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Abstract. In this paper, we call a module M almost I-lifting if, for any element φ ∈
S = EndR(M), there exists a decomposition rM ℓS(φ) = A ⊕ B such that A ⊆ φM and
φM ∩B ≪ M . This definition generalizes the lifting modules and left generalized semiregular
rings. Some properties of these modules are investigated. We show that if f1 + · · · + fn = 1
in S, where fi

,s are orthogonal central idempotents, then M is an almost I-lifting module if
and only if each fiM is almost I-lifting. In addition, we call a module M π-I-lifting if, for
any φ ∈ S, there exists a decomposition φnM = eM ⊕N for some positive integer n such that
e2 = e ∈ S and N ≪ M . We characterize semi-π-regular rings in terms of π-I-lifting modules.
Moreover, we show that if M1 and M2 are abelian π-I-lifting modules with HomR(Mi,Mj) = 0
for i 6= j, then M = M1 ⊕M2 is a π-I-lifting module.
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1 Introduction

Throughout this paper, R will denote an arbitrary associative ring with
identity, M a unitary right R-module and S = EndR(M) the ring of all R-
endomorphisms of M . We will use the notation N ≪ M to indicate that N
is small in M (i.e. ∀L � M,L + N 6= M). The notation N ≤⊕ M denotes
that N is a direct summand of M . N EM means that N is a fully invariant
submodule of M (i.e., ∀φ ∈ EndR(M), φ(N) ⊆ N). For all I ⊆ S, the left and
right annihilators of I in S are denoted by ℓS(I) and rS(I), respectively. We
also denote rM (I) = {x ∈M | Ix = 0}, for I ⊆ S; ℓS(N) = {φ ∈ S | φ(N) = 0},
for N ⊆M . A ring R is called a semiregular ring if for each a ∈ R, there exists
e2 = e ∈ aR such that (1− e)a ∈ J(R) [7].

A module M is called lifting if for every A ≤ M , there exists a direct
summand B of M such that B ⊆ A and A/B ≪M/B [6].

In [1], we introduced I-lifting modules as a generalization of lifting modules.
Following [1], a module M is called I-lifting if for every φ ∈ S there exists a
decomposition M = M1 ⊕M2 such that M1 ⊆ Imφ and M2 ∩ Imφ≪ M2. It is
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obvious that every lifting module is I-lifting while the converse in not true (the
Z-module Q is I-lifting but it is not lifting). It is easily checked that RR is an
I-lifting module if and only if R is a semiregular ring.

In this paper, we call a module M almost I-lifting if, for any element
φ ∈ S = EndR(M), there exists a decomposition rMℓS(φ) = A ⊕ B such
that A ⊆ φM and φM ∩ B ≪ M . In [11], a ring R is called left almost
semiregular if RR is almost I-lifting. Such rings are studied in [11] and named
as left generalized semiregular rings. In this note our aim is to generalize the
results of [11] from the ring case to the module case.

In Section 2, first, we give a new characterization of I-lifting modules by
modifying the definition of almost I-lifting modules (Theorem 2.4). Next, we
give conditions under which an almost I-lifting module is I-lifting (Proposi-
tion 2.6 and Corollary 2.7). We also prove the following which generalizes [11,
Theorem 1.14]:

Let f1 + · · · + fn = 1 in S, where fi
,s are orthogonal central idempotents.

ThenM is an almost I-lifting module if and only if each fiM is almost I-lifting
(see Corollary 2.12).

In Section 3, we call a module M π-I-lifting if, for any φ ∈ S, there exists a
decomposition φnM = eM⊕N for some positive integer n such that e2 = e ∈ S
and N ≪ M . A ring R is called semi-π-regular if RR is a π-I-lifting module.
Semi-π-regular rings are investigated in [11]. A π-I-lifting module generalizes
the notion of lifting module as well as that of a semi-π-regular ring. We investi-
gate some properties of π-I-lifting modules. We give conditions under which a
π-I-lifting module is I-lifting (Corollary 3.11). We characterize semi-π-regular
rings in terms of π-I-lifting modules (Theorem 3.14). It is shown that the class
of some abelian π-I-lifting modules is closed under direct sums (Proposition
3.17).

2 Almost I-lifting modules

In this section, we study the module-theoretic version of left generalized
semiregular rings defined by Xiao and Tong [11].

Definition 2.1. Let M be a right R-module. M is called almost I-lifting
if, for every φ ∈ S, there exists a decomposition rMℓS(φ) = A ⊕ B such that
A ⊆ φM and B ∩ φM ≪M . A ring R is called a left almost semiregular if RR

is almost I-lifting. Such rings are named as left generalized semiregular rings in
[11].

Proposition 2.2. Let M be a right R-module. If M is I-lifting, then M is
almost I-lifting.
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Proof. Let φ ∈ S. Then there exists a decompositionM = A⊕B such that A ⊆
φM and B∩φM ≪M . By modular law, we have rMℓS(φ) = A⊕(B∩rMℓS(φ))
and (rMℓS(φ)∩B)∩φM = B∩φM ≪M . Hence M is almost I-lifting. QED

The following example shows that almost I-lifting modules need not be
I-lifting.

Example 2.3. Let RVR be a bimodule over a ring R. The trivial extension
of R by V is the direct sum T (R, V ) = R⊕V with multiplication (r+v)(r′+v′) =
rr′+(rv′+ vr′). It is shown in [7] that the trivial extension R = T (Z,Q/Z) is a
commutative principally injective ring, but it is not semiregular since R/J(R) ∼=
Z. Hence RR is almost I-lifting which is not I-lifting.

Theorem 2.4. Let M be a right R-module. Then the following are equiv-
alent:

(1) M is I-lifting;
(2) For any φ ∈ S, there exists a decomposition rMℓS(φ) = A ⊕ B, where

A ⊆ φM , A is a summand of M and B ∩ φM ≪M .

Proof. (1)⇒ (2) By Proposition 2.2.
(2)⇒ (1) Let φ ∈ S and rMℓS(φ) = A⊕B, where A ⊆ φM , A is a summand

M and B ∩ φM ≪ M . Then φM = A ⊕ (B ∩ φM), where A is a summand of
M and B ∩ φM ≪M . Hence M is I-lifting. QED

By Theorem 2.4, we obtain the following characterization of semiregular
rings.

Corollary 2.5. The following are equivalent for a ring R:
(1) R is semiregular;
(2) For any a ∈ R, there exists a decomposition ℓRrR(a) = P ⊕ Q, where

P = Re ⊆ Ra for some e2 = e ∈ R and Q ∩Ra≪ R;
(3) For any a ∈ R, there exists a decomposition rRℓR(a) = P ⊕ Q, where

P = eR ⊆ aR for some e2 = e ∈ R and Q ∩ aR≪ R.

A module M is called semi-projective if for any epimorphism f : M → N ,
where N is a submodule of M , and for any homomorphism g : M → N , there
exists h :M →M such that fh = g. As easily seen, M is semi-projective if and
only if, for every cyclic right ideal I ⊆ EndR(M), I = Hom(M, IM).

Proposition 2.6. LetM be a semi-projective almost I-lifting module with
RadM ≪ M . If there exists e2 = e ∈ S such that ℓS(φ) = ℓS(e) for any φ ∈ S,
then M is I-lifting.

Proof. Let φ ∈ S. Then there exists a decomposition rMℓS(φ) = A ⊕ B such
that A ⊆ φM and B ∩ φM ≪ M . Since ℓS(φ) = ℓS(e), we have rMℓS(φ) =
rMℓS(e) = eM and so eM = A ⊕ B. As A and B are direct summands of M ,
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we can write eM = fM ⊕ gM for some f2 = f ∈ S, g2 = g ∈ S. By [10, 18.4],
we get HomR(M, eM) = HomR(M, fM) + HomR(M, gM). Since M is semi-
projective, eS = fS+gS. As A∩B = 0, fS∩gS = 0. Thus eS = fS⊕gS. Since
fM ⊆ φM and gM ∩ φM ≪ M , fS ⊆ φS and gS ∩ φS ⊆ HomR(M,RadM).
Since ℓS(φ) = ℓS(e), rSℓS(φ) = rSℓS(e) = eS and so φ = eφ. Let e = α + β,
where α = φh ∈ fS and β ∈ gS. Then φ = eφ = φhφ+βφ and φh = φhφh+βφh.
As φh − φhφh = βφh ∈ gS ∩ fS = 0, φh is an idempotent. Moreover, we
have (1 − φh)φ = φ − φhφ = βφ ∈ gS ∩ φS ⊆ HomR(M,RadM), hence
(1− φh)φM ⊆ RadM ≪M . Therefore M is I-lifting. QED

Corollary 2.7. Let rMℓS(φ) is a direct summand of a semi-projective mod-
ule M for any φ ∈ S. If M is an almost I-lifting module with RadM ≪ M ,
then M is I-lifting.

Proof. Let φ ∈ S. By assumption, rMℓS(φ) = eM for some e2 = e ∈ S. Then
ℓS(φ) = ℓS(e) and so M is I-lifting by Proposition 2.6. QED

Corollary 2.8. (See [11, Corollary 1.6]) If rRℓR(a) is a direct summand of
R for any a ∈ R and R is a left almost semiregular ring, then R is semiregular.

A ring R is called left Rickart if for every a ∈ R there exists an idempotent
e ∈ R such that ℓR(a) = Re [3].

Corollary 2.9. Let S be a left Rickart ring. If M is a finitely generated
semi-projective almost I-lifting module, then M is I-lifting.

An idempotent element e2 = e ∈ R is called left (resp. right) semicentral
in R if Re = eRe (resp. eR = eRe) [4]. It is well known that e2 = e ∈ S is a left
semicentral idempotent iff eM is a fully invariant submodule of M .

Proposition 2.10. Let M be an almost I-lifting module. Then every fully
invariant direct summand of M is almost I-lifting.

Proof. Let M be an almost I-lifting module and K a fully invariant direct
summand of M . Then there exists a left semicentral idempotent e2 = e ∈ S
such that K = eM . Let φ ∈ EndR(eM). Then there exists a decomposition
rMℓS(φe) = P ⊕ L where P ⊆ φeM and L ∩ φeM ≪ M . Note that the endo-
morphism ring of K = eM is eSe. We claim that reMℓeSe(φ) = eP ⊕ eL. Since
φ ∈ eSe, 1 − e ∈ ℓS(φ) ⊆ ℓS(φe). Thus for every t ∈ L, we have (1 − e)t = 0,
which implies that eL = L. Similarly, eP = P . Take any y ∈ eP ⊆ eφeM , where
y = ey1, y1 ∈ P ⊆ rMℓS(φe). Then for every ψ ∈ ℓeSe(φ) ⊆ ℓS(φ) ⊆ ℓS(φe),
ψy1 = 0. As y1 ∈ P ⊆ φeM , y1 = φem1 for some m1 ∈ M . Thus we have
ψy = ψey1 = ψeφem1 = ψφem1 = ψy1 = 0. Hence y ∈ reMℓeSe(φ) and eP ⊆
reMℓeSe(φ). Similarly, eL ⊆ reMℓeSe(φ). On the other hand, let x ∈ reMℓeSe(φ).
Then for every f ∈ ℓS(φ), we have efeφeM = feφeM = fφeM = 0. Thus
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efe ∈ ℓeSe(φ) and so efex = 0 which gives fx = fex = efex = 0 since x ∈ eM
and e is left semicentral. Hence reMℓeSe(φ) ⊆ rMℓS(φ). Take x = x1 + x2,
where x1 ∈ P and x2 ∈ L. Then x = ex = ex1 + ex2 ∈ eP + eL. This
shows that reMℓeSe(φ) = eP ⊕ eL. Since eP ⊆ eφeM = φeM , it is enough
to show that eL ∩ φeM ≪ eM . Note that eL ∩ φeM = L ∩ φeM ≪ M . Thus
eL ∩ φeM = eL ∩ eφeM ≪ eM since eM ≤⊕ M . Therefore K = eM is almost
I-lifting. QED

Theorem 2.11. Let e and f be orthogonal central idempotents of S. If eM
and fM are almost I-lifting modules, then gM = eM ⊕ fM is almost I-lifting.

Proof. First, note that g = e+f is central idempotent. Next, let φ ∈ EndR(gM) ∼=
gSg = gS. Then eφ ∈ eS and fφ ∈ fS. Take x ∈ rgMℓgS(φ). Then for
any ψ ∈ ℓeS(eφ), we have ψeφ = 0 and so ψφ = eψφ = ψeφ = 0 this
implies that gψφ = 0 and gψ ∈ ℓgS(φ). Hence ψ(x) = gψ(x) = 0 and so
ψex = eψ(x) = 0, hence ex ∈ reMℓeS(eφ). By hypothesis, ex ∈ reMℓeS(eφ) =
Pe ⊕ Le where Pe ⊆ eφeM = φeM and Le ∩ φeM ≪ eM . Similarly, fx ∈
rfMℓfS(fφ) = Pf ⊕ Lf where Pf ⊆ φfM and Lf ∩ φfM ≪ fM . Then
x = gx = ex + fx ∈ Pe ⊕ Pf ⊕ Le ⊕ Lf since e and f are orthogonal.
Hence rgMℓgS(φ) ⊆ Pe ⊕ Le ⊕ Pf ⊕ Lf . On the other hand, let x ∈ Le and
ψ ∈ ℓgS(φ), then ψφ = 0, and so eψeφ = eψφ = 0. Thus eψ ∈ ℓeS(eφ). As
Le ⊆ reMℓeS(eφ), eψx = 0. Hence ψx = ψex = 0 and so Le ⊆ rgMℓgS(φ).
Similarly, Lf , Pe, Pf ⊆ rgMℓgS(φ). Note that Pe ⊕ Pf ⊆ φeM ⊕ φfM = φgM .
This shows that rgMℓgS(φ) = Pe ⊕ Pf ⊕ Le ⊕ Lf . It is easily checked that
(Le ⊕ Lf ) ∩ (φeM + φfM) ⊆ (Le ∩ φeM) ⊕ (Lf ∩ φfM) ≪ eM ⊕ fM = gM .
Hence (Le ⊕ Lf ) ∩ φgM ≪ gM . Therefore gM is almost I-lifting. QED

Corollary 2.12. Let f1 + · · · + fn = 1 in S, where fi
,s are orthogonal

central idempotents. Then M is an almost I-lifting module if and only if each
fiM is almost I-lifting.

A ring R is called abelian if every idempotent is central, that is, ae = ea
for any a, e2 = e ∈ R.

Corollary 2.13. If S is an abelian ring, then any finite direct sum of almost
I-lifting modules is almost I-lifting.

Theorem 2.14. Let e be an idempotent of S such that SeS = S. If M is
an almost I-lifting module, then eM is almost I-lifting.

Proof. Let φ ∈ EndR(eM) ∼= eSe. Then there exists a decomposition rMℓS(φe) =
P⊕L, where P ⊆ φeM and L∩φeM ≪M . We claim that reMℓeSe(φ) = eP⊕eL.
Since 1 − e ∈ ℓS(φe), we have (1 − e)t = 0 for all t ∈ L, thus eL = L.
Similarly, P = eP . Thus eP ∩ eL = 0. Clearly, eP = P ⊆ reMℓeSe(φ) and
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eL = L ⊆ reMℓeSe(φ). On the other hand, take x ∈ reMℓeSe(φ) and write
1 =

∑n
i=1 fiegi for some fi and gi in S. Then for any ψ ∈ ℓS(φ), we get

egiψeφ = egiψφ = 0 for each i. This gives egiψex = 0 for each i, which im-
plies that ψx = ψex = (

∑n
i=1 fiegi)ψex = 0 since x ∈ eM . Hence reMℓeSe(φ) ⊆

rMℓS(φ). Thus x = s+t for some s ∈ P and t ∈ L. So x = ex = es+et ∈ eP+eL.
This follows that reMℓeSe(φ) = eP ⊕ eL. This completes the claim. It re-
mains to show that eL ∩ φeM ≪ eM . Since eP ⊆ eφeM = φeM . Note that
eL ∩ φeM = L ∩ φeM ≪ M . Thus eL ∩ φeM = eL ∩ eφeM ≪ eM since
eM ≤⊕ M . QED

Proposition 2.15. IfM is an almost I-lifting semi-projective module, then
Z(SS) ⊆ J(S).

Proof. Let 0 6= s ∈ Z(SS). Then for each element t ∈ S, st ∈ Z(SS). Let
u = 1 − st, then u 6= 0. Since ℓS(st) is essential in S and ℓS(u) ∩ ℓS(st) = 0,
ℓS(u) = 0. Thus M = rMℓS(u) = P ⊕ L, where P ⊆ uM and uM ∩ L ≪ M .
Hence P = eM for some e2 = e ∈ S. It is sufficient to prove that e = 1. If not,
there exists 0 6= ψ(1 − e) ∈ S(1 − e) ∩ ℓS(st) because ℓS(st) is essential in S.
This implies that ψ(1 − e)u = ψ(1 − e). Let m ∈ M , then um = em′ + a for
some m′ ∈ M and a ∈ L. Then ψ(1 − e)um = ψ(1 − e)a. Thus ψ(1 − e)m =
ψ(1 − e)a and so ψ(1 − e)(m − a) = 0 for all m ∈ M and some a ∈ L. Note
that a = um − em′ ∈ uM ∩ L ⊆ Rad(M) and so aR ≪ M . It is easy to
see that M = e(m − a)R + aR + (1 − e)(m − a)R. Since aR ≪ M , we have
M = e(m− a)R+(1− e)(m− a)R. Thus for all m ∈M , m = e(m− a)r1+(1−
e)(m− a)r2 for some r1, r2 ∈ R. Hence (1− e)m = (1− e)(m− a)r2. Therefore
0 = ψ(1 − e)(m − a)r2 = ψ(1 − e)m for all m ∈ M . Hence ψ(1 − e) = 0,
a contradiction. So e = 1 and M = eM = uM . Since M is semi-projective,
S = uS. Thus s ∈ J(S). QED

Recall that a ring R is left principally injective (P-injective) if every prin-
cipal right ideal is a right annihilator. Following [8], the ring R is left almost
principally injective (AP-injective) if, for any a ∈ R, aR is a direct summand of
rRℓR(a).

Lemma 2.16. Let M be a right finitely generated projective R-module
with S = EndR(M). Then:

(1) If, for any φ ∈ S, there exists a decomposition rMℓS(φ) = φM ⊕X for
some X ≤M , then S is a left almost principally injective ring.

(2) If S is a left almost principally injective ring and M is a self-generator,
then, for all φ ∈ S, there exists a decomposition rMℓS(φ) = φM ⊕X for some
X ≤M .
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Proof. (1) Let φ ∈ S and rMℓS(φ) = φM ⊕ X for some X ≤ M . Note that
rSℓS(φ)M ⊆ rMℓS(φ). Thus rSℓS(φ)M = φM⊕ (X∩rSℓS(φ)M). Then we have
HomR(M, rSℓS(φ)M) = HomR(M,φM) + HomR(M,X ∩ rSℓS(φ)M). Since
M is finitely generated projective, by [5, 4.19], rSℓS(φ) = φS +HomR(M,X ∩
rSℓS(φ)M). As φM∩X = 0, φS∩HomR(M,X∩rSℓS(φ)M) = HomR(M,φM)∩
HomR(M,X ∩ rSℓS(φ)M) = HomR(M,φM ∩ X) = 0. Thus rSℓS(φ) = φS ⊕
HomR(M,X∩rSℓS(φ)M). Therefore S is a left almost principally injective ring.

(2) Let φ ∈ S and rSℓS(φ) = φS ⊕ J for some J ≤ SS . Since M is a
self-generator, rSℓS(φ)M = rMℓS(φ). Thus rMℓS(φ) = φM + JM . As φS ∩
J = 0, by [5, 4.19], we have HomR(M,φM) ∩ HomR(M,JM) = 0. Therefore
HomR(M,φM ∩ JM) = 0. Since M is a self-generator we get φM ∩ JM = 0.
It follows that rMℓS(φ) = φM ⊕ JM . QED

Corollary 2.17. Let M be a finitely generated projective module with
Rad(M) = 0. IfM is almost I-lifting, then S is a left almost principally injective
ring. The converse is true whenever M is a self-generator.

Proof. For every φ ∈ S, there exists a decomposition rMℓS(φ) = P ⊕ L, where
P ⊆ φM and L ∩ φM ≪ M . By hypothesis, L ∩ φM = 0. Clearly, rMℓS(φ) =
φM +L, so rMℓS(φ) = φM ⊕L. Therefore S is left almost principally injective
by Lemma 2.16. The converse is clear by Lemma 2.16. QED

3 π-I-lifting modules

Definition 3.1. A module M is called π-I-lifting if, for any φ ∈ S, there
exists a decomposition φnM = eM ⊕ N for some positive integer n such that
e2 = e ∈ S and N ≪M .

A ring R is called semi-π-regular if RR is a π-I-lifting module. Such rings
are studied in [11].

It is clear that every I-lifting module is π-I-lifting. The following example
shows that there exists a π-I-lifting module which is not I-lifting.

Example 3.2. Let R = M = {(x1, x2, . . . , xn, x, x, . . .} | x1, x2, . . . , xn ∈
M2(Z2), x ∈

(
Z2 Z2

0 Z2

)

. Then MR is a π-I-lifting R-module but not I-lifting
(see [11, Example 4.5]).

Lemma 3.3. LetM be a semi-projective module and F be a fully invariant
submodule of M . Then the following are equivalent for an element φ ∈ S and
any positive integer n:

(1) There exists e2 = e ∈ φnS with (φn − eφn)M ⊆ F .
(2) There exists e2 = e ∈ φnS with φnM ∩ (1− e)M ⊆ F .
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(3) φnM = eM ⊕N where e2 = e ∈ S and N ⊆ F .

Proof. (1)⇒ (2) If x ∈ φnM ∩ (1− e)M , then x = φnm = (1− e)m = (1− e)m′

for some m,m′ ∈M . Thus x = (1− e)φnm ∈ F .
(2)⇒ (3) It is clear that φnM = eM ⊕ [φnM ∩ (1− e)M ]. Set N = φnM ∩

(1− e)M .

(3) ⇒ (1) First we show that e2 = e ∈ φnS. Consider the epimorphisms
φn : M → φnM and e : M → eM . Since M is semi-projective, there exists a
homomorphism g ∈ S such that φng = ie = e, where i : eM → φnM is the
inclusion map. Hence e ∈ φnS. Since φnM = eM⊕N , for everym ∈M , we have
φnm = em′ + n for some m′ ∈M and n ∈ N . Then φnm− eφnm = n− en ∈ F
because N ⊆ F . Hence (φn − eφn)M ⊆ F . QED

Corollary 3.4. LetM be a finitely generated semi-projective module. Then
the following are equivalent for an element φ ∈ S and any positive integer n:

(1) There exists e2 = e ∈ φnS with (φn − eφn)M ≪M .

(2) There exists e2 = e ∈ φnS with φnM ∩ (1− e)M ≪M .

(3) φnM = eM ⊕N where e2 = e ∈ S and N ≪M .

Proposition 3.5. Let M be a projective module, and let S = EndR(M).
Then J(S) = ∇(M), where ∇(M) = {φ ∈ S | Imφ ≪ M}. Moreover, S is a
semi-π-regular ring if and only if M is a π-I-lifting module.

Proof. By [11, Theorem 4.12]. QED

A module M is said to have the exchange property if for any module X and
decomposition X =M ′⊕Y =

⊕

i∈I Ni, whereM
′ ∼=M , there exist submodules

N ′
i ⊆ Ni for each i such that X = M ′ ⊕ (

⊕

i∈I N
′
i). If this condition holds for

finite sets I, the module M is said to have the finite exchange property.

Corollary 3.6. Let M be a projective π-I-lifting module. Then M is a
module with the finite exchange property.

Proof. By [11, Corollary 4.11] and Proposition 3.5. QED

Corollary 3.7. The following are equivalent for a ring R.

(1) Mn(R) is semi-π-regular for every positive integer n.

(2) Every finitely generated projective R-module is π-I-lifting.

Proof. (1)⇒ (2) LetM be a finitely generated projective R-module. ThenM ∼=
eRn for some positive integer n and e2 = e ∈ Mn(R). Hence S is isomorphic
to eMn(R)e. By (1), and [11, Corollary 4.2], S is semi-π-regular. Thus M is
π-I-lifting by Proposition 3.5.
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(2) ⇒ (1) Note that Mn(R) can be viewed as the endomorphism ring of a
projective R-module Rn for any positive integer n. By (2), Rn is π-I-lifting.
Therefore Mn(R) is semi-π-regular by Proposition 3.5. QED

Corollary 3.8. Let M be a projective module and N a fully invariant
submodule of M . If M is π-I-lifting, then so is M/N .

Proof. Let f ∈ S and g : M → M/N denote the natural epimorphism. Since
N is fully invariant, we have Kerg ⊆ Kergf . By the Factor Theorem, there
exists a unique homomorphism f∗ such that f∗g = gf . Hence we define a
homomorphism φ : S → EndR(M/N) with φ(f) = f∗ for any f ∈ S. As M is
projective, φ is an epimorphism. Thus EndR(M/N) ∼= S/Kerφ. By Proposition
3.5, S is semi-π-regular, and so is S/Kerφ by [11, Corollary 4.2]. ThereforeM/N
is π-I-lifting duo to Proposition 3.5 again. QED

Recall that an R-module M is called duo if every submodule of M is fully
invariant.

Corollary 3.9. LetM be a projective duo module. IfM is π-I-lifting, then
M/N is also π-I-lifting for every submodule N of M .

Proposition 3.10. LetM be a projective π-I-lifting module. ThenRad(M)
is small in M .

Proof. Let N ⊆M be any submodule with N+Rad(M) =M . If g :M →M/N
is the natural map, then there exists f : M → Rad(M) with gf = g. Then
g = gf = · · · = gfn for any positive integer n. Since M is π-I-lifting, there
exists a decomposition M =M1 ⊕M2 with M1 ⊆ Imfn and M2 ∩ Imfn ≪M2.
Note that M1 ⊆ Imfn ⊆ Imf ⊆ Rad(M). By [10, 22.3], M1 = 0 and so
Imfn ≪ M . Hence fn ∈ ∇ = Jac(S), thus g = 0 and so N = M . This
shows that Rad(M)≪M . QED

Recall that a projective module is semiperfect if every homomorphic image
has a projective cover [10].

Corollary 3.11. If R is a semiperfect ring, then the following are equivalent
for a projective R-module M :

(1) M is semiperfect;

(2) EndR(M) is semiregular;

(3) EndR(M) is semi-π-regular;

(4) M is I-lifting;
(5) M is π-I-lifting;
(6) Rad(M)≪M .
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Proof. (1)⇒ (2)⇒ (6)⇒ (1) By [19, Corollary 3.7].

(3)⇔ (5) By Proposition 3.5.

(2)⇒ (4) Since M is projective, it is well known that, J(S) = ∇(M) where
∇(M) = {α ∈ S | Imα ≪ M}. Assume that f ∈ S, then there exists an
idempotent e ∈ S such that eS ⊆ fS and (1− e)fS ⊆ J(S) = ∇(M). Therefore
M = eM ⊕ (1− e)M , eM ⊆ fM and (1− e)fM ≪M . Hence M is I-lifting.

(4)⇒ (5) is clear.

(5)⇒ (6) By Proposition 3.10. QED

Proposition 3.12. Let M be a π-I-lifting module. Then every direct sum-
mand of M is also π-I-lifting module.

Proof. Let M = N ⊕ P and SN = EndR(N). Define g = f ⊕ 0|P , for any
f ∈ SN , and so g ∈ S. By hypothesis, there exist a positive integer n and a
decomposition M = M1 ⊕M2 such that M1 ⊆ Imgn and Imgn ∩M2 ≪ M2.
Hence M1 ⊆ Imgn = fnN ≤ N . Thus N = M1 ⊕ (M2 ∩ N), M1 ⊆ fnN and
M2 ∩N ∩ fnN ≪M2, this means that N is π-I-lifting. QED

Corollary 3.13. Let R be a semi-π-regular ring. Then, for any e2 = e ∈ R,
M = eR is a π-I-lifting module.

We now characterize semi-π-regular rings in terms of π-I-lifting modules.

Theorem 3.14. Let R be a ring. Then R is a semi-π-regular ring if and
only if every cyclic projective R-module is π-I-lifting.

Proof. The sufficiency is clear. For the necessity, letM = mR be a cyclic projec-
tive module. Then R = rR(m)⊕I for some right ideal I of R. Let φ : I →M de-
note the isomorphism and f ∈ S. By Corollary 3.13, there exist a positive integer
n and a decomposition I = K1 ⊕K2 such that K1 ⊆ (φ−1fφ)nI = (φ−1fnφ)I
and K2 ∩ (φ−1fnφ)I ≪ K2. Hence φI = φK1 ⊕ φK2. So M = φK1 ⊕ φK2,
φK1 ⊆ fnφI = fnM and φK2 ∩ fnM ≪ φK2. This shows that M is π-I-
lifting. QED

Theorem 3.15. Let R be a ring and consider the following conditions:

(1) Every free R-module is π-I-lifting;
(2) Every projective R-module is π-I-lifting;
(3) Every flat R-module is π-I-lifting.
Then (3) ⇒ (2) ⇔ (1). Moreover, (2) ⇒ (3) holds for finitely presented

modules.

Proof. (3)⇒ (2)⇒ (1) Clear. (1)⇒ (2) LetM be a projective R-module. Then
M is a direct summand of a free R-module F . By (1), F is π-I-lifting and so
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M is π-I-lifting by Proposition 3.12. (2) ⇒ (3) is obvious from the fact that
finitely presented flat modules are projective. QED

Lemma 3.16. Let M be a module and f ∈ S. If eM ⊆ Imfn for some
central idempotent e ∈ S and a positive integer n, then eM ⊆ Imfn+1.

Proof. Let f ∈ S and eM ⊆ Imfn for some central idempotent e ∈ S and a
positive integer n. Let em ∈ eM ⊆ Imfn, then em = fn(x) for some x ∈ M .
Since e(x) ∈ Imfn, e(x) = fn(y) for some y ∈ M . Hence em = efn(x) =
fne(x) = fn(fn(y)) = fn+1(fn−1(y)) ∈ Imfn+1. Thus eM ⊆ fn+1(M). QED

A module M is called abelian if fem = efm for any f ∈ S, e2 = e ∈ S,m ∈
M [9]. Note that M is an abelian module if and only if S is an abelian ring.

Proposition 3.17. Let M1 and M2 be abelian R-modules. If M1 and M2

are π-I-lifting with HomR(Mi,Mj) = 0 for i 6= j, then M = M1 ⊕M2 is a
π-I-lifting module.

Proof. Let f ∈ S, then Imf = Imf1 ⊕ Imf2 where f1 ∈ EndR(M1), f2 ∈
EndR(M2). As Mi is π-I-lifting, there exist positive integers m,n, and a direct
summand Xi of Mi and a small submodule Yi of Mi such that Imfn1 = X1 ⊕ Y1
and Imfm2 = X2 ⊕ Y2. Set X = X1 ⊕ X2, then X is a direct summand of M .
Consider the following cases:

(i) Let n = m. Clearly, Imfn = Imfn1 ⊕ Imfn2 = X+(Y1⊕Y2) and Y1⊕Y2 ≪
M1 ⊕M2 =M .

(ii) Let n < m. By Lemma 3.16, X1 ⊆ Imfm1 so X = X1 ⊕X2 ⊆ Imfm1 ⊕
Imfm2 = Imfm and Imfm1 = X1⊕(Y1∩Imfm1 ) such that Y1∩Imfm1 ≪M1. Hence
Imfm = Imfm1 ⊕ Imfm2 = X + ((Y1 ∩ Imfm1 )⊕ Y2) and (Y1 ∩ Imfm1 )⊕ Y2 ≪M .
Therefore M is π-I-lifting.

(iii) Let m < n. SinceM2 is abelian, the proof is similar to case (ii). QED
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