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*
SEPARATION AXIOMS BY SIMPLE EXTENSIONS (")

(**)
Cosimo GUIDO

Sunto. Nella prima parnte studiernemo, pen i = 0,1,2,23, gli spazd
topologics, che chiamernemo QTi’ che verndigicano gL assdiomi diL sepa-

nazione Tj per j < 1 e che hanno un'estensione semplice Ti'

Nella seconda parte prenderemo in considernazione topologie,su un

sostegno f4ssato S, che sono Tj’ j < i, e Hun—Ti massLmal 4 (MNTIJ.

Darnemo alcund esempi e proveremo alcune proprietd delle topclegie

QTi ¢ delle topdlgie MNTi.

1. Given a topological space (S,t) and a subset X ¢ S, we shall

denote by 7(X) = {AU (BMX)/A,Bet} the simple extension of T by X.

We shall denote by c¢lX(intX) the closure (the interior) of X in
(S,t) and by clT,K (infT,X)_the closure (the interior) of X with re
spect to any other topology Tt' on S. 9(x) (1(x)) will mean the
family of (open) neighbourhoods of xeS in the topology T ..We shall

call fundamental neighbourhood system.of x in the topological space

(*) Subject classification AMS 1980 54A10Q0, 54D10.
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(S,t) a basis of the filter F(x).

If X ¢ S, CX will be the complement of X in S while we shall de-

note by C X or Y-X the complement of X in Y when X ¢ Y ¢ S.

Y
The topological definitions we need f{ollow W.J. Thron's Topolo-
gical structures [6] except that we shall denote by ), the T,
axiom,
Let R be a topological property which 1s preserved under expan-
sions, 1.e. such that (S,t') is R whenever (S,t) is and 1' > 7.

Deginition 1. We shall call a topological space (S,T) quasi-R if

there exists a subset X ¢ S which determines a R simple extension

(S,1(X)).

Of course an expansion of a quasi-R topology on a set S is a qua
si-R topology on S too, because 1(X) ¢ 1'(X) 1if t ¢ ' are topolo

gies on S and X c S.

Now we are going to investigate the existence and some properties
of quasi-Ti spaces, i = 0,1,2,23, providing examples and stating re

lations with separation axioms TD,Tl,Tz,TZi.

The following examples show the existence of nun-quasi—TO and

of quasi-Ti spaces.

Example 1. The indiscrete topology w on a set S with three or

more points is not quasi-TG: trivially w(X) = {9,X,S} fails to be

T, if X cS.
Exampﬁe. 2. Let S = {x’x',y,}f'} and T={@:{K;K1}:{Y:YI}S}' (S, 1)

is not a TU space but t' = 1({x,y}) is a TD topology on S, so (S,t.

is quasi-Ty.
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Furthermore +t'({x,y'}) is the discrete topology on S and then (S,t")

is quasi—Ti, 1 = 1,2,21%.

PROPOSITION 1. 14 (S,t) 44 quasi-T, then (S,1) 44 T

1 0

Proog. Let t' = 1(X) be a T1 simple extension of t; trivially
{AMX/A € t(a)} is a fundamental neighbourhood system of a point
a e X while t(b) is a fundamental neighbourhood system of a point

b ¢ X.

Now let x # y be two peints of S; if x¢X,an open neighbourhood
U e 1(x) exists such that véU; if x,y € X, ANX e 1'(x) and
v ¢ A'VX, then A e t(x) and vy ¢ A.

While every quasi-Ti space, 1 = 1,2,23, 1s 1 example 2 shows

U?

that a quasi—Ti space 1s not necessarily T1 even for 1 > 0.

Definaition 2. Let i,j = 0,1,2,23. We say that (S,T)} 1is QTi if it
1s quasi—Ti and 1t 1is Ti if j < 1.

Trivially (S,T1) 1s QTD (QT1} iff it is quasi-T (quasi-TT).

U
If we denote by T. [QTiJ, i=0,1,2,23, the class of Ti (QTi) to

pological spaces, then the following proper inclusions hold

' o o T
QT.D:J T[l QT1 113 QT23T2: QTH: T2£
Example 2 proves the existence of nﬂn—TU QT0 spaces and nﬂn-T1
QT1 spaces. Further examples provide us the truth of other strict

inclusions.

Example 3. If S = {a,b,c} and v = {@®,{a}t,{a,b},S}, then (S,t)

1s a T0 but not a QT1 space.
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Example 4. We remark that the particular point topology and the

escludedpoint topology on a set S belong to Q'[’] but not to T1.

In the tirst case we obtaln T1 simple extension by the comple-
ment of the particular point; in the sccond case we obtain the same

result by the set containing the only excluded point.

Nevertheless nDn—T1 QT1 spaccs having non-discrete T, simple cx-

1
tensions exist: is fact let us consider an infinete sct S, take two
distinct points a # a in § and call Ac S open 1ff CA if finite

and ae A == a' € A; the simple extension of such a topology on

S by the subset C{a'} is then the cofinite tDleDg? on S.

Example 5. Let 1t be the cofinite topology on the infinite set S.

We shall prove that (S,t) 1is a nun-QT2 T1 space.

If X c S, X ¢ 1 (i.e. 5-X is infinite) and t' = t(X) 1let wus
take two distinct points Xx # y 1in S-X and two open neighbourhoods
Ue 1'(x), U=AU BMX) and Ve t'(y), V= A' U(B'MX); we have
x e Aet and yeA' e 1. so UNVSANA' #9 and t(X) is not

a T2 topology.

Example 6.(Modified Fort Space, see [4]). Let S be the union of
an infinite set N with a set having only two distinct points x # y
not belonging to N; consider the topology T on S whose open sets

are the cofinite sets in S and the subsets of N.

Trivially (S,t) 1s a T1 but not a T2 spaces; furthermore we see

that t({x,y}) is the discrete topology and consequently (S,1) be-

long to QTZ'

Example 7. (Relatively Prime 1integer topology, see [ﬁ]). Let S=12Z

be the set of positive integers and, if a,b e S,(a,b) =1 1let us
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consider Uﬂ[bj=tb+na e S/neZ}; the family @ = {Ua(hjfa,beS,(a,D]=

= 1} 1s a basis of a topology 1 on S.

It is well~know that (S,1) 1s a T2 but not a T?, space; we shall
)

now prove that t is not a QTzl topology on S.

Let <t' = 1(X) be a simple extension of t . We recall that the

family {Up(x)rWX/(p,x]=1,pEZ+} is a fundamental neighbourhood sy-
stem of x € X in t' as well as {Upty)/(p,y] =1, p € Z+} 1s a

fundamental neighbourhood system of v € §5-X in~ t1'.

First we suppose that for each xeX a positive integer h exists
such that hx e 5-X, and we consider two distinct points x # y in -
S-X and two fundamental neighbourhoods Up[x], Up(y] of x,y respect

ively. Then we have

cl , (U (x)) = cl(U_(x))MN(CXVUcl(U_(x)MNX))
T P P P

i

cl (U (y)) = cl(U (y))D(cxucC1u _(y)" ).
T q q q

As the closure 1n 1 of Up(x) (of Uq(y)] contains all multiples

of p (of q) in S and CX contains at least one multiple of [p,q],

we have clT,Up(x)rﬁclT,UquJ # @ and consequently t(X) is not a

T2 topology on S.

Now we suppose that each positive integer multiple of x 1s 1in
X for some x in X. We consider such an x and we observe that 1if
K EZ+, p € 2" and (p,kx) = 1, then

U (kx)MX o {(k-mp)x € S/m € Z} = A
P - pk
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It is easily seen that {ptx/tel*} ¢ clApk; in fact given any inte-

ger a prime with ptx we have

Ua(ptxjrwﬂpk # @ < {n,m e Z such that an+pxm+(pt-k)x = 0.

This is surely true since a and px are relatively prime.

If we take h # k in Z° and P,q 1in z* prime with kx, hx respecti-

vely then the closures

N M
ElT,(Up(kx) X) cl(Up{ka X) E;ApkU{ptx e S/tel}

N M
clT,(Uq[th X) cl(Uq[hx] X) E?Aqh U{qrx € S/r e Z}

T(X) is not TZ% in this case too.

We remark that also the coarser prime integer topology (see [ﬂ]

have a non-empty intersection and

again) 1is a T2 but not a QTZ% topology.

Example 8. The Double Origin Topology, the Semplified Arens
Square and the Minimal Hausdorff Topology considered in [4] provide

examples of QTZi spaces. We give a detailed description of the third

case only.

Let us consider the topological product of A={1,2,3,..,0,...,-3,

-2,-1} linearly ordered with the interval topology and the discrete

topological space (Z+,a); let (S,T) be obtained from such topologi-

cal product by adding two ideal points a and -a whose fundamental

neighbourhoods are of the kind

{a}U{(i,j)/i < w, j > n} and {-alU{(i,j)/i > w, j > m}

respectively.

(S,t) is a minimal Hausdorff nnn-TH space while the simple exten-
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sion of T by X = {a}lU4{(i,3j)/ 1 < w, j > 0} 1s a T
S.

23 topology on

In order to give a characterization of QT1 topological spaces we
shall denote by T the set of those points which are in the closure

of some other distinct point in the space (S,71) 1i.e.

T = xgs ((cl{x}) - {x}).

Trvially (S,1) € T1 iff T = §.

LEMMA 1. X ¢ S, (5,1 (X)) e T, = T c X.

1

Proog. If there were two distinct points x # y such that yeéHx}
and y ¢ X, then t(y) would be a fundamental neighbourhood system
of y in t' = 7(X) and it would follow from y e cl{x} that every
neighbourhood in t'(y) contains Xx.

PROPOSITION 2. (S,7) € QT, = (T,1 ) & T

|'T 1

Proog. =>) Let X be a subset of S such that (S,t(X)) e T1; it
follows from lemma 1 that T ¢ X and consequently rlT =T(X)iT; SO
{K,TiTJ € Tl'
<) It is easily seet that (S,1') € T1, 1f ' = 1(T).

First we consider a,beT, a #b ; as each open set in t1,,..beclong

| T

to 1' and 1is a T, topology, then U e t'(a) and Ve 1t'(b)

YT 1
exist such that b ¢é U and a ¢ V.

If a e Tand b € S-T, we have b ¢ (cliy}) - {y} for each y €S;
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in particular b ¢ (cl{a})-{a} and, of course, bgcl{al;Uet(b) ct'(b)
exists such that a¢U. On the other hand we can condider A et(a) and
the open set (AMT) et' 1is an open neighbourhood of a in 1' which

does not contain b.

The case a,b € S-T, a#b, is trivial.

Remarks. If the set T defined above is a non-trivial open set in

(S,71), then (S,t) cannot be a QT1 space.

The set T in the spaces of example 4 is closed. This is not true
for all spaces. For instance let us consider an 1nfinite set S and
fix aeS; let the open sets in 1 be the cofinite subsets of S con-

taining a.(S,1) is a T, space and its subspace T = S - {a} 1is a

0

T1 space; (S,t) 1is then a QT1 space and T

subset.

S - {a} is not a closed

PROPOSITION 3. 14 (S,t) 44 a.QT0 negulon space which -has a TU

negulan simple extensior, then (S,T) 44 a T2 space.

Proof. Let (S,7(X)) be a T, regular simple extension; then

If follows

0

(S,t(X)) 1is a T2 space and consequently (S,1) e QTZ'

from proposition 1 that (S,t) must be T0 and the assertion is true.

Remank. The existence of a T, regular simple extension is an es-

0
sential hypothesis in proposition 3; the space S = {a,b} with the

indiscrete topology is & OQT_, regular non-T, space.

0 2

2. We shall denote by £ (S) the complete lattice of topologies
on a given set S under set inclusion. The least element is the in

discrete topology and the greatestelement is the discrete topology.

In agreement with [2] we shall call antiatom of %(S) any topo-
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logy on S which 1s coarser than itself and the discrete topology only.

It 1s well known that the antiatioms are the ultratopologies al

recady described in 2!,

Descncteen 5. If R 15 a topological property which 1s prescrved
under expansions, we shall say that (S,7) 1s a maximal non-R (MNR)
space if it 1s not a R space but every proper cxpansion of 1 is a

R topology.

Remarks., (S,t) 1= MNR iff 1 is not R but 71(X) 1s R for each
N ¢ . Furthermore it is obvious that a MNR space is a quasi-R
space.lFinally we remark that the spaces given in examples 2,1,060,8

are QTi but arc not MKTi spaces, 1=0,1,2,2; respectively.

5

Pl - * v ) B
thi spaces, I=0,1,2,3, were considered by Thomas 1n'L5}; here

we shall give more detailed characterizations and properties  of

o MNT_

~ -2

.-‘t[.‘\JT'1 and MNT, spaces and a proof that no T space exists.,

[f tollows trivially (rom proposition 1 that cvcrﬂ'hﬂ¢ri, 1>0),

space 1s a ?}] space. Furthermore the following results are casily

= —

seen to be true and can be found in "2 and {5].

Let (S,7) be a non-T_, topological space. Then (S,1) i1s MNT, iff

| 1
(S,T) 1s an antiatom 1n % (S).

, MNT MNT . .

2 217 3

[f (S,1) 1is HNTIthcn (S,7) is MNT
Every regular antiatom in¥(S) is a T1 space.
Thomas proved in [5] that every ru::::rn—’l‘{:| {nﬂn—Ti,nmn-T?I topology

1s coarser than a MNT_. (MNT

0 I’MNT?J topology; morcover ciach 71

nun-T2 topology 1s included in a MNT, topology which i1s a MNT%

topology too.
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We shall prove a characterization of T] HHT? spaces and obtain

as an 1mmediate consequence (example 9) the construction of a TT

MNTZ space already given by Thomas in [5] theorem 1,

Next we realize that all T1 M}J’l'2 topologics are the ones wc de

scribe in example 9.

PROPOSITION 4. Let (S,t) be a T] space.

(S,1) 45 MNT2 if4 the following conditions hold

1) Only two distinct points X # y exdsL 4n S audh that each neigh-

bourhood o4 x intensect each neighbournhood o4 y.
2) The subspace S - {x,y} has the discrete topology.

3) Xec S, X¢1, xe X (yeX) =CX U{y} e 1.(CX U{x} e 7).

Proog. The given conditions are necessary.

Trivially distinct points Xx # y ex1st which verify the first
cnnditinn-; if there were another point z, z#x and =z#y, such that
the neighbourhoods of z and those of y intersect each other, then
y and z would be non-separated poiﬂts in T ({x}), whichcontradicts

the hypothesis since {x} is a ﬁun-upen set.

Every point distinct from x and y must be open; otherwise X
and y should be non-separated points in Tt({a}), if {a} were a

non-open subset of S.

In order to verify the third condition, we first prove that if

XcS and X ¢ vt then CX e 7.

Indeed let X € S be neither open nor closed so that T(X) and
T(CX) are T2 topologies; by 1) and 2) X contains only one (say Xx)

of the points x,y and consequently we can find Aet(x), Bet(y)
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such that (AMX)MB = P i.e. AT'B ¢ CX. Then if U e 1(x), Vet(y)
we have (UMV)MNCX # M: othewise we should have UMV ¢ X and the
open neighbourhoods (UMA) e t(x), (VMB) e 1(y) would separate
x and ¥y in 1. Eventually we obtain, from the assumption that X 1s
neither  open nor closed, that for every U e t(x) and Vert(y)
one must have UM (VCX) = (UNV)MNCX # @ which contradicts the

Hausdorff character of the topology 1(CX).

Finally we suppose that X ¢ S, X ¢ 17, x ¢ X. If y ¢ X be con
dition 3) is trivial; if y € X and CXU {y} € Tt we contradict the
hypothesis by finding two disjoint neighbourhoods of x in t in the
following way: w2 consider Uet(x) and Vet(y)such that UMX and V
5 topology t(X); then (UNV)NX=0; since
(X-{y}) e t(x) we have U'=(X-{y})'U e t(x), Ve 1(y) and U'NV=p,

separate x and y in the T

The conditions are sufficient.

By 1) (S,t) cannot be a T, space.

2
Now let X be a non-open subset of S containing x; CX U{y} is an
open neighbounhood of y in 1t wich does not intersect the open nei-

ghbourhood X -{y} of x in 1(X); hence t(X) is a T2 topology.

Remark. The T1 axiom is only requested to show that conditions

1), 2), 3) in proposition 4 are sufficient to have a MNT2 space.

Example 9. Let S = {x,y}UN where x,y € N and N is an infini-

te set. Furthermore let ¢ be an ultrafilter on N such that £;¢F=@.

Then 1 = {A e S/A - N # @ =A'N e ¢} is a T, but not a T, topo-

— 1
logy on S. The conditions of proposition 4 are easily verified;

hence (S,t) 1s a MNT, space.

2

COROLLARY 1. The spaces descrsibed Ain example 9 are the only
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T.MNT, spaces.

Procog. Let (S,t) be a T1 MNT2 space and consider an ultratfilter
v with two distinct 1limit points x # y in S; of course x,y are the

points of conditions 1),2) in proposition 4.

Let N be the complement of {x,y} in S. It is easily proved by
condition 3) that <t(x)MN = ¢(y)fIN = VNN which complete the

proof.

COROLLARY 2. Each MNT space 44 a MNT

> space Loo.

23

Proof. It follows trivially from [5] (theorem 1) and corollary 1

()

COROLLARY 3. The bicompact subsets of a T MNT2 space ane

:
closed.

Proof. Let S = {x,y}UN be a T MNT2 space with the notations

of example 9. If A ¢ S 1s an infinlte subset of S, then AMN is

an iﬁfinite subset too; we can consider U e ¢ such that A-U is in
finite; the open cover{{a} /aeA-U} U {Uu{x,y}} of A has no finite
subcover and consequently A is not compact. The compact subset of
S are therefore the finite subsets of S which are.clnsed of cour-

s5¢€.

Remark. The existence in (S,t) of only two distinct non-separa
ted points is not a sufficient condition in order to prove that
all bicompact subsets of S are closed. For instance if we consi-

der the space of example 6 we can see that P = {x}UN 1is a bi-

compact non-closed subset of S.

(1) Here bicompact means that each open cover has a finite subcover..
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No T1 MNTz_space exists which is a bicompact space.

We are now going toverify that each T2 nDn-—T21 topology on a
2

set S has a nc:m-T2 simple extension i.e. that there exists no

Bt

MNT,

, Space wich is a T
- 2

; space too.

Let (S,1) be a T2 non-T space and let x # vy be two distinct

23
points of S such that clUMclV # @ VU € t(x), V € 1(y). Then we

have the following

LEMMA 2. The family B= {P e S/ JU e 1(x), Ve 1(y) : UNV = ¢
and clUMNclV = P} is a basis ¢f a filten ¢ on S that has no clu-

sten poin¥.

Proog. Trivially O ¢4 ; if U,U' e 1(x), V;V' € 1(y) and
clUMNclV = P e, clU'NclV' = P' e B, then U" = UNU' e 1 (x),
V' = VOV' € t(y) and P" = clU"MclV" ¢ PNP' 1is an element of
# .

Now let us call ¢ the filter wich has# as a basis.

If z were a cluster point of ¢ , z # X, then z would belong to
the closure of every neighbuﬁrhnnd of x, which contradicts the as-

sumption that (S,t) is a T, space; the same argument shows that

2
there exists no cluster point distinct from vy.

Remank. Since ¢ 1s a closed filter, we must have FQ¢F = @ from
lemma 1 and consequently every element of ¢ has more than one point.

Now let us consider M e t1(x) such that the family

v ={V e t(y)/MNV = 9}
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1s non-empty.

Trivially C(clM) belongs to ¥ and then 1t 1s easily seen that

U 2 _ - ; N =
V_EVCIM clV clM-int(c1M) P e ¢

PROPOSITION 5. With zthe notations given above and assuming Lhat

(S,T1) 46aT non-T space, then (S,t)lhas a non-71 simple exten

Z 23 23

AALON .,

Proog. We shall denote again by x and y two distint points such

that clUMNclV #90 VU e 7(x), Ve 1(y).

First we see that the subset P e ¢ already considered above 1s
not open in 1 . Indeed if P were an open subset in 71, then we
should have int(clM) UP e 1(x) and, since int(clM) UP = clM,
c¢lM and N = C(c1M) would be clopen neighbourhoods of x,y respectiv

ely, which 1s an absurd.

Now we consider a non-open subset {z} ¢ P and we prove that

' = 1({z}) 1is not a T2 topology.

3
In fact note that =z ¢ {x,y}, recall +(x), 7(y) are fundamen-
tal neighbourhood systems of x,y in 1' and consider A e t(x),

B e T(y); since the elements of ¢ have more than one point we have

ﬂlT'AﬁﬂT'B = cIAD (C{z} Ucl (AN {z})) Nec1BN (C{z} Ucl(BN{z})) >

> (€1AMc1B) - {z} # 0

It is proved 1n [5] that the MNT, spaces are precisely the MNT

2 3

spaces.A similar result for MNT2 and MNTZ% spaces follows trivially

from proposition 5 and corollary 2.
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[4]

COROLLARY 4. The MNT,. spaces ane precisely zthe MNT

spaces.
2 P

23
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