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Abstract. In this paper, we call a module M almost Z-lifting if, for any element ¢ €
S = Endgr(M), there exists a decomposition rafs(¢) = A @ B such that A C ¢M and
¢M N B < M. This definition generalizes the lifting modules and left generalized semiregular
rings. Some properties of these modules are investigated. We show that if fi +---+ f, =1
in S, where f; 's are orthogonal central idempotents, then M is an almost Z-lifting module if
and only if each f;M is almost Z-lifting. In addition, we call a module M w-Z-lifting if, for

any ¢ € S, there exists a decomposition ¢" M = eM & N for some positive integer n such that

e? =e € S and N <« M. We characterize semi-m-regular rings in terms of m-Z-lifting modules.

Moreover, we show that if My and M» are abelian w-Z-lifting modules with Homg(M;, M;) = 0
for i # j, then M = M; @ My is a w-Z-lifting module.
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1 Introduction

Throughout this paper, R will denote an arbitrary associative ring with
identity, M a unitary right R-module and S = Endgr(M) the ring of all R-
endomorphisms of M. We will use the notation N <« M to indicate that N
is small in M (i.e. VL < M,L + N # M). The notation N <% M denotes
that N is a direct summand of M. N < M means that N is a fully invariant
submodule of M (i.e., V¢ € Endr(M), ¢(N) C N). For all I C S, the left and
right annihilators of I in S are denoted by ¢s(I) and rg(I), respectively. We
also denote ry(I) ={x € M | Ix =0}, for I C S; lg(N) ={¢p € S| p(N) =0},
for N C M. A ring R is called a semiregular ring if for each a € R, there exists
e? = e € aR such that (1 —e)a € J(R) [7].

A module M is called lifting if for every A < M, there exists a direct
summand B of M such that B C A and A/B < M/B [6].

In [1], we introduced Z-lifting modules as a generalization of lifting modules.
Following [1], a module M is called Z-lifting if for every ¢ € S there exists a
decomposition M = M; & My such that M; C Im¢ and Ms NIm¢ < Ms. It is
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obvious that every lifting module is Z-lifting while the converse in not true (the
Z-module Q is Z-lifting but it is not lifting). It is easily checked that Rp is an
Z-lifting module if and only if R is a semiregular ring.

In this paper, we call a module M almost Z-lifting if, for any element
¢ € S = Endr(M), there exists a decomposition ryls(¢) = A @ B such
that A C ¢M and ¢M N B < M. In [11], a ring R is called left almost
semiregular if Rp is almost Z-lifting. Such rings are studied in [11] and named
as left generalized semiregular rings. In this note our aim is to generalize the
results of [11] from the ring case to the module case.

In Section 2, first, we give a new characterization of Z-lifting modules by
modifying the definition of almost Z-lifting modules (Theorem 2.4). Next, we
give conditions under which an almost Z-lifting module is Z-lifting (Proposi-
tion 2.6 and Corollary 2.7). We also prove the following which generalizes [11,
Theorem 1.14]:

Let fi + -4+ fn = 1in S, where f; ’s are orthogonal central idempotents.
Then M is an almost Z-lifting module if and only if each f; M is almost Z-lifting
(see Corollary 2.12).

In Section 3, we call a module M w-Z-lifting if, for any ¢ € S, there exists a
decomposition ¢" M = eM @& N for some positive integer n such that e2 =e €
and N < M. A ring R is called semi-m-regular if Rp is a w-Z-lifting module.
Semi-m-regular rings are investigated in [11]. A m-Z-lifting module generalizes
the notion of lifting module as well as that of a semi-m-regular ring. We investi-
gate some properties of w-Z-lifting modules. We give conditions under which a
m-Z-lifting module is Z-lifting (Corollary 3.11). We characterize semi-m-regular
rings in terms of 7-Z-lifting modules (Theorem 3.14). It is shown that the class
of some abelian 7-Z-lifting modules is closed under direct sums (Proposition
3.17).

2 Almost Z-lifting modules

In this section, we study the module-theoretic version of left generalized
semiregular rings defined by Xiao and Tong [11].

Definition 2.1. Let M be a right R-module. M is called almost Z-lifting
if, for every ¢ € S, there exists a decomposition r/¢s(¢) = A @ B such that
AC ¢M and BN oM <« M. A ring R is called a left almost semiregular if Rp
is almost Z-lifting. Such rings are named as left generalized semiregular rings in
[11].

Proposition 2.2. Let M be a right R-module. If M is Z-lifting, then M is
almost Z-lifting.
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Proof. Let ¢ € S. Then there exists a decomposition M = A® B such that A C
®M and BN¢pM < M. By modular law, we have ryls(¢) = A® (BNrals(p))
and (rpls(¢)NB)NeM = BNeM < M. Hence M is almost Z-lifting.

The following example shows that almost Z-lifting modules need not be
Z-lifting.

Example 2.3. Let gVi be a bimodule over a ring R. The trivial extension
of R by V is the direct sum T'(R, V') = R®V with multiplication (r4uv)(r'+v") =
rr’ 4 (rv' 4+ vr’). It is shown in [7] that the trivial extension R = T(Z,Q/Z) is a

commutative principally injective ring, but it is not semiregular since R/J(R) =
Z. Hence Rp is almost Z-lifting which is not Z-lifting.

Theorem 2.4. Let M be a right R-module. Then the following are equiv-
alent:

(1) M is Z-lifting;

(2) For any ¢ € S, there exists a decomposition ryls(¢) = A @ B, where
AC oM, Ais a summand of M and BN oM < M.

Proof. (1) = (2) By Proposition 2.2.

(2) = (1) Let ¢ € S and rpyls(¢p) = A B, where A C ¢M, A is a summand
M and BN¢M < M. Then oM = A® (BN ¢pM), where A is a summand of
M and BN ¢M < M. Hence M is Z-lifting. QED

By Theorem 2.4, we obtain the following characterization of semiregular
rings.

Corollary 2.5. The following are equivalent for a ring R:

(1) R is semiregular;

(2) For any a € R, there exists a decomposition ¢rrr(a) = P @ Q, where
P = Re C Ra for some ¢ = e € R and Q N Ra < R;

(3) For any a € R, there exists a decomposition rrlr(a) = P ® @, where
P =¢R CaR for some e? =e € R and Q NaR < R.

A module M is called semi-projective if for any epimorphism f: M — N,
where N is a submodule of M, and for any homomorphism ¢ : M — N, there
exists h : M — M such that fh = g. As easily seen, M is semi-projective if and
only if, for every cyclic right ideal I C Endg(M), I = Hom(M,IM).

Proposition 2.6. Let M be a semi-projective almost Z-lifting module with
RadM < M. If there exists e? = e € S such that £5(¢) = £5(e) for any ¢ € S,
then M is Z-lifting.

Proof. Let ¢ € S. Then there exists a decomposition ry/ls(¢) = A @ B such
that A C ¢M and BN ¢M < M. Since lg(¢) = ls(e), we have rals(¢p) =
rals(e) = eM and so eM = A® B. As A and B are direct summands of M,
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we can write eM = fM @ gM for some f2 = f €S, g> =g € S. By [10, 18.4],
we get Homp(M,eM) = Homp(M, fM) + Hompg(M,gM). Since M is semi-
projective, eS = fS+¢S. As ANB =0, fSNgS =0. ThuseS = fS@gS. Since
fM C ¢M and gM NopM < M, fS C ¢S and gS N ¢S C Homp(M, RadM).
Since lg(p) = ls(e), rsls(p) = rsls(e) = eS and so ¢ = ep. Let e = a + 3,
where « = ¢ph € fS and 8 € gS. Then ¢ = e = php+ ¢ and ¢h = phph+Ldh.
As oh — phoh = Boh € gS N fS = 0, ¢h is an idempotent. Moreover, we
have (1 — ¢h)p = ¢ — ¢h¢ = o € gS N ¢S C Homp(M, RadM), hence
(1 —¢ph)pM C RadM < M. Therefore M is Z-lifting. QED

Corollary 2.7. Let rpls(¢) is a direct summand of a semi-projective mod-
ule M for any ¢ € S. If M is an almost Z-lifting module with RadM < M,
then M is Z-lifting.

Proof. Let ¢ € S. By assumption, ryfg(¢) = eM for some e = e € S. Then
ls(¢) = £s(e) and so M is Z-lifting by Proposition 2.6. QED

Corollary 2.8. (See [11, Corollary 1.6]) If rglr(a) is a direct summand of
R for any a € R and R is a left almost semiregular ring, then R is semiregular.

A ring R is called left Rickart if for every a € R there exists an idempotent
e € R such that {p(a) = Re [3].

Corollary 2.9. Let S be a left Rickart ring. If M is a finitely generated
semi-projective almost Z-lifting module, then M is Z-lifting.

An idempotent element e = e € R is called left (vesp. right) semicentral
in R if Re = eRe (resp. eR = eRe) [4]. It is well known that e? = e € S is a left
semicentral idempotent iff eM is a fully invariant submodule of M.

Proposition 2.10. Let M be an almost Z-lifting module. Then every fully
invariant direct summand of M is almost Z-lifting.

Proof. Let M be an almost Z-lifting module and K a fully invariant direct
summand of M. Then there exists a left semicentral idempotent e? = e € S
such that K = eM. Let ¢ € Endg(eM). Then there exists a decomposition
ryls(pe) = P @ L where P C ¢eM and L N ¢eM < M. Note that the endo-
morphism ring of K = eM is eSe. We claim that reprlese(¢p) = eP @ eL. Since
¢ €eSe, 1 —e € lg(p) C lg(pe). Thus for every t € L, we have (1 —e)t = 0,
which implies that eL = L. Similarly, eP = P. Take any y € eP C epeM, where
y = ey1, y1 € P C ryls(pe). Then for every ¢ € lese(¢) C Ls(p) C Ls(de),
Yy = 0. Asyp € P C ¢eM, y1 = ¢pemy for some mq € M. Thus we have
vy = teyr = vepemy = poemy = yr = 0. Hence y € roarlese(¢) and eP C
Temlese(¢). Similarly, eL C reprlese(¢). On the other hand, let = € reprlese(d).
Then for every f € lg(¢), we have efepeM = fepeM = foeM = 0. Thus
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efe € lese(¢) and so efexr = 0 which gives fr = fex = efex = 0 since x € eM
and e is left semicentral. Hence reprlese(¢d) C rals(¢). Take x = 1 + x9,
where 1 € P and z9 € L. Then x = ex = ex1 + exryg € eP + eL. This
shows that repslese(¢p) = eP @ eL. Since eP C epeM = ¢ell, it is enough
to show that eL N ¢peM < eM. Note that eL N geM = LN peM < M. Thus
eL N geM = el NepeM < eM since eM <% M. Therefore K = eM is almost
Z-lifting. QED

Theorem 2.11. Let e and f be orthogonal central idempotents of S. If e M
and fM are almost Z-lifting modules, then gM = eM @ fM is almost Z-lifting.

Proof. First, note that g = e+ f is central idempotent. Next, let ¢ € Endr(gM) =
gSg = ¢gS. Then ep € eS and f¢ € fS. Take x € r4mlys(¢). Then for
any ¢ € fl.g(ep), we have e = 0 and so Yo = eppp = e = 0 this
implies that gi¢ = 0 and gy € ly5(¢). Hence ¢(x) = gy(xr) = 0 and so
vex = ey(x) = 0, hence ex € reprles(ep). By hypothesis, ex € reprles(ed) =
P. & L, where P, C epeM = ¢peM and L. N peM < eM. Similarly, fz €
rimlrs(fe) = Pp @ Ly where Py C ¢fM and Ly N ¢fM < fM. Then
x = gr = ex + fr € P ® Py ® L, ® Ly since e and f are orthogonal.
Hence rgplgs(¢) € Pe @ Le ® Py @ Ly. On the other hand, let « € L. and
Y € Lgs(¢), then ¢ = 0, and so eed = e = 0. Thus ey € leg(ep). As
Le C reples(ed), epx = 0. Hence ya = pex = 0 and so Le C rgmlys(9).
Similarly, Ly, Pe, Py € rgnmlgs(¢). Note that P, @ Py C ¢peM @ ¢f M = ¢pgM.
This shows that rgalys(¢) = P @ Pr @ Le ® Ly. It is easily checked that
(Le ® Lg) N (¢peM + ¢f M) C (LeNpeM) @ (L NofM) < eM & fM = gM.
Hence (Le ® L) N pgM < gM. Therefore gM is almost Z-lifting.

Corollary 2.12. Let fi +---+ f, = 1 in S, where f; 's are orthogonal
central idempotents. Then M is an almost Z-lifting module if and only if each
fiM is almost Z-lifting.

A ring R is called abelian if every idempotent is central, that is, ae = ea
for any a,e? = e € R.

Corollary 2.13. If S'is an abelian ring, then any finite direct sum of almost
Z-lifting modules is almost Z-lifting.

Theorem 2.14. Let e be an idempotent of S such that SeS = S. If M is
an almost Z-lifting module, then eM is almost Z-lifting.

Proof. Let ¢ € Endr(eM) = eSe. Then there exists a decomposition rslg(¢e) =
P@L, where P C ¢eM and LNgeM < M. We claim that reprlese(¢) = ePdelL.
Since 1 — e € flg(¢e), we have (1 —e)t = 0 for all ¢ € L, thus eL = L.
Similarly, P = eP. Thus eP NeL = 0. Clearly, eP = P C 7eplese(¢) and
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el = L C replese(¢). On the other hand, take z € reprlese(¢) and write
1 = Y, fieg; for some f; and g; in S. Then for any ¢ € lg(¢), we get
egivedp = egived = 0 for each 4. This gives eg;pex = 0 for each 4, which im-
plies that Yz = ex = (>_;-, fiegi)pex = 0 since x € eM. Hence reprlese(P) C
ryls(¢). Thus x = s+t for some s € Pandt € L. Sox = ex = es+et € eP+elL.
This follows that repslese(¢p) = eP @ eL. This completes the claim. It re-
mains to show that eL N ¢peM < eM. Since eP C epeM = ¢eM. Note that
eLNoeM = LNopeM < M. Thus eL N peM = el NepeM < eM since
eM <% M. QED

Proposition 2.15. If M is an almost Z-lifting semi-projective module, then
Z(sS) C J(S).

Proof. Let 0 # s € Z(gS). Then for each element t € S, st € Z(gS5). Let
u = 1 — st, then u # 0. Since ¢g(st) is essential in S and fg(u) N lg(st) = 0,
ls(u) = 0. Thus M = rplg(u) = P @ L, where P C uM and uM N L < M.
Hence P = eM for some e? = e € S. It is sufficient to prove that e = 1. If not,
there exists 0 # (1 —e) € S(1 —e) N lg(st) because (g(st) is essential in S.
This implies that (1 — e)u = ¥(1 — e). Let m € M, then um = em’ + a for
some m' € M and a € L. Then ¢(1 — e)um = (1 — e)a. Thus (1 — e)m =
(1 — e)a and so Y(1 — e)(m —a) = 0 for all m € M and some a € L. Note
that a = um —em’ € uM N L C Rad(M) and so aR < M. It is easy to
see that M = e(m —a)R + aR + (1 — e)(m — a)R. Since aR < M, we have
M =e(m—a)R+(1—e)(m—a)R. Thus for all m € M, m =e(m—a)r; + (1 —
e)(m — a)ry for some r1,r2 € R. Hence (1 — e)m = (1 — e)(m — a)re. Therefore
0 =9l —e)(m—a)rg = (1 —e)m for all m € M. Hence (1 —e) = 0,
a contradiction. So e = 1 and M = eM = uM. Since M is semi-projective,
S =wuS. Thus s € J(9). QED

Recall that a ring R is left principally injective (P-injective) if every prin-
cipal right ideal is a right annihilator. Following [8], the ring R is left almost
principally injective (AP-injective) if, for any a € R, aR is a direct summand of
rrCR(a).

Lemma 2.16. Let M be a right finitely generated projective R-module
with S = Endg(M). Then:

(1) If, for any ¢ € S, there exists a decomposition ryls(¢) = ¢M & X for
some X < M, then S is a left almost principally injective ring.

(2) If S is a left almost principally injective ring and M is a self-generator,
then, for all ¢ € S, there exists a decomposition ryls(¢) = ¢M & X for some
X <M.
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Proof. (1) Let ¢ € S and rylg(¢) = ¢M @ X for some X < M. Note that
rsls(P)M C rals(¢). Thus rels(p)M = ¢M & (X Nrgls(¢p)M). Then we have
Homp(M,rsls(¢p)M) = Hompr(M,pM) + Hompr(M, X Nrgls(¢)M). Since
M is finitely generated projective, by [5, 4.19], rsls(¢) = ¢S + Hompr(M, X N
rsls(d)M). As pMNX = 0, pSNHomp(M, XNrsls(p)M) = Homp(M,pM )N
Homp(M,X Nrgls(¢p)M) = Homp(M,pM N X) = 0. Thus rsls(¢) = ¢S &
Homp(M, XNrgls(¢)M). Therefore S is a left almost principally injective ring.

(2) Let ¢ € S and rgls(p) = ¢S @ J for some J < Sg. Since M is a
self-generator, rgls(d)M = ryls(¢). Thus ryls(d) = ¢M + JM. As ¢S N
J =0, by [5, 4.19], we have Homgr(M,pM) N Hompr(M, JM) = 0. Therefore
Homp(M,¢pM N JM) = 0. Since M is a self-generator we get oM N JM = 0.
It follows that rals(¢p) = oM & JM. QED

Corollary 2.17. Let M be a finitely generated projective module with
Rad(M) = 0. If M is almost Z-lifting, then S is a left almost principally injective
ring. The converse is true whenever M is a self-generator.

Proof. For every ¢ € S, there exists a decomposition ryfs(¢) = P @& L, where
P C ¢M and L N ¢M < M. By hypothesis, L N ¢M = 0. Clearly, ryls(¢p) =
¢M + L, so ryls(¢) = oM @ L. Therefore S is left almost principally injective
by Lemma 2.16. The converse is clear by Lemma 2.16. QED

3 m-Z-lifting modules

Definition 3.1. A module M is called w-Z-lifting if, for any ¢ € S, there
exists a decomposition ¢"M = eM @ N for some positive integer n such that
e?=ececSand N < M.

A ring R is called semi-m-regular if Rp is a m-Z-lifting module. Such rings
are studied in [11].

It is clear that every Z-lifting module is 7-Z-lifting. The following example
shows that there exists a w-Z-lifting module which is not Z-lifting.

Example 3.2. Let R = M = {(z1,22,...,%n, T, 2,...} | X1,Z2,..., Ty €

My (Zs),x € < ZO? ?2 > Then Mg is a m-Z-lifting R-module but not Z-lifting
2

(see [11, Example 4.5]).

Lemma 3.3. Let M be a semi-projective module and F' be a fully invariant
submodule of M. Then the following are equivalent for an element ¢ € S and
any positive integer n:

(1) There exists e? = ¢ € ¢"S with (¢" — ep”)M C F.

(2) There exists €2 = e € ¢"S with ¢"M N (1 —e)M C F.
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(3) "M = eM @© N where e? =c € S and N C F.

Proof. (1) = (2)Ifx € ¢"MN(1—e)M, then x = ¢"m = (1—e)m = (1—e)m’
for some m,m’ € M. Thus x = (1 — e)¢"m € F.

(2) = (3) It is clear that ¢"M =eM & [¢"M N (1 —e)M]. Set N = ¢"M N
(1—e)M.

(3) = (1) First we show that e = e € ¢"S. Consider the epimorphisms
o" : M — ¢"M and e : M — eM. Since M is semi-projective, there exists a
homomorphism ¢g € S such that ¢"g = ie = e, where i : eM — ¢"M is the
inclusion map. Hence e € ¢™S. Since ¢"M = eM ® N, for every m € M, we have
¢"m = em’ +n for some m' € M and n € N. Then ¢"m —e¢p"m =n —en € F
because N C F. Hence (¢" —e¢p™)M C F. QED

Corollary 3.4. Let M be a finitely generated semi-projective module. Then
the following are equivalent for an element ¢ € S and any positive integer n:

(1) There exists e? = e € ¢"S with (¢" — ed")M < M.

(2) There exists e = e € ¢"S with ¢"M N (1 —e)M < M.

(3) "M = eM @ N where e? =e € S and N < M.

Proposition 3.5. Let M be a projective module, and let S = Endr(M).
Then J(S) = V(M), where V(M) = {¢ € S | Im¢ < M}. Moreover, S is a
semi-w-regular ring if and only if M is a w-Z-lifting module.

Proof. By [11, Theorem 4.12]. QED

A module M is said to have the exchange property if for any module X and
decomposition X = M'®Y = @,; N;, where M’ = M, there exist submodules
N; C N; for each i such that X = M’ @ (,.; V). If this condition holds for
finite sets I, the module M is said to have the finite exchange property.

Corollary 3.6. Let M be a projective m-Z-lifting module. Then M is a
module with the finite exchange property.

Proof. By [11, Corollary 4.11] and Proposition 3.5. QED

Corollary 3.7. The following are equivalent for a ring R.
(1) My (R) is semi-m-regular for every positive integer n.
(2) Every finitely generated projective R-module is 7-Z-lifting.

Proof. (1) = (2) Let M be a finitely generated projective R-module. Then M =
eR" for some positive integer n and e? = e € M,(R). Hence S is isomorphic
to eM,(R)e. By (1), and [11, Corollary 4.2], S is semi-m-regular. Thus M is
m-Z-lifting by Proposition 3.5.
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(2) = (1) Note that M, (R) can be viewed as the endomorphism ring of a
projective R-module R™ for any positive integer n. By (2), R" is w-Z-lifting.
Therefore M, (R) is semi-m-regular by Proposition 3.5.

Corollary 3.8. Let M be a projective module and N a fully invariant
submodule of M. If M is n-Z-lifting, then so is M/N.

Proof. Let f € S and g : M — M/N denote the natural epimorphism. Since
N is fully invariant, we have Kerg C Kergf. By the Factor Theorem, there
exists a unique homomorphism f* such that f*¢g = gf. Hence we define a
homomorphism ¢ : S — Endr(M/N) with ¢(f) = f* for any f € S. As M is
projective, ¢ is an epimorphism. Thus Endgr(M/N) = S/Ker¢. By Proposition
3.5, S is semi-m-regular, and so is S/Ker¢ by [11, Corollary 4.2]. Therefore M /N
is m-Z-lifting duo to Proposition 3.5 again.

Recall that an R-module M is called duo if every submodule of M is fully
invariant.

Corollary 3.9. Let M be a projective duo module. If M is w-Z-lifting, then
M/N is also w-Z-lifting for every submodule N of M.

Proposition 3.10. Let M be a projective m-Z-lifting module. Then Rad(M )
is small in M.

Proof. Let N C M be any submodule with N+ Rad(M) =M. 1fg: M — M/N
is the natural map, then there exists f : M — Rad(M) with gf = g. Then
g=gf =--- = gf" for any positive integer n. Since M is w-Z-lifting, there
exists a decomposition M = M7 @ My with My C Imf™ and Ms NImf" < Ms.
Note that My C Imf" C Imf C Rad(M). By [10, 22.3], M; = 0 and so
Imf" <« M. Hence f* € V = Jac(S), thus ¢ = 0 and so N = M. This
shows that Rad(M) < M. QED

Recall that a projective module is semiperfect if every homomorphic image
has a projective cover [10].

Corollary 3.11. If R is a semiperfect ring, then the following are equivalent
for a projective R-module M:

(1) M is semiperfect;

(2) Endg(M) is semiregular;

(3) Endg(M) is semi-m-regular;

(4) M is Z-lifting;

(5) M is m-Z-lifting;

(6) Rad(M) < M.
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Proof. (1) = (2) = (6) = (1) By [19, Corollary 3.7].

(3) & (5) By Proposition 3.5.

(2) = (4) Since M is projective, it is well known that, J(S) = V(M) where
V(M) = {a € S| Ima <« M}. Assume that f € S, then there exists an
idempotent e € S such that eS C fS and (1—e)fS C J(S) = V(M). Therefore
M=eM&(1—e)M,eM C fM and (1 —e)fM < M. Hence M is Z-lifting.

(4) = (5) is clear.

(5) = (6) By Proposition 3.10. QED

Proposition 3.12. Let M be a w-Z-lifting module. Then every direct sum-
mand of M is also w-Z-lifting module.

Proof. Let M = N @ P and Sy = Endgr(N). Define g = f @ 0|p, for any
f € Sy, and so g € S. By hypothesis, there exist a positive integer n and a
decomposition M = M; & My such that M; C Img™ and Img™ N My < Mos.
Hence M; C Img" = f"N < N. Thus N = M1 ® (M N N), My C f*N and
My; N NN f"N < My, this means that N is w-Z-lifting. QED

Corollary 3.13. Let R be a semi-m-regular ring. Then, for any e = e € R,
M = eR is a w-Z-lifting module.

We now characterize semi-m-regular rings in terms of 7w-Z-lifting modules.

Theorem 3.14. Let R be a ring. Then R is a semi-m-regular ring if and
only if every cyclic projective R-module is 7-Z-lifting.

Proof. The sufficiency is clear. For the necessity, let M = mR be a cyclic projec-
tive module. Then R = rr(m)@ I for some right ideal I of R. Let ¢ : I — M de-
note the isomorphism and f € S. By Corollary 3.13, there exist a positive integer
n and a decomposition I = K; @ K3 such that K1 C (¢~ 1 f¢)"I = (¢~ L f"¢)I
and Ko N (¢~ 1 f"¢)I < K. Hence ¢I = ¢pK1 © ¢pKa. So M = ¢K1 @ ¢Ko,
oK1 C f"ol = f"M and ¢Ko N "M < ¢Kso. This shows that M is n-Z-
lifting. QED

Theorem 3.15. Let R be a ring and consider the following conditions:

(1) Every free R-module is 7-Z-lifting;

(2) Every projective R-module is 7-Z-lifting;

(3) Every flat R-module is 7-Z-lifting.

Then (3) = (2) < (1). Moreover, (2) = (3) holds for finitely presented
modules.

Proof. (3) = (2) = (1) Clear. (1) = (2) Let M be a projective R-module. Then
M is a direct summand of a free R-module F. By (1), F is m-Z-lifting and so
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M is m-Z-lifting by Proposition 3.12. (2) = (3) is obvious from the fact that
finitely presented flat modules are projective. QED

Lemma 3.16. Let M be a module and f € S. If eM C Imf" for some
central idempotent e € S and a positive integer n, then eM C Imfm*!.

Proof. Let f € S and eM C Imjf"™ for some central idempotent e € S and a
positive integer n. Let em € eM C Imf", then em = f"(x) for some z € M.
Since e(z) € Imf™, e(x) = f"(y) for some y € M. Hence em = ef™(z) =
fre() = fM(f"(y)) = [P ("N (y) € Imf™+1. Thus eM C f**1(M).

A module M is called abelian if fem = efm for any f € S, e2 =e € S,m €
M [9]. Note that M is an abelian module if and only if S is an abelian ring.

Proposition 3.17. Let M7 and My be abelian R-modules. If My and My
are m-Z-lifting with Homp(M;, M;) = 0 for i # j, then M = M; @ M> is a
m-Z-lifting module.

Proof. Let f € S, then Imf = Imf; @ Imfy, where f1 € Endr(M;), fa €
Endg(M,). As M; is m-Z-lifting, there exist positive integers m, n, and a direct
summand X; of M; and a small submodule Y; of M; such that Imf{' = X; &Y}
and Imf3" = X9 @ Ya. Set X = X; @ Xo, then X is a direct summand of M.
Consider the following cases:

(1) Let n = m. Clearly, Imf™ = Imf{'®Imf} = X+ (Y1@Y2) and V10 Y, <
M, ® My = M.

(i7) Let n < m. By Lemma 3.16, X; C Imf{" so X = X; & Xo C Imf{" @
Imfi* = Imf™ and Im f]" = X;&(Y1NImf{"*) such that Y1NIm f"* < M;. Hence
Imf™ =Imf{" ®Imf" = X + (Y1 NImf{") ®Y2) and (Y1 NImf{") &Y, < M.
Therefore M is w-Z-lifting.

(i73) Let m < n. Since My is abelian, the proof is similar to case (ii).  [@ED
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