ω,2(RN ) and some n′ ≥ n. To prove this, for a fixed n ∈ N, we observe that
if T ∈ O′

C,ω(RN ), then T ∈ O′
n′,ω,2(R

N ) with n′ = [Kn] + 1 ≥ n (where K is

the constant appearing in Definition 1(α)). Hence, T ∈ (Om
n′,ω,2(R

N ))′, for some
m ∈ N which can be always supposed greater or equal than n′. So, by Lemma
1, there exists {fα}α∈NN

0
⊂ L2(RN , exp(n′ω(x)) dx) such that T =

∑
α∈NN

0
∂αfα

and
∑

α∈NN
0
∥ exp(n′ω)fα∥22 exp

(
2mφ∗

ω

(
|α|
m

))
< ∞. Now, arguing in a similar

way as in the proof of [2, Theorem 5.3], we obtain for every f ∈ Sω(RN ), β ∈ NN0
and x ∈ RN , that

|∂β(T ⋆ f)(x)| ≤
∑
α∈NN

0

∥ exp(n′ω)fα∥2∥ exp(−n′ω)∂α+βτxf̌∥2,

where

∥ exp(−n′ω)∂α+βτxf̌∥22 ≤ c2 exp

(
−2n′ω(x)

K

)
∥ exp(n′ω)∂α+βf∥22

≤ c2 exp (−2nω(x)) ∥ exp(n′ω)∂α+βf∥22,

with c := exp(n′), being n′ ≥ Kn. Therefore, we get for every f ∈ Sω(RN ),
β ∈ NN0 and x ∈ RN that

exp (nω(x)) |∂β(T ⋆ f)(x)| ≤ c
∑
α∈NN

0

∥ exp(n′ω)fα∥2∥ exp(n′ω)∂α+βf∥2

≤ c

 ∑
α∈NN

0

∥ exp(n′ω)fα∥22 exp
(
2mφ∗

ω

(
|α|
m

)) 1
2

×

×

 ∑
α∈NN

0

∥ exp(n′ω)∂α+βf∥22 exp
(
−2mφ∗

ω

(
|α|
m

)) 1
2

.
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Due to (1.1), it follows that

qm,n(T ⋆ f) = sup
β∈NN

0

sup
x∈RN

exp (nω(x)) |∂β(T ⋆ f)(x)| exp
(
−mφ∗

ω

(
|β|
m

))

≤ c

 ∑
α∈NN

0

∥ exp(n′ω)fα∥22 exp
(
2mφ∗

ω

(
|α|
m

)) 1
2

×

×

 ∑
α∈NN

0

∥ exp(n′ω)∂α+βf∥22 exp
(
−2mφ∗

ω

(
|α|
m

)
− 2mφ∗

ω

(
|β|
m

)) 1
2

≤ c

 ∑
α∈NN

0

∥ exp(n′ω)fα∥22 exp
(
2mφ∗

ω

(
|α|
m

)) 1
2

×

×

 ∑
α∈NN

0

∥ exp(n′ω)∂α+βf∥22 exp
(
−4mφ∗

ω

(
|α+ β|
2m

)) 1
2

= cσ2m,n′,2(f)

 ∑
α∈NN

0

∥ exp(n′ω)fα∥22 exp
(
2mφ∗

ω

(
|α|
m

)) 1
2

.

Since qn,n ≤ qm,n as m ≥ n, we get via the above inequalities that

qn,n(T ⋆ f) ≤ cσ2m,n′,2(f)

 ∑
α∈NN

0

∥ exp(n′ω)fα∥22 exp
(
2mφ∗

ω

(
|α|
m

)) 1
2

for every f ∈ Sω(RN ). Therefore, by passing to the infimum as indicated in
Lemma 1, we obtain for every f ∈ Sω(RN ) that

qn,n(T ⋆ f) ≤ cσ2m,n′,2(f)r
′
m,n′,2(T ).

Fixed a bounded closed absolutely convex subset B of Sω(RN ), we get that

sup
f∈B

qn,n(T ⋆ f) ≤ c

(
sup
f∈B

σ2m,n′,2(f)

)
r′m,n′,2(T ). (2.4)

Now, for each m ≥ n′, set λm := c supf∈B σ2m,n′,2(f) < ∞ and Vm,n′ := {f ∈
On′,ω,2(RN ) : rm,n′,2(f) ≤ 1}. Then C := ∩m≥n′λmVm,n′ is a bounded closed
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absolutely convex subset of On′,ω,2(RN ) and hence, of OC,ω(RN ). We claim that
◦
C ⊆ M(B,Un). To show this, we first observe that T ∈

◦
V m,n′ (the polar taken

in O′
C,ω(RN )) if, and only if, r′m,n′,2(T ) ≤ 1 (so, T ∈ (Om

n′,ω,2(R
N ))′). Now,

if T ∈ Γ(∪m≥n′λ
−1
m

◦
V m,n′), where Γ denotes the absolutely convex hull, then

T =
∑

m≥n′ αmλ
−1
m Tm, with Tm ∈

◦
V m,n′ for all m ≥ n′ and

∑
m≥n′ |αm| ≤ 1.

Thus, we can apply (2.4) to obtain that

sup
f∈B

qn,n(T ⋆ f) ≤
∑
m≥n′

|αm|λ−1
m sup

f∈B
qn,n(Tm ⋆ f)

≤
∑
m≥n′

|αm|λ−1
m λmr

′
m,n′,2(Tm) ≤

∑
m≥n′

|αm| ≤ 1.

This means that T ∈M(B,Un). SinceM(B,Un) is σ := σ(O′
C,ω(RN ),OC,ω(RN ))-

closed, it follows that
◦
C ⊆M(B,Un), being

◦
C= Γ(∪m≥n′λm

◦
V m,n′)

σ

. QED

As an immediate consequence of Proposition 8, combined with Remark 7,
we obtain the following result.

Proposition 9. Let ω be a non-quasianalytic weight function satisfying the
condition log(1 + t) = o(ω(t)) as t → ∞. Then τβ = τpr = τb on O′

C,ω(RN ). In
particular, (O′

C,ω(RN ), τβ) = (O′
C,ω(RN ), τpr).

Proof. The facts that F is a topological isomorphism from the space (O′
C,ω(RN ), τb)

onto the space OM,ω(RN ), the space OM,ω(RN ) is ultrabornological (see [10])
and (O′

C,ω(RN ), τβ) ↪→ (O′
C,ω(RN ), τpr) ↪→ (O′

C,ω(RN ), τb) continuously and

that the space (O′
C,ω(RN ), τβ) has a strict web (see [13, Proposition IV.3.3]),

permit to apply the De Wilde’s open mapping theorem to conclude that τβ =
τpr = τb. QED

To show the sequential retractivity of OC,ω(RN ), it remains to observe the
following fact.

Lemma 3. Let ω be a non-quasianalytic weight function and let n ∈ N.
Then the spaces On+1,ω(RN ) and Eω(RN ) induce the same topology on the
bounded subsets of On,ω(RN ).

Proof. Let B be a bounded subset of On,ω(RN ). We can assume that B is
absolutely convex. Hence, we only have to show that the topology of Eω(RN )
induces a finer filter of 0-neighborhoods in B than the topology of On+1,ω(RN ).
So, let m ∈ N and ε > 0. Then the set U := {f ∈ On+1,ω(RN ) : rm,n+1(f) < ε}
is a 0-neighborhood of On+1,ω(RN ). Since B is a bounded subset of On,ω(RN ),



On the space OC,ω(RN ) and its dual 13

there exists Cm > 0 such that rm,n(f) ≤ Cm for all f ∈ B. Let M > 0 such that
exp(−ω(x)) < ε

Cm
for every |x| ≥ M and V := {f ∈ Eω(RN ) : pK,m(f) < ε},

where K := {x ∈ RN : |x| ≤ M}. We have that V ∩ B ⊆ U ∩ B. Indeed, if
f ∈ V ∩B, then

|∂αf(x)| ≤ Cm exp

(
nω(x) +mφ∗

ω

(
|α|
m

))
< ε exp

(
(n+ 1)ω(x) +mφ∗

ω

(
|α|
m

))
for every α ∈ NN0 and |x| ≥M . Moreover,

|∂αf(x)| < ε exp

(
mφ∗

ω

(
|α|
m

))
≤ ε exp

(
(n+ 1)ω(x) +mφ∗

ω

(
|α|
m

))
for every α ∈ NN0 and |x| ≤ M . It follows that rm,n+1(f) < ε and hence,
f ∈ U ∩B. QED

We now are ready to show the main result of the paper, i.e., that OC,ω(RN )
is a sequentially retractive (LF)-space and hence, complete. The result should
be compared with [12, Corollary 3.9(ii)] valid in the setting of ultradifferentiable
classes defined according to Komatsu, by pointing out that such a result and
the method of proof do not apply to our case.

Theorem 2. Let ω be a non-quasianalytic weight function satisfying log(1+
t) = o(ω(t)) as t → ∞. Then OC,ω(RN ) is a sequentially rectractive Montel
(LF)-space. In particular, OC,ω(RN ) is a complete (LF)-space.

Proof. By Proposition 9 combined with Proposition 1, we get that OC,ω(RN )
is a quasi-regular (LF)-space. On the other hand, OC,ω(RN ) is continuously
included in the Fréchet space Eω(RN ) and satisfies condition (∗) of Proposition
2 with respect to Eω(RN ), as proved in Lemma 3. Therefore, we can apply
Proposition 2 to conclude that OC,ω(RN ) is a sequentially retractive (LF)-space
and hence, complete (see [20, Corollary 2.8]).

It remains to show that OC,ω(RN ) is a Montel (LF)-space, i.e., its bounded
sets are relatively compact. This follows by observing that, ifB is a bounded sub-
set of OC,ω(RN ), then there exists n ∈ N such that B ⊂ On,ω(RN ) and bounded
there. Applying again Lemma 3, we get that On+1,ω(RN ) and Eω(RN ) induce
the same topology on B and hence, B is relatively compact in On+1,ω(RN ),
being Eω(RN ) a Montel Fréchet space. Therefore, B is also relatively compact
in OC,ω(RN ). QED

Finally, we recall that for any m ∈ N the (LB)-space Om
ω (RN ) is also a

sequentially retractive Montel space and hence, complete, as shown in [3, The-
orems 1 and 2].
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