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Abstract. We study generalized Sasakian-space-forms (GSSF) M2" (k1 k2, k3) with Sasa-
kian metric admitting *-Ricci soliton. We obtain that either such GSSF has ki1 = 321;,
ke = ks = —ﬁ and *-soliton is steady or k1 = 0, k2 = k3 = —1 and #-soliton is expanding.
Also, we provide some examples in support of results. Further, we give an example that GSSF

with Sasakian metric with k; # 0 and k1 # 3:1; do not admit the *-Ricci soliton.
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1 Introduction

Hamilton [9] in 1988 introduced the concept of Ricci soliton as a generaliza-
tion of an Einstein metric as well as a self-similar solution of the Ricci flow of
Hamilton [6]. A triplet (g, V,v) on a Riemannian manifold is a Ricci soliton if
the Ricci tensor i.e. Ric satisfies the following equation [5]

1
Ric+ §£Vg =y,

where Ly is the Lie-derivative along the potential vector field V, g is a Rieman-
nian metric and v a real scalar. The soliton is expanding, steady, or shrinking
if vis < 0, =0 or > 0, respectively.
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The Ricci soliton on an almost contact metric(a.c.m) manifold was studied
extensively by many geometers ([10, 11, 13, 15, 16]).

In 1959 Tachibana [17] introduced the notion of *-Ricci tensor and Hamada
[8] studied the *-Ricci tensor and defined it on an a.c.m manifold M as follows:

1
S*(W,U) = §trace(Z — RW,pUWZ), N W,U,Z € TM, (1.1)

where 1) is a (1, 1)-tensor field and R is a Riemann curvature tensor. Kaimakamis
and Panagiotidou in [12] studied *-Ricci soliton with V' = £ and defined it as

1
Ric* + §£Vg =vg. (1.2)

Further, the *-Ricci soliton with V' belongs to principal curvature space and
to the holomorphic distribution was studied by Chen [4]. Recently, Majhi et al.
[14] and Ghosh and Patra [7] studied Sasakian manifold admitting (1.2).

The geometers [1] were interested to find the examples M2+ (ky, ko, k3) of
GSSF with non-constant functions k1, ko, ks. It is a significant project. In this
paper, we study the existence and non-existence of *-Ricci soliton on GSSF
with Sasakian structure and obtain the functions ki, k2, k3 and nature of *-
Ricci soliton i.e. whether *-soliton is expanding or steady or shrinking along
with examples.

2 Preliminaries

A smooth manifold M2"*1 is called an a.c.m manifold if structure tensors
(¥,€,m, g) satisfies [2]:

P =—T+n@&nE) =1,
YE=0,n0v =0, n(W)=g(W,¢),
gWW,U) = g(W,U) —n(W)n(U),
where v is a (1, 1)-tensor field, ¢ a structure vector field, n a 1-form and g a
Riemannian metric and W, U € TM.

An a.c.m manifold M?"*1 (3, € n,g) is called a GSSF if there exists three
smooth functions k1, ke, and k3 on M such that the curvature tensor R is given

by [1]
RW,U)Z = k{g(U, Z2)W —g(W, Z)U} + ko{g(W, 9 Z)ypU (2.4)
—g(U,p Z)pW + 2g(W,pU) Y Z} + ks{g(W, Z)n(U)§
—g(U, Z)n(W)&§ +n(W)n(Z)U —n(U)n(Z)W },
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Y W, U, Z € TM. In particular M is a Sasakian space form if ki = CZ—?’,
ko = kg = 82—1, Kenmotsu space form if k1 = %, ko = kg = CZ—I, cosymplectic
space form if ky = ko = k3 = §.

Let ey, e3,. .., ean+1 are local orthonormal vector fields on M?"*1 then Ricci

curvature S is defined as [20]

2n+1
SW,U) = > g(R(e;, W)U, e;), ¥V W,U € TM. (2.5)

i=1
Definition 1. M is called n-Einstein if S(W,U) = dg(W,U) + un(W)n(U)
VYW,U e€TM, 9§, u € R. Further, an n-Einstein Sasakian manifold with § = —2
and p = 2n + 2 is called null-Sasakian and if § > —2 then positive-Sasakian [3].

Definition 2. [18] On a contact metric manifold M a vector field V' is said
to be an infinitesimal contact transformation if Lyn = fn for some f € C®
on M and an infinitesimal automorphism of the contact metric structure if it
leaves 1, £, g, v invariant.

The following commutation formulae will be useful to obtain our results. On
a Riemannian manifold M [19], we have

(VZEVQ)(W’ U) = g((ﬁvV)(Z, W)> U) + g((ﬁvV)(Z, U)? W)’ (2'6)

(LvRYW,U)Z = (VwLyV)(U, Z) = (VuLyV)(W, Z), (2.7)
YW.U.ZeTM.

3 x-Ricci Soliton on GSSF with Sasakian metric

Let M?"*1(kq, ko, k3) be a GSSF with Sasakian metric, then [1]

Vwé = (ks —k1)yW, (3.1)
(Vw)(U) = (k1 — k3)(g(W,U)§ —n(U)W), (3.2)
(Vwn)(U) = g(Vw§, U) = (ks — k1)g(yW, U), (3-3)

RW,U)§ = (k1 —k3)(n(U)W —n(W)U), (3.4)

vVW,U eTM.
We set following:

Fi =k + (1 + 271),1{32; Fy =2nky + 3ky — k3; F3 = 3ko + (2n — 1)]433. (35)

Theorem 1. [1] Let M*" 1 (ky, ko, k3) be a GSSF with Sasakian metric,
then kg Zkg Zkl — 1.
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Theorem 2. Let M*" "1 (ky, ko, k3) be a GSSF with Sasakian metric, then
€k = 0.

Proof. Using (2.4) in (2.5), we obtain
S(W,U) = Fag(W,U) — Fsn(W)n(U), (3.6)

YVW,U €eTM.
Using Theorem 1 in (3.6), we get

QW = (2n+2)k; —2)WW — ((2n + 2)k1 — (2n + 2))n(W)E. (3.7)
Differentiating (3.7) along & and using (3.1), we find that
(Ve@QW = ((2n + 2)Ek1) (W — n(W)¢E). (3.8)
Also, since ¢ is Killing on a Sasakian manifold, therefore we have [7]
Ve@Q = 0. (3.9)

Comparing (3.8) and (3.9), we get £k; = 0, which completes the proof.

QED

Theorem 3. Let M2 (ky, ks, k3) be a GSSF admitting *-Ricci soliton with
Sasakian metric, then

v=2F =4(n+ 1)k; —2(2n+1). (3.10)
Moreover, k1, ko and ks are constants and ki € {0, gzg .

Proof. Replacing U with yU, Z with ¢¥Z in (2.4) and using (1.1), we find
S*W,U) = Fi(gW,U) —n(W)n(U)). (3.11)
Using (3.11) in (1.2), we get
(Lyvg)(W,U) = 2vg(W,U) — 2F1g(y W, yU). (3.12)
Differentiating (3.12) along Z € T'M, we find

(VzLyg) (W, U) = =2F1(g((Vz)W,9U) + g((Vz9)U, v W)) (3.13)
— 2(ZF)g(yW,pU).

Using (2.6) in (3.13), we obtain

g((ﬁVV)(Z W)? U) + g((ﬁVv)(Zv U)v W) = _2Flg((va)VV7 wU) (3'14)
—2F1g(V 20U, W) — 2(ZFy)g(yW, U).
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Similarly, we have

g(Ly V)W, U), Z) + g((Lv V)W, 2),U) = =2F1g(Vw)U, ¢ Z)  (3.15)
—2Fg(Vwy) Z,9U) = 2(WF1)g(yU, ¢ Z),

g((ﬁvV)(U, Z)? W) + g((ﬁVv)(U7 W)? Z) - —2F19((VU¢)Z, 1/1W) (3‘16)
—2Rg(Vu)W,9Z) = 2(UF1)g(Z, yW).

Adding (3.15) and (3.16), then subtracting (3.14) we find that

9(LyV)W,U), Z) =
Fig(Vz0)W,9U) + Fig(Vzo)U, 9 W) + (ZFy
—Fig(Vu)Z,vW) — Fig(Vuy)W, v Z) — (UF
—Fig(Vwo)U,»Z) — Fig(Vw) Z,9U) — (WF)g(YU, ¢ Z),

YVW,U,Z e TM.
Putting U = ¢ in (3.17) and using (3.2), Theorem 1 and Theorem 2, we
obtain

(LvV)(W,§) = —2FpW. (3.18)
Further, differentiating (3.18) along U € T'M and using (3.1), (3.2), we find

(VuLy V)W, &) = (LvV)(W,9U) = 2(UF )y W (3.19)
—2Fg(W,U)& 4 2Fm(W)U.

Using (3.19) in (2.7), we obtain

(LvR) (W, U)E = (LyV)(U W) = 2(WEF)YU + 2Fin(U)W (3.20)
— (LvV)(WpU) +2(UF) YW — 2Fin(W)U.
)

Putting U = £ in (3.20) and using (2.1), (3.18) and Theorem 2, we obtain
(LvR)(W,§)§ = 4F1 (W — n(W)¢). (3.21)
Putting U = ¢, Z = ¢ in (2.4), we get
R(W, )¢ = (k1 — k3)(W — n(W)E). (3.22)
Lie-differentiating (3.22) along V', we have

(Lv R)(W, £)E V(ky = k3)(W — n(W)¢) (3.23)

+ (k1= k3)(g(Lv &, W)E = 2n(Ly )W — (Lyn)(W)S).
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Putting U = £ in (3.11), we obtain
S*(W, &) = 0. (3.24)
Putting U = £ in (1.2) and using (3.24), we get
(L g)(W.€) = 2um(W). (3.25)
Lie-differentiating n(W) = g(W, €) along V' and using (3.25), we find
(L) (W) = g(Lve, W) — 2wm(IW) = 0. (3.26)
Taking Lie-derivative of g(§,&) = 1 along V' and using (3.25), we have
n(Ly€) = —v. (3.27)
Using (3.26), (3.27) and Theorem 1 in (3.23), we obtain
(LvR)(W,§)§ = 2v(W —n(W)E). (3.28)
From (3.21) and (3.28), we get
v =2F. (3.29)

Using (3.5) and Theorem 1 in (3.29), we obtain (3.10). Further, since v is
constant so ki1, ko and k3 are constants. Moreover, from (3.5), we get Fi, F and
F3 all are constants.

Now, using (3.2) and Theorem 1 in (3.17), we get

(LyV)(W,U) = =2FEin(W)yU — 2F1nU)yW. (3.30)

Differentiating (3.30) along Z and using (3.2), (3.3), Theorem 1 and Theo-
rem 2, we obtain

(VzLy V)W, U) = =2F(g(yW, 2)9U + g(vU, Z)yW (3.31)
+ n(W)g(Z,U)§ +n(U)g(Z, W)E = 2n(W)n(U)Z).

Using (3.31) in (2.7), we obtain

(LvR)(Z, W)U = =21 (29(yW, Z)pU + g(YU, Z)ypW — g(xpU, W )pZ (3.32)
+n(W)g(Z,U)§ —n(Z2)g(W,U)¢ 4 2n(Z)n(U)W — 2n(W)n(U)Z),

YW, U, Z € TM.
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Contracting (3.32) over Z, we find
(LyS)(W,U) = —4F1(g(W,U) — (2n + 1)n(W)n(U)). (3.33)
Changing W to ¥U and U to ¥W in (3.33), we obtain
(Ly S) (WU, yW) = —4F1g(v W, 4U). (3.34)
Lie-differentiating (3.6) along V' and using (3.12) and (3.26), we have

(ﬁvS)(W, U) = (V(Fg) + 25y — 2F2F1)g(W, U) + (2F2F1 (3.35)
—V(F3) = v E3)n(W)n(U) — F5(g(Lv§, W)n(U) + g(LvE, U)n(W)),

VW,U eTM.
Changing W to U and U to )W in (3.35), we find

(L S) (WU, W) = (2Fpw — 25 Fy)g (bW, ). (3.36)
From (3.34) and (3.36), we get
Fov — ByFy = —2F). (3.37)
Using (3.5), (3.29) and Theorem 1 in (3.37), we have
(2n+2)((2n+2)k; — (2n+ 1))k =0,

which gives either k1 = %Zié or k1 = 0.

Thus proof is complete. QED

Corollary 1. Let M?" T (ky, ko, k3) be a GSSF admitting *-Ricci soliton.
If M"Y has Sasakian metric, then either x-soliton is steady or expanding. In
the first case M is n-Einstein and positive-Sasakian with killing x-soliton vector
field V. In second case M is null-Sasakian and V' leaves 1 invariant.

Proof. In view of Theorem 3:
Considering the case ky = %Zié Then, from (3.10), we get v = 0. Hence,
x-soliton is steady. Using (3.5), Theorem 1 and k; = 2242 in (3.6) and in (1.2),

- 2n+2
we find

SW,U) = (2n = 1)g(W,U) +n(W)n(U), (Lvg)(W,U) =0,

VW, U € TM. Hence M?"*! is n-Einstein positive-Sasakian and V is killing.
Considering the case when ki = 0. Then (3.10) gives v = —2(2n + 1) and
hence *-soliton is expanding. Using k1 = 0 and Theorem 1 in (3.6), we obtain

SW,U) = =2g(W,U) + 2(n + 1)n(W)n(U),
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VY W, U € TM. Hence M?"*! is null-Sasakian.
Using (3.11) in (1.2), we have

(Lvg)W,U) = (2v = 2F1)g(W,U) + 2Fin(W)n(U). (3.38)
Now comparing (3.33) and (3.35), we get

V(F2)g(W,U) + Fo(Lyg)(W,U) = V(F3)n(W)n(U) — F3((Lyn)(W)n(U)3.39)
+(Lyn)(U)n(W)) = —4F1(g(W,U) — (2n 4+ 1)n(W)n(U)).
Using k1 = 0, (3.38), Theorem 3 and putting U = £ and YW in place of W

in (3.39), we obtain F3(Lyn)(yW) = 0.
Since F3 # 0, therefore, we get

(Lvn)(yW) = 0. (3.40)
By putting YW in place of W in (3.40), we find
(Lyn)(W) = n(W)(Lyn)(&)- (3.41)

Using (3.26), (3.27) and v = —2(2n+ 1) in (3.41), we get
(Lym) (W) = —2C2n + Dy(W). (3.42)
Taking exterior derivative of (3.42), we get
(Lydn)(W,U) = =2(2n + 1)dn(W,U). (3.43)
As on Sasakian manifold
dn(W,U) = g(W,4U). (3.44)
Using (3.44) in (3.43), we find
(Lydn)(W,U) = =2(2n + 1)g(W,yU). (3.45)
Lie-derivative of (3.44) along V' gives
(Lydn)(W,U) = (Lvg)(W,9U) + g(W, (Ly)U). (3.46)

Replacing U by U and using k1 = 0, Theorem 1, v = 2F} = —2(2n+ 1) in
(3.38), we obtain

(Lvg)(W,9U) = =2(2n + 1)g(W,U). (3.47)

From (3.45), (3.46) and (3.47), we get Ly1 = 0. Whereby proof is complete.

QED
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Theorem 4. Let M?""1(kq, ko, k3) be a GSSF admitting -Ricci soliton with
V =0€. If M admits Sasakian metric, then
(i) *-Ricci soliton is steady and V is a constant multiple of €,
(ii) M is x-Ricci flat and k1, ko and ks are constant.

Proof. (i) Suppose that V' = b¢, for some function b. Then, from (1.2), we obtain

bg(Vw&,U) + (Won(U) + bg(Vus, W) + (Ub)n(W) +25*(W,U)  (3.48)
—2vg(W,U) = 0.

Putting U = £ in (3.48) and using (3.1), (3.24) and Theorem 1, we find
(Wb) + (£b)n(W) —2un(W) = 0. (3.49)
Putting W = £ in (3.49), we get £b = v. Using it in (3.49), we find
(db)(W) —vn(W) = 0. (3.50)

Taking exterior derivative of (3.50), we obtain vdn = 0. Which gives v = 0
as M?"*! has Sasakian metric. Therefore, from (3.50), we get, (db)(W) = 0.
Hence, b is a constant. Hence we have (i).

Taking v = 0 and b = constant in (3.48), we obtain

bg(Viw e, U) + bg(Vu&, W) + 25 (W, U) = 0. (3.51)

Using (3.1) in (3.51), we get S*(W,U) = 0. Hence, M?"*! is x-Ricci flat.

Using this fact, (3.5) and Theorem 1 in (3.11), we get k1 = gzg and ky = kg =

Thus proof is complete. QED

=1

2n+2°

4 Examples of x-Ricci soliton on GSSF with Sasakian
metric

Example 1. Consider M = {(z,y,2) € R?: y # 0} with

Pler) = ez, Y(e2) = —e1, Y(ez) =0, 1= —2ydr + dz,
es=¢(=2, g=dr@dr+dy@dy+n®n, (4.1)
6123%7 egza%—i—Qy%.

Moreover,

[er,es] =0forl =1,2; [er,es] = 2es. (4.2)
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The Koszul’s formula V W, U, Z € T'M with Riemannian connection V is

29(VwU,Z) = WyqU,Z)+Ug(Z,W)— Zg(W,U) (4.3)
—g(W, [U,Z])—g(U, [WZ])+9(Zv [W’U])

From (4.2) and (4.3), we get

{Velm =0, Ve,e1 = —e3, Vege1 = —ea, Ve eg =e3, Ve,ea =0, (4.4)

V63€2 = €1, Veleg = —€9, V62€3 = €1, V6363 =0.

and (4.4), we can see that M is a Sasakian manifold. Using

Using (4.1)
2) and (4.4), we find

(3.11), (4.
R(elae3)e3 = €, R(elvep)ep = _3€l7 l 7& b, l7p = 1727
R(elvep) 0 l 7£ p 7& S, l y Dy S 172737 R(el7€3)el = —é€3, l= 172a (45)
S*(er,e1) = —3,1=1,2, S*(e3,e3) = S*(e;,ep) =0,l #p,l,p=1,2,3.

Using (2.4) and (4.5), we find that M is a GSSF with k; =0, ka = k3 = —1.
The potential field on M is given by

. Cy C3 0 0
V= (=8 -5 2)8x+(2 +2 W)y
€4 2 2 O
—I—(2a: + iz — 6z 5 Y +02)6z.
Then, we have [V, e1] = 3e1 + Sez, [V,e2] = —Fe1 + 3ea, [V, e3] = Ges.

Now, we can see that
(Evg)(ela ep) + 25*(617 ep) = 2Vg(€l7 ep)a

forv=—-6andl,p=1,2,3.

Therefore M3(0,—1,—1) is the GSSF with Sasakian metric admitting ez-
panding *-Ricci soliton.

Example 2. Consider M = {(z,y,2) € R®: z,y # 0} with

Y(e1) = ez, P(e2) = —e1, YPle3z) =0, n = m(ydm — zdy) + dz,

63:5:%,g—ﬁ(dm@dw%—dy@dy)%—n@n, (4.6)
61:(1-1-73:6 Zgy)a yaz,€2 (1—1—39& +3y° )gy—i—x%.
Moreover,
3 3z
ler,e3] =0 forl =1,2; [eg,es] = ——yel + —eg + 2e3. (4.7)

2 2
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From (4.3) and (4.7), we get

3 3 3
{Ve1€1 = Fea, Ve,e1 = —5ea —e3,Veger = —ea, Ve ea = —Fep +e3, (4.8)

_ 3 _ _ _ _
V6262 - ?melaveg,eQ = €1, V6163 = —e€g, veze3 = €1, V6363 =0.

Using (4.6) and (4.8), we can see that M is a Sasakian manifold. Using
(3.11), (4.7) and (4.8), we find

R(ejep)es =0,1#p#s, I,p,s=1,2,3, R(ej,e3)es =e;,1=1,2,
R(elae?))el = —e€3, l= 1327 R(elaep)ep = 07 l 75 b, lap = 1)27 (49)
S*(er,ep) =0, I,p=1,2,3.

Using (2.4) and (4.9), we find that M is a GSSF with ky = 3, ky = k3 = —1.
The potential field V on M is given by

4)8 3zy 9y
ox 16 oy 8

3 3}
V= (- at+ s =,

R\ YTy BE
Then, we have [V, e1] = —yes, [V, e2] = 2yeq, [V, e3] = 0.
Now, we can see that

(Lvg)(ep,es) + 25 (ep, e5) = 2vg(ep, €s),

forv=0and p,s =1,2,3.

Hence M3(3,—1,—1) is the GSSF with Sasakian metric admitting steady
*-Ricci soliton.

Now, we give an example of GSSF of arbitrary dimension with Sasakian
metric admitting *-Ricci soliton:

Example 3. Consider M = {(zP,yP,z) € R*"*1 . y?» £ 0,p =1,...,n}
with

Y(ep) = entp, Y(entp) = —ep, Y(eant1) =0, = _2Zypd$p +dz,

p=1
n

1 =E= 2, g= Y (da? @ da? + dy? @ dyP) + @,
p=1

(4.11)

We denote by A ={1,...,2n+ 1}, B={1,...,2n}, C ={n+1,...,2n}.
Then

[epa 6n+p] - 262n+17 [€p7 es] - O) S 7é n +p) ENS A7
leg.es] =0, s#q—n,s€ A,qeC.
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From (4.3) and (4.12), we get

v6176271—‘,-1 = —€Entp = v62n+16p7 Veqeq =0,q€ A,
Vees=0,1,s€B,s¢{l,l+n,l —n}, (4.13)
Ve nip = €2n+1 = —Ve, ,€p, Vegn1€t = €t—n = Ve, €an41,1 € C.

Using (4.11) and (4.13), we can see that M is a Sasakian manifold. Using
(3.11), (4.12) and (4.13), we find

R(ean+1,€1)eamt1 = —e1, R(er, ent1)er = 3ent1, S*(€2n+1, €2n+1) = 0, (4.14)
S*(elael) = —(27’L—|— 1)a le Bvs*(eqaes) =0,q 7& 8,¢,8 € A. '

Using (2.4) and (4.14), we find that M is a GSSF with ky = 0, ky = —1,
ks = —
The potential field is given by

0 0 0
V= Z( 2n+1y%—(2n+1) %>—2(2n+1)z%.

Then, we have
[V,es] = 2n+ 1)es, s € B, [V, ean41] =2(2n + 1)eapi1.
Now, we can see that
(Lvg)(eq es) + 25*(%7 es) = 2vg(eq, €s), q,5 € A,

for v = —2(2n + 1). Hence M?"*1(0, -1, —1) is the GSSF with Sasakian metric
admitting expanding *-Ricci soliton.

Now, we give an example of GSSF with Sasakian metric which does not
admit *-Ricci soliton.

Example 4. Consider M = {(z,y,2) € R®: 2,y # 0} with

P(e1) = ez, Y(e2) = —eq, Y(e3) =0,n = % + %dz,
63:5_2%’9:W(dw®dm+dy®dy)+n®n, (4.15)
e =201+2" + )5 —ugr 2 =20+ +y0) g+ o

Moreover,

le1,e3] =0, [e1, ea] = —4ye; + dxes + 2e3, [e2, e3] = 0. (4.16)
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From (4.3) and (4.16), we get

{Velel = 4yeq, Ve,e1 = —4zey —e3, Veze1 = —ea, V00 = 4dzey, (4.17)

v61€2 = _43/61 + es3, v€362 =€ = V6263, v6163 = —€2, v(5363 = 0.

Using (4.15) and (4.17), we can see that M is a Sasakian manifold. Using
(4.16) and (4.17), we find

{R(el,eg)el = —1362,R(€l,€p)€s = 01 l 7& p 7& S, lapvs = 17 2737 (418)

R(61762)62 - 1361, R(6l763)€3 = ¢y, R(elve3)€l = —e€s3, l= 1527

Using (2.4) and (4.18) we find that M is a GSSF with k1 = 4, ko = 3, k3 = 3.

Suppose that M3(4,3,3) admits *-Ricci soliton. Then, we can assume V =
aey + Peg + yes locally with respect to orthonormal frame {e;, e2, e3} for some
smooth functions. Using (3.11) and Theorem 3 in (1.2), we obtain

g(VwV,U) + gW,VyV) —26n(W)n(U) = 26g(W,U). (4.19)

From (4.19), we get the following;:

{61 (o) — 4By = 13, ea(B) — dax = 13, ea(y) + e3(8) = 2a, (4.20)

e3(7) = 26, e1(B) + day + e2(a) + 4Bz = 0, e1(7) + es(a) = —28.

We find that the system of equations (4.20) is inconsistent. Thus, M does
not admit *-Ricci soliton.

Acknowledgements. The authors are thankful to the reviewer for useful
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