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Abstract. This paper is an attempt to stress the usefulness of multi-variable special functions
by expressing them in terms of the corresponding Lie algebra or Lie group. The problem of
framing the 2-index 4-variable 1-parameter Hermite polynomials (2I14V1PHP) into the context

of the irreducible representations 1., of G(0,1) and le, . of K5 is considered. Certain relations
involving 214V1PHP Hp, n(z,y, z,u; p) are obtained using the approach adopted by Miller.
Certain examples involving other forms of Hermite polynomials are derived as special cases.
Further, some properties of the 2I4V1PHP H,, . (z,y, 2z, u; p) are obtained by using a quadratic
combination of four operators defined on a Lie algebra of endomorphisms of a vector space.
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1 Introduction

The representations of the Lie algebras generate in a natural way all known
classical special polynomials. This allows one to extremely simplify the theory
of orthogonal polynomials by expressing them in terms of the corresponding
Lie algebra or Lie group. The interplay between special functions, Lie theory
and differential equations provides a sturdy tool for the development of mathe-
matical physics. One of the numerous consequences of the relationship between
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special functions and Lie theory is to study and investigate the properties of
special functions (see [19, 20]).

Special functions are matrix elements of basis vectors for unitary irreducible
representations of low-dimensional Lie groups. A detailed study of these groups
and their Lie algebras leads to a unified treatment of an important proportion
of special function theory, especially that part of the theory which is most useful
in mathematical physics.

Orthogonal polynomials and special functions play an important role in
developing numerical and analytical methods in mathematics, physics and engi-
neering. Over the past decades, this area of research has received ever-increasing
attention and has gained a growing momentum in modern topics such as com-
putational probability, numerical analysis, computational fluid dynamics, data
assimilation, image and signal processing etc.

The theory of generalized and multi-variable special functions serves as
an analytical foundation for the majority of several problems in mathemati-
cal physics. The use of generalized functions often facilitates the analysis by
permitting complex expression to be represented more simply in terms of some
generalized functions. Hermite polynomials play a fundamental role in the ex-
tension of the classical special functions to the generalized and multi-variable
case (see [6, 7, 17, 18]).

The Hermite polynomials appear in probability, such as the Edgeworth se-
ries, in numerical analysis as Gaussian quadrature, in combinatorics as an ex-
ample of an Appell sequence, obeying the umbral calculus, in finite element
methods as shape functions for beams, in physics, where they give rise to the
eigenstates of the quantum harmonic oscillator and in systems theory in con-
nection with nonlinear operations on Gaussian noise. Recently, an increasing in-
terest has grown related to the Lie-theoretical representations of multi-variable
Hermite polynomials (see [8, 14, 13, 21, 22]).

We consider the 2- index 4-variable 1-parameter Hermite polynomials
(2I14V1PHP) defined by means of the generating function [3]:

(o clENNe o]

exp(xs + ys® + 2t + ut? + pst) = Z Z Hpn(x,y,2,u; p)

m=0n=0

st

m! n!’

(1.1)

On differentiating equation (1.1) w.r.t. x, y, z, u, s, t, p the following pure
and differential recurrence relations for the 214VIPHP H,, ,(z,y,z,u;p) are
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obtained:
0
%Hm,n(w, Y, 2,u; p) = MHp—10(2,y, 2,45 p),
0
@Hm,n(x,y, z,u;p) = m(m — 1) Hy2n(2,y, 2,u; p),
0
&Hm,n(x,y, z,u; p) = nHyy n1(2, Y, 2,15 p), (1.2)
0
%Hm,n(wjy, z,u; p) = n(n — 1) Hpyno(2,y, 2, u; p),
0
67p = mnHm—l,n—l(‘rv y: Z, U; p)
and

Hm,n(xa Y, z,U; ;0) = me,n(xv Y, z,u; p) + 2ymHmfl,n(x7 Y, z,U; 10)
+PnHm,nfl(fL‘ay7 Z)U;p)a (13)

Hun(2,y, 2,03 p) = 2Hmn (@, y, 2,43 p) + 2unHmn—1(2,Y, 2, u; p)
+pmHpy, 1 p(2,y, 2,u;p).  (1.4)
For suitable values of the variables and parameters, the 2I14V1PHP

Hpn(x,y,2,u; p) reduce to other Hermite polynomials, we note the following
relations as special cases of 2I4VIPHP H,, ,(x,y, z, u; p)

(1) Hm,n(x707270;p) :hmﬂ’b(‘x’Z’p)? (15)

where hy, (2, z|p) denotes the incomplete 2-index 2-variable 1-parameter Her-
mite polynomials (i2I2V1PHP) defined by the generating function [4] (see also
[10]):

exp(xs + zt + pst) = Z Z b (2, 2] ) ——- (1.6)
fowarfopard m! n!
(2) Hpn(2,9,0,0;0) = Hy(x,y), (1.7)

where H,,(z,y) denotes the 2-variable Hermite Kampé de Fériet polynomials
(2VHKJFP) defined by the generating function [2]:

Sm

eap(es +ys?) = S Hynl,y) (18)

m=0

m!
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(3) Hm,n(2za _yvoaoa O) = Hm(x’y)v

(1.9)
where H,,(z,y) denotes the 2-variable generalized Hermite polynomials (2VGHP)
defined by the generating function [5]:

exp(2xs — ys®) = Z Hm(x,y)% (1.10)
m=0 )
(4) Hypop(22,—1,0,0;0) = H,p (2), (1.11)

where H,,(x) denotes the Hermite polynomials (HP) defined by the generating
function [1, 11]:
2 - s™
exp(2xs — s°) = mz::OHm(x) ok (1.12)
In view of the recurrence relations, the 214V1PHP H,, ,(z,y, 2, u;p) are
suitable to be framed within the context of the representations of the harmonic
oscillator Lie algebras G(0,1) and 5 [12]. The theory of group representations
and its connection to special functions give a powerful tool to the development
of mathematical physics. Special functions arise as basis vectors and matrix
elements corresponding to local multiplier representations of Lie group.

The harmonic oscillator Lie group G(0, 1) [12] (see also[15, chapter 8]) is the
set of all 4 x 4 matrices of the form

1 ce™ a 7
T
gla,b,c,7) = 8 60 [i 8 , a,b,c,7 € C, (1.13)
0 0 01

where the group operation is matrix multiplication. The Lie algebra G(0,1) of
G(0,1) can be identified with the space of 4 x 4 matrices of the form

1 xo x4 3
0 z3 «x 0

@ = 0 ()3 01 0|’ x1, T2, 73,24 € C, (1.14)
0 0 0 O

with Lie product [a, f] = af — Ba, «,8 € G(0,1).
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The matrices

0 00O 0100
~+_ 10 0 10 ~~ |0 0 0 O
V=100 0 ol Y =100 0 ol
0 00O 0 00O
(1.15)
0 001 0010
33 0100 c_ 0 00O
000 0]’ 000 0]’
0 00O 0 00O
with commutation relations
[3373:‘:] = igia [3+73_] = ¢, [873i] = [5733] =0, (1'16)

where O is the 4 x 4 zero matrix, form a basis for G(0,1).
The 5-dimensional complex Lie group K3 [12] is the set of all 5 x 5 matrices
of the form

1 ce” be™m 2a—bc T
0 e 2ge 7 b—2gc 0
glq,a,b,c,7) =10 0 e " —c 0], q,a,b,e,7 € C, (1.17)
0 O 0 1 0
0 O 0 0 1

where the group operation is matrix multiplication. The Lie algebra K5 of K3
is 5-dimensional complex Lie algebra with basis 3,33, &, Q and commutation
relations [12, p.299:

3% =¢, .9 =23, 3".9 =6, (1.18)

It is clear that the set of group elements with ¢ = 0 forms a subgroup of K3
isomorphic to G(0,1) [12, p.9].

In this article, certain formulae involving the 214VIPHP H,, ,(x,y, 2, u; p)
are established using the representation theory of the Lie groups G(0, 1) and K.
In Section 2, certain implicit formulae involving 214V1PHP H,, ,(z,y, 2, u; p)
are derived by making use of the irreducible representations 1, of the Lie
algebra G(0,1). In Section 3, certain implicit formulae involving 214V1PHP
Hpn(x,y,2,u;p) are derived by making use of the irreducible representations
T;,u of IC5. In Section 4, certain examples involving various forms of Hermite
polynomials are obtained. In concluding section, differential and pure recur-
rence relations and differential equations for the 2I14VIPHP H,, ,(z,y, 2, u; p)
are derived through a formalism of double index sequences.
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2 Lie algebra G(0,1) and implicit formulae

First, we derive certain formulae involving 2I14V1PHP H,, ,(x,y, 2, u; p) by
framing them into the context of the representation 1, of the Lie algebra
G(0,1). The irreducible representation 1., , of the Lie algebra G(0,1) is defined
for each w, u € C such that u # 0. The spectrum S of this representation is

S ={—w+r:r anon-negative integer }

and there is a basis { fy,, : m,n € S} for the representation space V' with the
properties

Jsfm,n = mfm,na Efm,n = Mfm,na
J+fm,n = Wfm+1,n; I fmn = (M + W) frn—1n, (2.1)
CO,lfm,n = (J+J_ - EJS)fm,n = wam,n-
The complex constant w is clearly irrelevant as far as the study of special
functions is concerned. Hence without loss of generality, we can assume w = 0.

Also, there is no loss of generality for special function theory if we set u = 1.
The operators J*, J~, J3, E satisfy the following commutation relations

(33,35 =+J%, [J7,J7]=E, [EJH=[EJ=o0 (2.2)

In order to derive the implicit formulae involving the 2I4V1PHP
Hyppn(x,y, 2,u; p), it is convenient to find the differential operators, whose eigen
functions are of the form

fm,n(ma Y, z,u, s, t; :0) = Wm,n(x7 Y, z,u; p)smtn' (23)

There are a number of possible solutions of equation (2.2). In view of the
recurrence relations (1.2) and (1.3), the operators take the form

JBZxQ—I-Zyg—i-p—
Ox oy " op’
Jt = 2ysé% + ps% + xs, (2.4)
_ 10
T T Ser
E=1.

The operators J*,J7, J3 E satisfy commutation relations (2.2) and are de-
fined on F, the space of all functions analytic in a neighborhood of the point
(20,90, 20,40, 9 5% p%) = (1,1,1,1,1,1,1). In order to obtain a realization of
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the representation 1o of G(0,1) by operators (2.4) acting on F, the non- zero
functions fi,n(z,y, 2, u, 5,t; p) = Y n(x,y, 2,u; p)s™t" are obtained such that

Jsfm,n = mfm,na Efm,n = fm,na
J+fm = fm—i—l,n’ Jifm,n = mfm—l,na (25)
C0,1fm,n = (J+J7 - EJa)fm,n - O)

for all m > 0.
Again, we take the function fi, »(z,y, z,u,s,t;p) = Unn(z,y, 2,u; p)s
such that

’H’Lt’n

J? fm,n = nfmm,y E/fm,n = fm,na
J+ fm = fm,n-‘,—lv J fm,n = nfm,n—h (26)
CO,1fm,n = (JJFJ? - E/‘Ia)fm,n = 07

for all n > 0.

Also, in view of the recurrence relations (1.2) and (1.3), the operators SRR S E -1
take the form

J3 —za—+2u§+pa ,
Jt —2ut2—|—pt + 2t
0z ’ (2.7)
19
t oy
E=1

and note that these operators satisfy the commutation relations identical to
(2.2).

In term of the conditions (2.5) and (2.6), the function ¥, ,(x,y, 2, u; p),
m,n > 0 satisfies the following equations:

0 0
<2y8$ + p% + 1') W7"7»77’L(x7y7 Z,U; p) = Wm_t,_l’n(w, Y, Z,U;p),

0
%Wm,n(%ya%%ﬂ) - Wm—l,n(aj?yvzvu? p)7
< 0? 0? 0 0

oy oL 00 9 Ny wyziuip) =0, m=0,1,2, ..

(2.8)
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0 0
(2u82’ + p% + Z) Wm,n(%y» 2, U; p) = Wm,n—l—l(xa Y, Z,U;p),

0
@Wm,n(w, Y, 2,u5p) = Ynm—1(2,y, 2,u; p),

2U72 + 1% i —2u— — P Y, (LU zZ,U; /7) =0,n=0,1,2
0x0z ou ap m\ T Y, 25 W ’ o

respectively.
Further, it is observed that the polynomials H,, »(x,y, 2, u; p) are the solu-
tions of equations (2.8) and (2.9). In fact, the choice

U (2, Y, 2,3 p) = Hp (2, y, 2,45 p)

satisfies equations (2.8) and (2.9), for all m,n € S. Thus, we conclude that the
functions fi,n(z,y, z,u, s,t; p) = Hpn(2,y, 2, u; p)s™t" form a basis for a real-
ization of the representation 1o of the Lie algebra G(0,1). This representation
of G(0,1) can be extended to a local multiplier representation T'(g),g € G(0,1)
defined on F.

According to the result [12, Theorem 1.10], the differential operators given
by (2.4) generate a Lie algebra which is the algebra of generalized Lie deriva-
tives of a multiplier representation T'(g) of G(0,1). A simple computation using
equations (2.4) gives

[T (exp b3T) fl(2,y, 2,u, 5,1 p)
2
= exp(zsb+ yszQ)f(x <1 + ysb) \ Y, z<1 + pr) LU, 8, 1 p>,
x 2
[T(exp C\Aji)f](xv Y, z,u, S7t7p) = f(l' <1 + ;)ﬁya zZ, U, Sat;p>7 (2]‘0)

[T (exp a&) f](x,y, z,u, s,t; p) = exp(a) f(x,y, 2, u, 5, t; p),

for f € F. If g € G(0,1) has the parameters (a,b, ¢, 7), then

g = exp(bI*) exp(cy™) exp(rY) exp(al)

and consequently

T(g)f = T(exp(b3"))T (exp(c3™))T (exp(r3*)T (exp(af)) . (2.11)
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An explicit computations gives
(T(g) fl(z,y, z,u,8,t; p) = ea;p(a + xsb + y82b2)
2ysb b
f(m <1 + ys + c> exp(T),y exp(2T), z(l + '08>,u, s, t;p e:cp(p)) (2.12)
x s z

The implicit formula involving the polynomials H,, »(z,y, 2z, u; p) is estab-
lished by proving the following result:

Theorem 1. For all b, ¢, x, y, z, u, p, s € C, the following implicit sum-
mation formula involving the polynomials Hy, »(z,y, 2, u; p) holds true:

em‘p(:vsb + ys?b? — k‘T)
2ysb ¢ psb
Hpnlz(1+ +— ) exp(r),y exp(27), 2| 1+ — ), uip exp(p)

X

o)
= Z ck_lLl(kfl)(fbc)Hlvn(x,y, Z,u; p) 7k kil>n; kn=0,1,2, ...(2.13)

Proof. Every function f in F has a unique power series expansion, which is con-
vergent for all z,y, z,u € C. Thus, for fixed n the function fy, »(x,y, 2, u, s,t; p) =
Hpn(x,y,2,u;p)s™t", m > 0 form an analytic basis for 7. With respect to this
analytic basis, the matrix element are defined by

[T(g)fk,n](x7y7zvuas7t P Zﬂlk fln xr,Y,z,u,s, t p) g € G(071)7
kon=0,1,2,... (2.14)
which in view of equation (2.12) gives

exp(a + xsb + y52b2)
2ysb b
i (214 f + 2 captr)y eop(zn).z (1420 ) cusp caplo))

(o]
Z g)H n(z,y, 2, u; p) ko kl>n kn=0,1,2, .. (2.15)
=0

The matrix elements S (g) [12, p. 87 (4.26)] can be written as:
Bir(g) = expla + k) LF D (<be), k130, (2.16)

where the functions L' are the associated Laguerre polynomials [1].
Finally, substitution of fj(g) given by equation (2.16) in equation (2.15)
yields the assertion (2.13) of Theorem 1.
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Remark 1. Taking b = 0 in equation (2.13) and making use of the limit
[12, p.88]:

ny(n) ( n )c ;n =0,
"Ly (be)lp—g = 2.17
l<>no{ R, (2.17)

we obtain the following consequence of Theorem 1

Corollary 1. Forallc, x,y, z, u, p, s € C, the following generating relation
involving the polynomials Hy, (x,y, z,u; p) holds true:

exp( — k7)Hpp (:c(l + ;;) exp(T),y exp(27), z,u; p €$p(/))>

k
k
= Z(—c)k*l <k: B l) Hyp(x,y, 2,u;p) sF ki >n; k,n=0,1,2,..(2.18)
1=0

Remark 2. Taking ¢ = 0 in equation (2.13) and making use of the limit
[12, p.88]:

0 in>0

ny(n) ’ ’

"L (be)|e=0 = % (_py-n (2.19)
: ((_bL)E ; n <0,

we obtain the following consequence of Theorem 1

Corollary 2. Forallb, x,y, z, u, p, s € C, the following generating relation
involving the polynomials Hypn(x,y, 2,u; p) holds true:

ea:p(xsb + ys2b )

Hy <x< > exp(T),y exp(27), 2 (1 + pjb> ;W e;z:p(,o))

-3 i

l:O

Hlnwy,zup) FECkl>n; k,n=0,1,2,.. (2.20)

Similarly, we can establish the following result corresponding to the opera-
tors (2.7).

Theorem 2. For all V', ¢, z, y, z, u, p, t € C, the following implicit
summation formula involving the polynomials Hy, n(x,y, 2, u; p) holds true:

exp(ztb' + ut?v? — kr)
1’ uth
(1425 )z (14 225 4 £ ) can(r),w captrlip caplo))

oo
=L W) Ho (2, 2,0 0) 178,
=0

k1>m; k,m=0,1,2,.... (2.21)
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Corollary 3. For all ¢, z, y, z, u, p, t € C, the following generating
relation involving the polynomials Hy, n(z,y, z,u; p) holds true:

/
con(— k) s (.21 £ ) eon(r).u cap(zn)p eont))
i k
= Z(—c’)k_l (kz B l) Hyi(x,y, 2,05 p) R kil >my kym=0,1,2,..(2.22)
1=0

Corollary 4. For all V', z, y, z, u, p, t € C, the following generating
relation involving the polynomials Hy, »(x,y, z,u; p) holds true:

exp(ztb' + ut?v? — k‘T)

b’ 2utb’
Hm,k<x(1+p ),y72<1+ Uz ) exp(T), u exp(27); p emp(ﬂ))
o b/l k
Z mlwy,zup)tlk k,Jl>m; k,m=0,1,2,.. (2.23)
l:O

3 Lie algebra K5 and implicit formulae

In this section, we derive the implicit formulae involving 214V1PHP
Hpn(x,y,2,u;p) by using the representation Tc/wu of the Lie algebra 5. The
irreducible representation Tiu,u of the Lie algebra /C5 is defined for each w, u € C
such that p # 0. The spectrum S of this representation is

S = {—w+r:r anon-negative integer }

and there is a basis { f;n : m,n € S} for the representation space V' with the
properties

JSfm,n = mfm,m Efm,n = ,ufm,nv
J+fm,n = fmiin, I fonn = (m + W)fmfl,m (3.1)
Qfm,n = Hfm+2,n-

Here, we set w =0 and p = 1.
The operators J*, J=, J3, E, @ satisfy the following commutation relations

(3%, 0% = 3%, [37,77] =E,
7*.E = [Q.E = [*E =[3%,q] =0, (3.2)
[3%,Q] =2Q,[37, Q] = 23
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In order to derive the implicit formulae involving the 214V1PHP
Hypn(x,y, 2,u; p), it is convenient to find the differential operators, whose eigen
functions are of the form

fm,n(mv Y, z,u,s, t; p) = ¢m,n($, Y, z,U; p)smtn (33)

Using the recurrence relations (1.2) and (1.3), the operators J*, J=, J3 E,
() are obtained as follows:

JS::UE—i-QyQ—i-p2
Ox oy op’

0 0
I =2ys— + ps— + s,

ox 0z
=19 (3.4)
s 0z’
E—1,

0 0 0 0 0
Q= 2xy52% + prSZE + pQSQ% + 2yp328—p + 2y33% + (2% + 2y)s°.

The operators JT, J=, J3 E, @ satisfy commutation relations (3.2) and are
defined on F. Further, to obtain a realization of the representation Tf)’l of K5
by operators (3.4) acting on F, the non- zero functions fn, (z,y, 2, u, s, t; p) =
D (T, Yy, z,u; p)s™t" are obtained such that

Jsfm,n = mfm,na Efm,n = fm,na
J+fm,n = fm+1,na J_fm,n = mfmfl,nv (35)
Qfm,n = fm+2,n-

for all m > 0.
Again, we take the function fp, n(x,y,2,u,s,t;p) = Pppn(z,y, 2, u; p)s™t"
such that

Jlsfm,n = nfm,ny E/fm,n = fm,m
J/+fm,n = fmn+1, Jlifm,n = nfm,n—h (3.6)
Qfm,n - fm,n+2-

for all n > 0.
Also, using the recurrence relations (1.2) and (1.3), the operators J*', 3=, 3% | E/, Q
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can be obtained as

3% —zg+2u2+ 2
P ou p@p’
/ 0 0
+ = - —_
J —2utaz+ptax+zt,
T~ ;g’ (3.7)
t 0z
E =1,

0 0 0 0 0
Q= 2zut2$ + 2zpt2% + pgsga—y + 2u,ot28—p + 2ut3& + (22 + 2u)t2

and note that these operators satisfy the commutation relations identical to
(3.2).

In term of the conditions (3.5) and (3.6), the function @, ,,(x,y, 2, u; p),
m,n > 0 satisfies the following equations

0 0
(23/83: + p% + m>@m,n<$7y7 Z, U; p) = gpm‘f'lan(x’ Ys Z,U;p),
0
%(ﬁm,n(%yv%% p) = @m—l,n(‘rayaz7u;p)7
0 0 0 0
(233?/ + 22p o+ o+ 2P, + 2% + 2y(m + 1))¢m,n(ﬂﬁ, Y, 2,5 p)

Ox
= gpm-‘y—?,n(wv Y, Zy“?ﬂ)a m = 07 17 27

(3.8)
and

0 0
(271'82 + p% + z>@m7n<x7y7 Z, Us p) = ¢m7”+1(x’ Y Z,U;p),

0
%gﬁm,n(l’:yv 2, U p) = (pm,TI—l(wv Y, Z7u;p)7

o o 4,0 o
2 2u— + 22p— — 4 2up— 2 D) ) Pmn(z,y, 2, u;
< ug, T2 g TP g ung 2 u(n + )> (T, Y, 2,u5 p)

=Pni2(r,y, z,u;p), n=0,1,2, ...,
(3.9)
respectively.
The solutions of equations (3.8) and (3.9) are the polynomials Hy, »,(z,y, 2, u; p).
In fact, the choice @p, (2, y, 2, u; p) = Hun(2,y, 2, u; p) satisfies equations (3.8)
and (3.9), for all m,n € S.
Thus, we conclude that the functions

mtn

fm,n(m,% z,u, S7t; p) = Hm’n(flﬁ, y7 Z7u;p)8
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form a basis for a realization of the representation %71 of the Lie algebra IC5. This
infinitesimal representation can be extended to a local multiplier representation
T'(g),g € K5 defined on the space F.

Proceeding on the same argument as in the case of the representation g 1,
the extended forms of the groups generated by the operators (3.4) are derived
as follows:

[T (exp bIT) fl(z,y, 2, u, 5, t; p)

2ys
= ea:p(xsb + yszQ)f( (1 + yb) Y, z(l + pjb> , U, S, t;P)y

&
[ eap @) pstin) = £ (o142 )wzustin).

[T (exp 733) fl(x,y, 2,u, 5, t; p) = f(x exp(T),y exp(27), 2,u, s, t; p exp(T)), (3.10)
[T"(exp a&) fl(, y, z,u, 5,; p) = exp(a) f(z,y, 2, u, 5,15 p),

| (21
[T"(exp Q) f1(,y, 2, u, 5,4 p) = exp(4y<W 1>)

2 271
f<m;7y, <Z+zp/ y) ue xp(p (—1)>,575,t;m§)7
Y 4y \ v

where v = 1 —4ys?q and f € F.If g € K5 has the parameters (g, a, b, c, 7), then

g = exp(qQ) exp(bI") exp(cI ™) exp(rF?) exp(al)

and consequently

T'(g)f = T'(exp(qQ))T" (exp(bI™))T" (exp(cI )T (exp(r3*))T" (exp(al)) f-
(3.11)
An explicit computations gives
1 1 1 b
[T () fl(z,y, z,u,8,t;p) =y Zeap(y™ 2 + a)f(m2 (1 + 2? + zx) exp(T),
L pe/ly 1 p(1 S,
y exp(27), < 5 + psby™ )u erﬂp<4y <7 - 1>>,37 tipyT 2 exp( ))(312)

where p = 225%q + xsb + ys2b?.

The matrix elements Cii(g) of T"(g) with respect to the analytic basis
{fmn :m,n € S} are uniquely determined by 15, of K5 and are defined by

[T(g)fk,n](x’yvzvuvsvtap chk fln z,Y,z,Uu,s, t p) gec K5;

kon=0,1,2,... (3.13)

The implicit formula involving the polynomials Hy, (2, v, 2, u; p) is estab-
lished by proving the following result
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Theorem 3. For all a, b, ¢, q, x, y, z, u, p, s € C, the following implicit
summation formula involving the polynomials Hp, n(x,y, z,u; p) holds true:

_ (k+1) 1 1 2usb ¢
vz exp(y w+a)Hk,n<m 2<1+ Y +sl> exp(T),y exp(27),

x
4
<z + pr/4y + psb’yé>,u ea:p(Z ( — 1>>;pfy§ e:up(7)>
Y

[ee)
Z g)Hn(x,y,2,u;p) s Sk kl>n; kn=0,1,2,... (3.14)
1=0

Proof. In view of equation (3.12), the proof of (3.14) is direct use of relation
(3.13). QED

Remark 3. Taking ¢ = 0 in equation (3.14) and making use of the corre-
sponding matrix element [12, p. 309(9.29)]:

Cik(g) = exp(a + kr)c(kfl)Lf_l(—bc), I,k >0, (3.15)

the following consequence of Theorem 3 is deduced

Corollary 5. For all b, ¢, x, y, z, u, p, s € C, the following generating
relation involving the polynomials Hy, n(z,y, z,u; p) holds true:

exp(zsb + ys*b? — kr)

2ysb
Hyp <:U (1 4295 ;) exp(T),y exp(271), <z + % + psb> U p ea:p(7)>

X

k
Z Lk l bC)Hl7n($7yaz7u;p) Sl_kv

k,Jl>n; k,n=0,1,2,... (3.16)

Remark 4. Taking a = ¢ = 7 = 0 in equation (3.14) and making use of the
corresponding matrix element [12, p. 309]:

0  0<I <k,
Cir(g) = Lk 3.17
9= (o) izezo .17)

(I—F)!

the following consequence of Theorem 3 is deduced
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Corollary 6. For all q, b, =, y, z, u, p, s € C, the following generating
relation involving the polynomials Hy, n(x,y, z,u; p) holds true:

— (k1) (m252q + xsb+ ys2b2)
Yy *  exp
Y

2ysb 2/1
Hk,n(m‘5 (1+ vs )y <z+p$> uewp(p (—1>);mé)
dyy 4y

>, (—q) () ,
- ;0 ((lq)—k)!Hl—k (2(1>Hz,n(x,y, z,u; p) sk,

_q)2
I1>k>0; k,n=0,1,2,.. (3.18)

Similarly, we can establish the following results corresponding to the opera-
tors (3.7).

Theorem 4. For alld', V', ., ¢, x,y, z, u, p, t € C, the following implicit
summation formula involving the polynomials Hy, n(x,y, z,u; p) holds true:

) yen( (1),

2uth’ !
- (1 + Y it ) exp(T),u exp(27); p’y'ié 6Ip(7')>

,_ (kt1)

V" eap(y' 2o + a) Hy <<

z tz

Z Hp, (2,9, 2,u; p) =k kl>m; k,m=0,1,2, ..., (3.19)
1=0
where v/ = 1 — 4ut?q’.
Corollary 7. For allV, ¢, x, y, z, u, p, t € C, the following generating
relation involving the polynomials Hy, n(x,y, 2, u; p) holds true:

exp(zth’ + ut?’? — kr)

2utd’ /
Hmk((x + Zj + ptb’) Y, z(l + UZ + C) exp(T),u exp(27);p exp(T))

tz

k
Z (k= l)L’c NtV Hpi(x,y, 2,05 ) 778, Kl >m; kym=0,1,2,.... (3.20)
1=0

Corollary 8. For all ¢, V', x, y, z, u, p, t € C, the following generating
relation involving the polynomials Hy, n(x,y, 2, u; p) holds true:

ESUSSY <22t2q’ + 2t + ut2b’2>
exp

271 2utl’ \
Hypo( (2 4+ L= ),y eap( 2= (= -1 2y TR 1+ - su; py'2 )
’ dury’ du \

0 (T) ’
= Z((?zk)!Hl_k< b )Hl,nb(x7yazvu;p) tlik7

v
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1>k>0; k,m=0,1,2,... (3.21)

In the next section, the summation formulae for the i2I2V1PHP h,,, ,,(z, z|p),
2VHKJFP H,,(x,y) and 2VHP H,,(z,y) are obtained as special cases of the
results derived in this section.

4 Examples

We consider the following examples

Example 1. Taking y = v = 0 in equations (2.13), (2.18) and (2.20) and
using relation (1.5) in the resultant equations, the following implicit summation
formulae involving i212V1PHP h, ,,(z, z|p) are obtained

exp(wsh — k) i <x (1 + ;) exp(r), 2 <1 +2 51’) ' e:np(p))

z

= ch*lLl(k_l)(—bc)hl,n(x,z;p) SR kil>n; k,n=0,1,2,.., (4.1)

k
k
= Z(—c)kil (k B l) hin(z, 25 p) sk ki>n; kn=0,1,2,.., (4.2)

b
ewp(acsb - ]{7’7') hin <:U exp(T), z(l + pj> e exp(p))

0 bl—k
= Z mhlm(az,z;p) SR kl>n k,n=0,1,2,... (4.3)
1=0 ’

Example 2. Taking z = u = p = 0 in equations (2.13), (2.18), (2.20), (3.14)
and (3.18) and using relation (1.7) in the resultant equations, the following
implicit summation formulae involving 2VHKdFP H,,(z,y) are obtained

2
exp(wsb + ys?b? — kT)Hp, <:c (1 + ysb + C> exp(T),y emp(27-)>
sz
_ - k—lp (k=) _ -k _
= E c L (=be)Hy(z,y) s, k,=0,1,2, ..., (4.4)
1=0

exp( — kr) Hy, <x <1 + Scx) exp(r), y e:np(27’)>

k
:Z(—C)k_l(kliJHl(x,y) s7F k=0,1,2,.., (4.5)
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cofos 15 ) 121 20 o). i)

S

l:O

l k

Hlxy) =k k=0,1,2,.., (4.6)

2ysb
’Y*(kéﬂ)e:zp(T%so + a)Hk< k <1 * ?f + Z) cop(7),y exp(%))
= chk VH(z,y) % k=0,1,2, ..., (4.7)
y (k2+1 e:cp( Q‘l‘fL’S +ys >Hk<x7; <1+ Y3 >7y>
T

< ()
:Z((ZQ)—/C! H”“(

Further, replacing = by 2z and y by —y in equations (4.4) and (4.8), reduce to
known result [14, p. 133(3.3,3.4)].

Example 3. Taking z = u = p = 0;y = —1 and replacing x by 2z, in
equations (2.13), (2.18), (2.20), (3.14) and (3.18) and using relation (1.9) in the
resultant equations, the following implicit summation formulae involving 2VHP
H,,(z,y) are obtained

- >Hl(a:,y) SSTFI>k>0k=0,1,2,... (4.8)
2(—q)?

ysb

cxp(2ush — s2b% — m)m( (1 _ysh C> exp(7)>

T 2sx

= ch_lLl(k_l)(—bc)Hl(;U) sF k,=0,1,2, ..., (4.9)

=> (o <klil>Hl(m) stk k=0,1,2,..., (4.10)

=> (l—k)!Hl(:U) sFk=0,1,2,.., (4.11)

(k+1)

2 ea:p((l + 4q82)7%g0 + a)

(1+ 4q32)7
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Hj (2:6(1 +4q5%) 2 <1 -2y (1+4qS2)> 6901)(7))

T 2sx

(4.12)

~(k+1) 4225%q + 225b — 52b? i b
(1+4gs%) "= 6mp(x8q1+zqusz : >H’“< (1 +4g5%) " 2<1_S)>

X

0o J)
b
:Z 2) (( >Hl(x) AR I>E>0, k=012, ..
=

q)?

(4.13)

In the next section, we use another approach to derive some properties of
the 214V1PHP H,, »(z,y, 2, u; p).

5 Concluding remarks

In the previous sections, we have established certain results for the 214V1PHP
Hyn(x,y, z,u; p) using Lie algebraic technique. The Lie algebraic aspect of spe-
cial functions is limited to the Lie algebras generated by raising, lowering and
maintaining operators.

Radulescu [16] established some other important properties of special func-
tions using operators defined on Lie algebras. Recently, this formalism has been
extended to double index sequences [9]. In this concluding section, we show how
the Lie algebraic technique can be used to derive the differential and pure recur-
rence relations and differential equations for the 2I14VIPHP H,, ,(z,y, 2, u; p)
through a formalism of double index sequences. In this section, we establish
some properties of the 214V1PHP H,, ,(z,y, z,u; p) by using a quadratic com-
bination of four operators defined on a Lie algebra of endomorphisms of a vector
space.

Let End V be the Lie algebra of endomorphism of a vector space V. Let
V=C’RXxRXxRxRxRxRxR)and A,B,C,D € End V such that

Af (2,9, 2 u, 5, p) = igi, (5.1)
Bf(x,y,z,u,s,t;p) = 2y5% + ps% + xsf, (5.2)
Cilay, s tip) = T or, (5.3)
Df(z,y,z,u,s,t;p) = 2ut% + pt% + ztf, (5.4)
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for every (x,y,2,u,8,t;p) ERXRXR xR xR xR xR.

Now, according to the result [9, Corollary 2.3] and in view of equation (2.3),
we have

B{W,n(z,y, z,u; p)s"t"} = U1 0(2,y, 2,45 p)sm+1t” (5.5)

and
,D{kpm,n(xa Y,z,U; p)smtn} = !pmyn-i-l(xﬂ Y, 2, U3 p)smtn+1_ (56)

Consequently, we get

A{, n(x,y, 2,05 0) 8"} = MW, n (2, Y, 2, 4; p)smflt" (5.7)
and
C{Wn(2,y, 2, u; p) ™"} = Wy, 1 (2, Y, 2, u; p) s ", (5.8)
respectively.

Next, on using equations (5.2) and (5.4) in equations (5.5) and (5.6), respec-
tively, we get the differential recurrence relations

(2.@383; + paaz + x) Ui (2,9, 2,03 p) = U102, 9, 2,u30)  (5.9)
and
<2ua + p2 + z> Ui, Y, 2,u5 p) = Y1 (2, Y, 2,45 p), (5.10)
0z ox
respectively.

Again, on using equations (5.1) and (5.3) in equations (5.7) and (5.8), re-
spectively, we get the differential recurrence relations

0

%Wm,n(:v,yjz,us p) = mg/mfl,n(m?y’zﬂu; p) (5.11)
and 9

55 Ymon (@Y, 2,05 p) = 0l 1 (Y, 2, w5 p), (5.12)
respectively.

Further, using equations (5.11) and (5.12) in equations (5.9) and (5.10),
respectively, we get the following differential recurrence relations

0
%WWL,TL(‘T; y7 Za U; p)

1
= ;{*meWm—Ln(x, Y, z,u; P) - :L’Wm,n(l‘, Y, z,u; ,0) + wm+1,n(xa Y,z,U; ,0)} (513)
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and

&Wm,n(z7y7 Z,U; p)

1
== ;{*Qnug}m,n—l(xv Y,z,u; P) - ZLDWL,?’L(:E7 Y,z,U; p) + Wm,n+l(x7 Y, z,U; p)}7 (514)
respectively.

Also, in view of equations (5.11) and (5.12), equations (5.9) and (5.10),
become

mewmfl,n(l'v ya Za ua ;0) + npkpmm,l(:z:, y7 Za u; p)+$@m’n(a?, yv Z, U, ,0)

= erl,n('T? Y, z,U; p)
(5.15)

and
2nu@m7n,1(:n, yv Z, u; ,0) + mp![/mfl,n(xv ya Z7 U; p)+ZWm,n($, y7 Zv 'LL, p)

= m,n+1(xa Y, z,u; p)a

(5.16)
respectively.
Now, in view the identity [9]:
(BA)Ymn =mYmn (5.17)
and equations (5.1) and (5.2), we get the following differential equation
( 8822 + paa; + J:ag m> U n(x,y, 2,u; p) = 0. (5.18)
Similarly, using equations (5.3) and (5.4) and in view of the identity [9]:
(DC)Ymn = nYmm, (5.19)
we get ) )
<2u86 5+ p@i@z + Za2 - n) Uy (z,y, 2,u; p) = 0. (5.20)

Finally, it is observed that equations (5.18) and (5.20) are the differential
equations satisfied by the 2I4VIPHP H,, ,(z,v, 2, u; p). Also, note that equa-

tions (5.11)-(5.16) are differential and pure recurrence relations satisfied by the
214VIPHP H,, n(x,y, 2,u; p).

The established results in this paper show that the use of multi-variable poly-
nomials with their associated formalism offers wide possibilities in the applica-
tions of pure and applied mathematics. This approach can be further extended
to derive the properties of other generalized special functions of mathematical
physics and is an interesting problem for further research.
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