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TOPOLOGICAL VECTOR SPACES OVER TOPOLOGICAL DIVISION RINGS:

*
PROJECTIVE AND INDUCTIVE LIMITS( )

Marilene Teixeira BALBI

INTRODUCTION. The theory of topological vector spaces
over R or (@€ without conditions of 1local convexity has been
developed lastly by Adasch, Ernst and Keim [1], Iyahen [6]
and Waelbroeck [12]. They introduced the notion of a ''string"
in a topological vector space which made the development
of a theory '"'without duality"'" easier. The extension of this
notion to topological vector spaces over valued division
rings (fields) has been done by Prolla [8] and allowed a
characterization of barrelled, bornological and quasi-barrelled

spaces.

In the present paper we are concerned with topological
vector spaces over Hausdorff non-discrete topological division
rings which have been introduced by Nachbin in '7]. The main
contents of our paper is the study of inductive 1limits of
such topological vector spaces (section 3). Projective 1limits
are treated only so far as results are needed for inductive
limits (section 2). A basic result (theorem 3.6) is a characteri-
zation of fundamental systems of neighborhoods of zero of

the inductive 1limit topology in terms of fundamental systems

(*¥*) This article 1is a part of the Ph.D's thesis of the author
and it was written at the University of Campinas, Brazil,
with Prof.Jd.B.Prolla as thesis' adviser.
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of neighborhoods of zero of those topological vector spaces
which generate the inductive 1limit. For this characterization
we have to assume that the underlying topological division
ring 1is locally right-bounded, <¢f. ©proposition 3.8. Our

characterization seems to be new even for topological vector
spaces over R or €, cf. Iyahen [6] who stated such a characteriza-

tion only for countable families of topological vector spaces.
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§ 1 - NOTATIONS AND BASIC RESULTS

We say that a topclogy T on a vector space E is Tp™ compatible

if (E,7) is a topological vector space over (F,Tn).

The following result will be used many times in the text. We

give its explicit statement for easy of reference.

THEOREM 1.1 = Let (E,t) be a TVS. If U is a fundamental system
of T1-neitghborhoods of O in E, then U is a filter basis on E

satiefying the following conditione

(V1) for each WEU there 1s UE€UV such that U+tUCW;

(V2) for each WEUV thevre 718 a 1.-neighborhooed V of O in F and

F
there 78 UeU such that VUCW;

(V3) for each WelU and fer each AEF,A+#0, there is UEl such that

Uc AW;

(V4) for each XEE and for each WEU, there 78 a T.-neighborhood

F
V of O zn F such that VXcW.

Conversely, given a filter basis ¥ on E satisfying (V1) - (V4),
there 18 a unique TF-campatible topology on E for which U7 1s a

fundamental system of neighborhoods of O.

PROOF: see [ 3] th. 3.14.

If (E,7) and (G,n) are TVS and A is a linear map from E into G,

by A—](n) we denote the 1_-compatible topeology on E for which

¥
the set @3 = {th{U); UEV} is a fundamental system of neighbor-

hoods of O in E, where U is a fundamental system of n-neighbor-
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hoods of O in G. We have that Apj{n] is the coarsest TF—compatible

topology on E for which A is continuous and it is called the
tnverse—-image topology of n by A. In particular, when E is a

subspace of G and A is the canonical embedding IE from E into
-1

G, Ig (n) is called the <nduced topology on E by n and is denoted

by N If A is surjective, then A(1) denotes the 1_-compatible

F
topology on G for which the set 4= {A(U);UEl}, where U is a

fundamental system of T—-neighborhoods of 0 in E, is a funda-

mental system of neighborhoods of 0 in G.

Let E be a vector space and let {TuFQEh} be a non-empty family

of TF—chpatible topologies on E. By

I) 1:= sup{Tu;aEﬂ} we denote the 1_~compatible topology on E

F

which satisfies the following conditions:

a) T, &1 for every oa€l;

b) if n is a T.—-compatible topology on E such that

F
TmCﬂ_fDr every o€A, then tan.

T is called the least upper bound of the topologies T .

IT) &:= inf{Tm;mEﬁ} we denote the 1_~-compatible topology on E

F
which satisfies the following conditions:
a) £:Tﬂ for every a€h;

b) if py is a T.,—~compatible topology on E such that MET

13
for every a€l, then uct.

£ is called the greatest lower bound of the topologies T-

Let (E,1) and (G,n) be TVS. By L(E;G) we denote the set of all

continuous linear maps from E into G. For a subset H of L (E; G)
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we say that H is eguicentinuous if one of the following equi-

valent conditions is fulfilled:

1

(a) For each n-neighborhood V of 0 in ¢ N T '(V) is a 1-

TEH
neighborhood of O in E;
(b) For each n-neighborhood V of O in G, there is a T-neigh-

borhood U of 0 in E such that U T(U) c¥V.
TEH

Let (F,t,) be a topological division ring and let 7 be a funda-

mental system of T.,-neighborhoods of © in F. We say that a subset

F
M of F is right-bounded if for each UEV there is VEV such that

MV cTU.

LEMMA 1.2 (Kowalsky-Griinbaum) - 4 subset M of a topologtcal
drvision rinag (F,Tg) s right-bounded <f, and only <f, for each

basic T,~neighborhood U of O in F there is AEF~{ 0} such that

F
MAcU,

we say that a topological division ring (F,TFJ is locally right-

bounded if there is a right-bounded 1, -neighborhood of O in F.
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§ 2 -~ PROJECTIVE LIMITS

THEOREM 2.1 - Let E be g vector space, (Eﬂ'Ta)uEﬂ be a

family of topolegical vector spaces and (Am}uEﬂ be a family

of linear maps from E into Eﬁ. For each a€A, let ﬁ% be a
fundamental system of Tu—neighbarhaadsof O in E_ . For each

finite set {m1,...,an} c A and u, € ﬁ% , i=1,...,n, con-
i i
sider the subset of E defined by

n
(1) U := n A (U ).

Let & be the set of all subsets U of E defined by (1). Then

there 18 « TF—ﬂampatibEe topolegy on E for which & is a funda-

mental system of neighborhoods of O in E and 1t is the coarsest

TF—campatiﬁZe topology on E for which all the maps A, o€ A,

are Continuous.

PROOF: It is obvious that # is a filter basis on E. Let U € /.
n
Then U = 0N A_1{U ) for some finite set {u1,...,un} < A, where
i=1 i i
U, € &E , i=1,...,n. So by 1.1 we have that:
i i
(a) for each 1=1,...?n, there is Wm. = @&' with Wm. + Wm. - Ua.
no_. i i i i i
and setting W= N A (W, ) we get W € & and W+W < U;
i=1 i i
(b) for each i=1,...,n, there areaf%fneighbarhond v of O in F

o

i
Vu. and
T i

noBs

and W, € 3, with v[x.wu. < U, and putting Vi=

1 i i 1 1
{wm ) we get that V is a TF-nEighbDthGﬂ of O in F,
i i

W € & and me U ,i=1,...,n, and so,
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(c) for each A€ F,A # O, and for each i=1,...,n, there is

n
Wﬂ € ﬁu such that Wm < A Uﬂ and setting W:= N aA_ (W_ )
i i i i i= |

we get W € F and W< A U;

(d} for each x € E and for each i=1,...,n there is a T~

neighborhood V of O in F such that V_A (x) < U and
e, o, . o}

i .
n 1 L 1

setting V:= 0N Va we get that V is a IF—neighbarhcmd of O
i=1 71

in F with VxcU.

From (a) - (d) abowe and 1.1, there is a unique Tp-com-
patible topology on E, which we will denote by 71, for which &
is a fundamental system of neighborhoods of O in E. From the
definition of 1, it is clear that for each o€ A the linear
map Au from (E,T) into {EH,TH) is continuous. Now let 11 be

another TF—chpatihle topology on E such that for each

a€ A Au: (E,T1} — {Eu,Tﬂ} is continuous and let U be a 1-

neighborhood of O in E. Then there is V € # such that V <« U,
n

where V = A-1{U ), U € B , for some finite set
: o, o, Q. o .
i=7 7i i i i

{“I""’an} c A. From the continuity of

A, : (E,7') » (E ,T ), i=1,...,n, it follows that V is a

" u L ﬂ' ]
i i i
1! —neighberhood of O in E, which implies that U is also

a T1-neighbﬂrhumd of O in E.

DEFINITION 2.2 - The T1_-compatible topology on E defined and

F
described in 2.1 above is called the projective topology on
E with respect to the family ((E ,t ) ,A ) . A TVS (E,T)

a’ o S
generated as described in 2.1 is called the projective limit
of the topological vector spaces (Em,Tﬂ] with respect to the

Linear maps A and denoted by

(E,T) = proj (fEm,T ) A ).
o € A
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EXAMPLE 2.3

2.3.1 - Let (E,T) be a TVS and let H be a vector space. Let
A be a linear map from H into E. It is clear that (H,A_1(T}} =
= proj ((E,Tt),A). In particular, when H is a vector subspace

of E, A is the canonical embedding Iy from H into E and Ty

-

is the induced topology on E by 1, we have (H,t1,) = proj({E,T),IH}

2.3.2 - Let (E,1) = 1 {Eu'Tu) be the topological product of the

a€ A
family of TVS {EQ’TH)EEﬂ' If we denote the canonical projection

from 1l Eu onto Eﬂ by Pu’ o€h, we have (E,T) = prDj({Eu,Tﬂ),Pﬂ}.
o€ A o€ A

2.3.3 - Let E be a vector space and let {Tu,mEﬁ} be a family

of 1_.,-compatible topologies on E. If T = sup{Tﬂ,m € A}, then

F

(E,T) = prﬂj[{E,Tu],iﬁ), where for each oq€h i, is the identity
o € A
map on E.

PROPOSITION 2.4 - Let (E,T) = prﬂj({Eu,Tu},Aﬂ], where for each
a € A

e A (Eﬂ,fu] 18 a Hausdovrff TVS. Then (E,T) <s a Hausdorff TVS

{0}.

1f, and only Zf, N ker (A

)
ac &

PROOF: Since T 1is a Hausdorff topology on E if, and only if,

n v = {0}, where @ is a fundamental system of T-neighborhoods

VE R
of O in E, it is enough to prove, under the assumptions, that

n v N ker(A ). Let xX€ N ker(A ) and let VE@. Then
VE®R n QEA G Q€ A QA ‘
V=0 A;1(Uu ) where Uu is a basic Ty -neighborhood of O in
i=1 71i i i i
E , i=1,...,n. Since Aﬂ (x) = 0€¢0_ ,i=1,...,n, we have x € V.

- s
1 1 1L

Because we chose V arbitrarily in &, it follows that

(a) N ker(aﬂ] c Nnv.
o€ N VER
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Conversely, let x € N V and oa€A be given. Let W be a 1 _-
VE QR & @

neighborhood of 0 in Eﬁ. Since {a} ¢ A is finite, we have
U:= A;T(Wu) € A. Hence x€U , which implies that Au[x} € Wﬂ

and sm,hﬁ{x} = O because Wu is arbitrary and (Eu'Tﬂ} is a

Hausdorff TVS. Since o was chosen arbitrarily, x € N ker{Aﬁ}.
a€ A

Thus

(b) n VvV cn ker(A

)
VER 0€ A ©

REMARK: When we proved (a), we did not use the fact that
(EH,TQ) is a Hausdorff TVS. Therefore, if (E,T) is a Hausdorff
T™VS, then n ker(aA ) = {0}.

aEN &
COROLLARY 2.5 - Under the hypothesis in 2.4, (E,1) <is a Haus-
dorff TVS <if, and only <1f, for each XEE,x*0 , there are o€l

and a Tm~n31ghbﬂrhaad Wﬂ of O in Eu such that Au(x} g W

PROPOSITION 2.6&: If (E,7) = proj((E_,T_),A)) and Zf (G,n) <s
a € A

an arbitrary TVS, then a linear map A from G into E 1s con-

tinuous 1f, and oenly <f, for each o€EA the linear map A A

from G into Eq 18 continuous.

PROOF: Suppose that A: (G,n) - (E,T) is continuous. Then, from
the definition of 1, it is immediate that for every a€h

Aﬂ A : (G,n) = (Eu,Tu} is continuous. Conversely, suppose

that for each o€A the map AR (G,n) = (Eu,Tm} is continuous

and let V be a t-neighborhood of O in E. Then, from the defi-

nition of 1T, there is a finite set {% r+..,0 } A and, for
Il
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each i=1,...,n, there is a hasic*%i-neighhﬂrhamd Uu of O

i i
n
in E, such that U:= 0 E; (U;) = V. so 2wy e aT w).
i i=1 i
Since by hypothesis {Aﬂag}'1[ua ) 1s a n-neighborhood of O
i i

in G for all i=1,...,n, it follows that A ' (V) is also a

n—-neighborhood of 0 in G.

PROPOSITION 2.7 - If (E,1) = prﬂj({Ea,Tm),Aﬁ) and 7f (G,n)

a € A
18 an arbitrary TVS, then a set H of linear mape from G into E
18 equicontinuous <f, and only i1f, for each a€h Hu:={Au°TFTEH}

1s an equicontinuous subset of «L(G;E_ ).

PROOF: Suppose that H is an equicontinuous set of linear maps
from G into E and let o€A be given. Since for each TE€EH, TeL(G;E),
we have HDL - L{G;Eu} by 2.6. Let V be a Tm—neighborhﬂcd of O in
in Eﬂ. By hypothesis, there is a ﬁ-neighbﬂrhmﬂd Uof O in G

such that T(U) < 3;1{VJ for every TE€H. Hence {hmaT){U) c V for
every T€H, which shows that H < A(G;Eﬂ) is equicontinuous for

each a€l.

Conversely, assume that H is a set of linear maps from G into E
such that Hﬂ = {AﬂﬂT :TEH} is an equicontinuous subhset of
ﬁiG;Eu} for each o€A. By 2.6 it follows that H < «£(E;G). Let V
be a t-neighborhood of 0 in E. By definition of 1, there 1is

a finite set J = {u1,...,am} < A and, for each ¢, € J, there is
m
a T -neighborhood U of O in E_ such that N A 1(U ) = V.
o . o . 0, c_a O, O
i i i i=1 71 i

Let 1 « i ¢« m. Since Uu is a Tu - neighborhood of 0O in Eu , there
i i i

is a n-neighborhood vi of O in G with {Aﬂ aT}(Vi) < Uu , for
i
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m
every TEH. Let W = 1N 3 and Te€H. Then W is a n-neighborhood
1=1 m m 1 mo
of 0 in G with T(W) ¢ n T(V.) € n A (A T(V,))E N A (U )cV.
. 1 . Q. o, i . _ 4 G, Qa,
i=1 i=1 i i i=1 i i

Since T was chosen arbitrarily, it follows that H ¢ L(E;,G) is

equicontinuous.

PROPOSITION 2.8 - Let (E,T) = prDj([Eu,Tm],Rﬂ] and assume that

o € A
N ker@ ) = {0}. The map J: E— 1 (E ,T ) defined by J(X) =
[u o oL
o€ A aEAN

= {Autx))mEﬁ' X€EE, 1s a topological isomorphiem between (E,T)
and {J{E},}h{E]}, where Il denotes the product topology on

I [Ea,Tu}.
o€ A

PROOF: It is obvious that J is an injective linear map from E

into I E , In order to show that J is continuous, let o€A

aEA
be given and let Pu be the canonical projection from I Eu
aEh

onto Eu . Since Pmn J = Hu: E - Ea is continuous, the continuity

of J follows from 2.6. Now consider J-1: J(E) -» E. Since for each

aE /L A *-"J—.‘E = Pﬁ[
. J(E)

it follows from 2.6 that J | is continuous.

and P 1s continuous by definition of m,
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§ 3 - INDUCTIVE LIMITS

DEFINITION 3.1 - Let (Eﬂ,T ) be a family of TVS,E be a

o’ ae
vector space and (Aﬂ}DLEJH be a family of linear maps from EDL

into E and assume that E = span U Hﬂ(Eu]. Let # be the set of

o€ A
all TF-cmmpatihle topologies n on E such that all
A: [Eu,Ta} - (E,n),c€A, are continuous. Let 71:= sup{n;n€F}.

Then T is a TF-cmmpatible topology T on E and it is called the

inductive limit topology en E with respect to the family

((EH,T The topological vector space (E,T1) is called

a}’Aﬂ)aEﬂ'
the Znductive limit of the topological vector spaces (Eu'Tu]
with respect to the linear maps A and denoted by

(B,7) = ind((E; 7 ) /A).

REMARK 3.2 - 1T ¢s the finest T,-compatible topology on E for

F

which all A are continuous. In fact, by 2.3.3 (E,1) = prmj((E,n),in},
ney
where iT1 is the identity map on E for each n€#, and A: ﬂafTﬂ]-+(EJﬂ

is continuous for all o€l and n€F, the continuity of all

A {Eu'Tu} -» (E,T) follows from 2.6. Now, by definition of T,

it is obviuos that 1>&, for every tT_.-compatible topolgy & on E

F

for which all A : (Eﬂ,Tu) -» (E,E) are continuous.

EXAMPLES 3.3.
3.3.1 - Let (E,T) bhe a TVS and M a subspace of E. Let I be the

canonical surjection from E onto the quotient space E/M and Tq

the gquotient topology on E/M‘ It is easy to verify that Tq is a

Tp-compatible topology on E/M and because T_ is the finest T,-

compatible topology -on E/M for which IJI: E - E/M is continuous,

we have (E/M,Tq) ind((E,T1),II).
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3.3.2 - Let (E_,T_ ) ), be a family of TVS and define E:=u§ﬂ5m.

For each o€A, let I, be the canonical embedding from E into E.

The TVS (E,T):= ind{[Ea'Tu]’Iu) is called the direct sum of the
o€h

famzly (Eu'Ta}mEﬂ and it is denoted by (E, 1) =a§ﬂ(Eu,Tﬂ}. The

T,—compatible topology T on E is called the direet sum topology

F
of the family {Eu'Tﬂ)'

3.3.3 - Let E be a vector space and let {Tu,u&‘h}be a non-empty family
of t1_-campatible topologies on E . If 1 = inf{’ru,aEﬂ}, then

F

(E,T) = ind[(E,TﬂJ,iﬁ} where iu,mEA, is the identity map on E.
o€ N

PROPOSITION 3.4 - Let (E,T) = ind((Eu,Tm],Hu) and let (G,n) be
o€ A

an arbitrary TVS. A linear map A from E into G Zs continuous <if,

and only 1f, for each o€A the linear map A“Am from Em into G is

continuous.

PROOF: Obviuosly the necessity of the condition holds true. Con-
versely, suppose that for each o€A A°A,: (Ea,rm} -» (G,n) is con-
tinuous. Let V be a n-neighborhood of 0 in G. Then, by hyvpothesis,
(aea )~ (v) = A7 (A7'(V)) is a T_-neighborhood of O in E_ for
every o€l, which implies that Aa: (Eu’Tm} — (E,A_1(n)) is con-

tinuous. By definition of T,R-1(H)ET, which implies that

A: (E,T7) -» (G,n) is continuous.

PROPOSITION 3.5 - Let (E,T) = ind{(Eﬂ,Tﬂ),ﬁu) and (G,n) be an

o€ A
arbitrary TVS. A set H of linear maps from E into G is equicon-
tinuous if, and only if, for each a€h Hj:= {TEAJ,TEH} 18 an equi-

continuous subset of J(EQ;G].
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PROOF: Suppose that H is an eguicontinous set of linear
maps from E into G and let o € A be given. Since, for each
TEH, TEL(E;G), by 3.4 we have H, :aﬁiEﬁ;G]. Let V be a
n-neighborhood of O in G. By hypothesis, there is a 1-
neighborhood U of O in E such that T(U) « V for every

T € H, Thus Hm is equicontinuous because A;1{U} is a T
neighborhood of 0 in EEI and {Teﬁu)(R;1(U)]c:T(U)c:? for

for every T € H.

Conversely, suppose that H is a set of linear maps from
E into G such that Hu is an equicontinuous subset of

£{EH;G} for each o€ A. Let V be a n-neighborhood of 0 in G.

By hypathesis,ri{TﬂAm]'j(V} = H;T nTT (V) is a T -neigh-
TEH TEH o

borhood of 0O in Eu for each o € A. Let I/ be a fundamental

system of neighborhoods of 0 in (G,n) and define
HH ={N T-i(U}, U €U}. It is obvious that RH is a filter
TEH

basis on E.

Let 0N T-1(UJ € mH, U € U. Because W is a fundamental system of
TEH
. H .
neighborhoods of O in (G,n) , it is easy to verify that %. fulfils

(V1) = (V3) in 1.1. In order to show that U fulfills also

the condition (V4) of 1.1, let X € E be given. Then there

are m1,...,akEIﬂ and X € Eﬁ , i=1,...,k, such that
k - i k
X = I A (x ). Choose U, €U such that I U, <« U. Since
- a. To. i = i
i=1 1 i i=1
a'¢n1w.)) = n(ra )" (U) is a T, -neighborhood of O in
%i TeH = TEH >3 i
E, + there is a TF~neigththod V of O in F such that
i
vx <ca t(n 7Y(.)) for all i = 1,...,k. Then
Q. Q. i
i i TEH |

-1
v{ﬁm {}{u')} c n T

{Ui} and we infer
i 1 TEH
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k k 1 1
Vx € ¥ V Au (Ku ) © % n T (Ui] N T (
i=1 i i i=1 TEH TEH 1

U) e ™ (v).
1 TeEH

™M=

So, according to 1.1, there is a unigue TF—CDmpatihlE topo-
logy 1(H) on E for which’aﬁ is a fundamental system of

neighborhoods of O in E. Since for each

o€ A A;1{ N T—1(U}} = N fTaAu]_T(U}, 0T e U, is a T~
TEH - TEH
neighborhood of 0 in Ea' all linear maps ﬁm:[Eu,Tm]*(E,T[H]]

are continuous. Thus 1T o T(H), which proves that each element

of &H is a T—-neighborhood of O in E.

THEOREM 3.6 - Let (F,T be a locally right-bounded topo-

o)
logical diviston ring and (E,Tt) = ind ((E_,T ),A ), For

Q€N a’ o ot
each a €A, let U* be a fundamental system of Tuvneighbarhaads

of O tn E . Let A be the set of all fintte subsets of W

and define

U:= {u T U a wWH;wH® < u*,uv® . +u® . u®, senl
JEA KET GEA KT R ey k+1 "k+1 K

Then & 1s a fundamental system of T-neighborhoods of O in E.

PROOF: It 1s easy to verify that % is a filter basis .on E.
Next we want to prove that & fulfils (V1)-(V4) in 1.1., For

this, let U € U,

co

U= U T U Au(UE}, for some (UE) c % with
JEA k€T qEA k=1

) o L

Ugs1 * Ugsq © Ugr €A
o . o o O
a) Let w= U ) U A (U5, ). Since (U,, ), _. © U~ and
JEA keT aen & 2K 2k k=1

oL o o O L

U2{k+1)+ U2{k+1} c U2k+1 + U2k+1 < U2k for all o€ A, we

have WE€ U. Let x € W+W. Then there are JEA, K(l} € U A {Uu ),
k qep @ 2k
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(1) (2)

i=1,2; k€J, such that x = I x_ ' + I x“ . Let
KET K€J
Yor-1 = Ké1] and Yor = xQZ), k € J. Then
v € va (v%y)y e uvua (U? ) andy, € UA_ (US).
2k=1 ~ _c,Ca "2k wep & 2k=T 2k~ ep o2k
Thus x = X vy. € % U AQ(U?} c U, where J' = (2J-1) U 2J.

JET' I JET' wEA
So W+W < U,

Let V be the right-bounded t1_-neighborhocod of O in F.

F
(V2) - Inductively, we can choose (WE};;1 c 4% such that
o o o o o _ o
Wpgq T W © W and VW, < Uk' Let W:= U )N U R'(Wk} € .

JEA k€T €l
&)

Then VW €U I UA (VW) cU I U Aﬂ'{UE} = U.
JEA KET Q€A JEA k€T €l

(V3) - Let X € F, A + 0. For each a € A, define w? - htﬁf

By induction, for each o € A we can find a sequence

o, a . o o o o
(Wk}k=1 c U~ with Wk+1 + Wk+1 c Wk < Atﬁ{ for each k €W,

Set W := U I UA (wﬁ). Then W € % and W < A\U.
JEA kET o€ ©

(V4) - Let x€ E. Then there are k_ € N and x € E ,
@ o o
k k
Ko
k € {1,...,k }, such that x = X A (x_ ). Let W be a
© k=1 %% %k

T.,~neighborhood of 0 in F such that for each k, 1<k<k _,
¥ o Ko Ko o -0

qu c Ukk. Then Wx = I Au {qu ) © I An (Ukk) c U,
k k=1 k k k=1 k

Let T,, be the unique t -compatible topology on E for which

F
U is a fundamental system of neighborhoods of O in E.

Obviously for each a € A Au: (Eu,Tu) - (E,Tm] is continuous.
From the definition of T we have 1, < 1. Conversely, let U1
be a T-neighborhood of O in E and let (U ) _. be a sequence

of T-neighborhoods of O in E such that Un+1 + Un+1 c Un

for all n=1,2,... . Since for each o € A A;1(Un) is a
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Tu-neighborhﬂﬂd of O in E , we can choose, by induction

o

o o o -1 o o o

on n, Un € X~ such thit U, < A (Un+1;, U ¢q1 ¥ Un+1 < U_.

Then for every ne€lN I U Aﬂ(Uﬁ} c I Uk+1 c U1, which
k=1 a€h k=1

proves that Ty 2 T Thus Ty = T

. - o a e O .
REMARK: The assumption Un+1 + Un+1 Un in the
definition of U can be omitted , because for every

sequence {UE):=1 of Tm—neighbarhacds of O in Eu we can

o Q. o L0 o o o
always choose Wﬁ € - such that Wn c Ln and Wn+1 + wn+1 c WH,

PROPOSITION 3.7 -1Let (F,T;) be a right —bounded topological

division ring, (E,T) = ind {{EH,TD},AH) and «U" be a funda-
ne€nN

mental system of Tn—naighbarhaodﬁ of O in E ,n€EN. Let A
be the set of all finite subsets of N. Define

u' = {U T A (U); U e 1%y,
JeEA kET

Then U' s a fundar-vtal system of T-neighborhoods of O in E.

PROOF: From 3.6, it is enough to prowve that ' is a filter
basis on E generating the same filter as the set W defined
there, of course when A =W. It is clear that ' is a filter

basis on E. Let U EW, U= U £ URA (UEJ. Then
JEA kKEJT neEN O

U> U Z A k} € W', which proves that the filter gene-

Jes keg &K
rated by %' is finer than the filter generated by W. Con-

(U

versely, let U € &¢', U = U z Ak(Uk] . For each n €N,

JEA k€T
h Un oo n . Il n n n Il
choose (Up), ., « ¥ with U, + U, U and U . + U . =0
for each k €IN. Then X UE c Un for every J € A. Let

ked
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W= U T U AH{UE} € &. We claim that W < U. In fact,
JEA k€T n €N

let x € W, Then there is a J € A such that for every k€J

[ §]
there is an n, €N such that x € I A (U k}, Let J'" = {n, : kK E€J}.
k n k k
ke 'k
Then
x € I ¥ AHIUE] = I A (I UE}
k€T neJ! neJ! keJ
c ¥ A (U) e ¥ ry A (U,) = U.
neg' % D Jea keg £ K

The assumption that (F,t.) is a locally right-bounded topo-

F

logical division ring is necessary in the following sense:

PROPOSITION 3.8 =~ Let (F,TF} be a topological divisiton ring

and (E,T) = ng;T ), where ¥ is fundamental system of T~

F
netghborhoods of O in F. Then a set U of subsets of F, as
defined in 3.6, 18 a fundamental system of neighborhoods of O

in (E,T) Zf, and only i1f, F Zs locally right—-bounded.

PROOF: It is clear that the condition is sufficient. Con-
versely, for each V € U, we can inductively construct a

sequence (UEJm < ¥, such that oy, + UE+1 = UE, k > 1, and

=1 k+1
Vv Vv _ . \Y
U1 + U,| c V. Let U €. Then U = U z U lV(Uk)' where
JeA kKeJ vel
iV: F - E is the V-th coordinate map. By assumption, there
V, e : A% \Y \Y
are (W ),_, € U with W, + W ., W, k > 1, and
WT + WY c V and V' €V such that V'Ww € U, where
W= U I U i (W).Let V€Z and let i': E » F be the

JEA kKET VETD 7
projection of the V-th component of E onto F. Then since

‘v. _ . 1 G *N . '
i, = Gﬁ,vldF’ \% WI c 1vgv' U )2 U lV{WE))
JEA k€T VEV
VoY A v . .
c i (U) =i (U b3 U 1 (Uk}J = U z Uk = \Vj =V,

Vv U
JEA k€& eV |
A J V JEA kE€J TE A
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what means, since V € ¥ was arbitrary, that V' is a right-

bounded neighborhocd of O in F,.

PROPOSITION 3.9 - Let A be a finite subset of N and let
(E,T) = ind ({Eu'Tm]’Au}' For each a € A, Llet ©U* be a funda-

a €N
mental system of Tm—neighbarhmmds of O in E . Then the set

— o

ts a fundamental system of T-neighborhoods of O in E.

PROOF: It 1s similar to the proof of thecrem 3.6, except
for the proof of the condition (V2) of th. 1.1, . In order

to prove (V2), let U = X Au[Um) € L. Then for each a € A
o€N

there is a T_.-neighborhood v® of O in F and W, € u* such

E
that V'W < U_ and taking V:= N V', we have that V is a
€N
TF-nEighbDrhEDd of O in F, w=Z A (W ) € % and
oo
aEn
VW=V ZA (W)= ZTA (VW) < I A (U ) =U.
gep & O nEn © a gep) & O
PROPOSITION 3.10 - Let (E,T) = @ {Em’Ta)' Then for every non-
o€l

empty finite subset ¢ of A the direct sum topology of the

family {Eu'Tﬁ}ﬂ€® and the induced topology by T on

@ Eﬂ coincide.
aEd

PROQOF: Let ¢ be a finite subset of A and set

(H,n) (= e (E ,T7.). Let 1, be the induced topology by T
aE® & O H

on H. For each e € ¢, let Im be the canonical embedding

o)
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. ~ — ' . &
from (Eaﬂ,rug} inte (H,n) and IDLD O if o £ o,

For each a € A, let Iu be the canonical embedding from

O

(E ,Tﬂ ) into (E,Tt). Let T be the canonical embedding from

o
O O

(H,n) into (E,T). Then, from the definition of n and 1, we

have that Eu and Iu are continuous and, since I ﬂfﬁ = Iﬂ '

O o O O
it follows that I is continuous by 3.4 which implies that

n o T Now, consider i:(H,T,) - (H,n) the identity map on H.

He
Then i = P ‘IH where P is the projection from (E,T) onto

(H,n) and I, is the embedding from (H,T,) into (E,T). Since

H

IH is continuous and P is continuous (the continuity of P

follows from 3.4 because for each a € A PﬂIﬂ=fu}, it follows

that i is continuous, and so, n € 1 Thus n = 71

H" H®

COROLLARY 3.11 = Let (E,T) = & (Eu'Tu}' Then for each
a€N
a €N the induced topology by T on EDL and T, cotneide.

PROPOSITION 3.12 - Let (Eﬁ,Tﬁ) be a family of topological

) 4

vector spaces. If (E,7) = e (E ,T ) and (G,n) = N (E , T,

a€Ef o€ A
then:

i) 1T 28 finmer than the induced topology by u on E;
ii) for every finite subset ¢ of A, T and n coineide on

e E .
acd o

PROOF: For each o€ A, let I_DL be the canonical embedding from

E, into E and P the projection from G onto E, -

Proof of i)-Let I be the canonical embedding from (E,T)
into (G,n) and let a € A be given. Since I e T, is the cano-

nical embedding from Eﬂ'5 into (G,n), which is continuous by (2.6),
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by 3.4 we have that I is continuous. Thus 1 is finer than

the induced topology by n on E.

Proof of ii) - Let ¢ « A finite and let H:= @ Eu‘ By (i),
a€d

it is enough to prove that n is finer than T on H. For this,

let U be a T -neighborhood of O in H. By 3.10 and 3.9, there

H
are Tu-neighbmrhﬂﬂds Uu of O in Eu' o« € ¢, such that

U>o £ I (U.).
oo

aEd
Then M = N P;luu} is a n-neighborhood of O in G by
aEd
2.3.2 and 2.1. So V:=MN o E':1 is a neighborhood of O
o€ P
for the induced topology by n on e E with
a€d
-1 -1, =1
V= (NP (U))N e E = n°P (I (I_. (U)))N e E =
acdr ¢ © w€d ¢ qep & ¢ & G a€d ¢
= N [(IU+e@E,) N ©E] = nI[I (U)+eE)] =
a€d > % ger B qes a€d & % geg B
B+ B+0
= @ Uu < Iz IE(U ) € U, which proves that U is a neigh-
a€d 0Ed “
borhood of O for the induced topology by non H = e Eu'
aEd

COROLLARY 3.13 - The direct sum topology and product

topology coincide when we consider a fintte family of TVS.

COROLLARY 3.14 - Let (E,T) = @ (Eu’Tu]' Then (E,T)
o €A

18 a Hausdorff TVS 2f, and only 1f, for each o € A

{Ea'Tu) 18 a Hausdorff TVS.

PROPOSITION 3.15 - If (E,T) = ind((E_,Tt_),A ), then (E,T)
o €N a° G &
18 linearly and topologically isomorphic to the quotient

space  (E ,T )/, where N Zs the kernel of the map
qEp & @ N
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J: e E - E with J(x):= I Au(xu}, for each
a€h a€A
Xx = (x ) € e E .
a’ ol 0€ A o
PROQOF: Let (G,n) = @ {Eu,Tm) and it is clear that
aeh

J: G =» E is a linear map. Thus we can consider the
qgquotient space G/N equipped with the quotient topology n.

Let m be the canonical surjection from (G,n) onto {G/H,ﬁ]

and let J be the linear map from G/N into E induced by J,

'
i.e., JaﬂJ = J, Since J is a continuous surjection (from

the hypothesis made on E we have that J is surjective and

its continuity follows from 3.4 because for each a € A JeI =R,

where Iu is the canonical embedding from Eﬂ into G), we have

1

that J is a continuous bijection. Let J7': E = G/N be the

A —

inverse map of J. Then J L is a linear map and its continuity

P

comes  from the continuity of Jh1nha= wJuIﬂ, oo € A and 3,4,

REMARK 3.16 = Let (Eu,T ) be a family of TVS and let ¢

o o€l

and Yy be disjocined subsets of A with A = ¢ U Y. If we define
= : = ¢ = E ,

(E, 1) ugﬂ{Eu,Tﬂ), (G,n) gg@(Eu,Tm) and (H,f) uzw{ ﬂ,Tﬂ)
then, since (E,t) is the topological direct sum of (G,n) and
(H,E), we have that (E,T) is the topological product of (G,n)

and (H,E) by corollary 3.13,

be a family of Hausdorff

COROLLARY 3:17 - Let {Eﬁ’Tu)aEﬂ
TVS. Then, for each subset ¢ of A, e 12 18 a closed subspace
o€
of (E,T) = e (E_,T ).
a€p ¢ ¢

PROOF: Let ¢c< A be given. Let Y be a subset of A with
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¢nNy=4¢ and A = ¢ U ¥, By 3,16 we have

(E, T) (e (E,T.)) x (e (E,,7,)), which implies that

o€ ® o o€V

= {Eu,Tﬂ] is linearly and topologically ismorphic to
aEy |

the quotient space of (E,T) by e Eu' Since for each
aEd

€Y [Eﬂ,Tq} is a Hausdorff TVS, it follows from 3.14

that e (Em’Ta} is a Hausdorff TVS. So the quotient
aEyY

space is a Hausdorff TVS, which implies that e Eﬁ is
aEd

T-closed in E.

COROLLARY 3.18 - Under the hypothesis made in 3.17,

for each o € A E 7s a closed subspace of (E,T).

DEFINITION 3.19 - If (E,t) = ind ((E_,7 ),I_ ) where

n€IN
(1) \':En}‘r“::|N is a stzlctly increasing sequence of
subspaces of E with E = U En'
n=1

(ii) In is the canonical embedding from E into E

for each n €W,

(iii) the induced topology on Enﬁby T, coincides with

+ 1

Tn for each n €I,

then we say that (E,T) is the striet inductive Llimit

of the seqguence {En} and we denote it by

n €N
(E,T) = 1Ed {En,Tn].
nElN
REMARK 3.20 - If (E,t) = ind (E_,7_), then
nET¢
(E,T) = Iﬂd (Enk,Tnk} for every subsequence (nkLkEIﬂ'

kKEIN
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EXAMPLE 3.21 - If (E,T) = e (E_,T._), then
n’ n
nechnN
(E, ) = ind (Gj;ﬁ-); where (G.,B8.) = ® (E ,Tn] for each
jEN ] - 1<n<

j EN. In fact, it is obvious that the family

{Gj,j €W} ={ e E_,J €N} is a strictly increasing sequence
1<n<j

— —

of subspaces of E with E = ﬁ Gj = U E113E2ﬂ...EEj. Then,
3=1 J=1

from 3.10, it follows that the induced topolgy on

Gj by 5j+1
(E,T') := ind ((G.,B.),A.), where for each jEN A

the canonical embedding. We claim that v = 1'., The mappings

coincides with Bj for each j €WN. Let

.+ G. =+ E is
J GJ

A (Gj,Bj) -~ (E,t') and Inj: (E,T ) — {Gj,ﬁj), n<j, are

continuous. Thus.ﬁjﬂ T {En,Tn} -+ (E,t') is continuous for

nj
each n €N, Since the embedding T, : (En,Tn} +~ E is equal to
Aj"Inj and T is the finest topology on E for which all T,
are continuous we conclude that 7' €« 7. Now, if i1 is the
identity map from (E,Tt') into E,T), then its continuity
follows from 3.4 because for each j €N, i**Aj: {Gj,Bj) +~ (E,T)

is continuous. This implies that T €« t'. So 1 = 1'.

PROPOSITION 3.22 - Suppose that (F,Tg) is a locally right-

bounded topological division ring and let (E,T) = ind {En,Tn}.
n €

Then for every n €N the induced topology on E_ by 1 coincides

with T .
' n

PROOF: Let n €N he given., Let Tﬁ be the induced topology
by T on E_ and let I_ be the canonical embedding from E_

into E. Since rﬁ is the coarsest T_ —compatible topology

F

on En for which In is continuous and by hypothesis
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In: {En,Tn} - (E,T) is continuous, we have TS The
Now we want to show that T C Tﬁ. For this, let Wﬁ be a
Tn—neighbmrhﬂmd of O in En and let Un be a basic Tn-neigh-
borhood of O in E with

(1) .Un + Un + ... F Un c ﬁn.

F

W

(n+1)=-terms

Since the induced topology on En by T coincides with

n+1

Tor there is U! a basic T -neighborhood of O in

n+1’ n+1

5 ] .
E with Un+1 n En - Un' Therefore, there is Un+1'

-neighborhood of O in E_

n+1"’

a basic T such that

n+1 +1"

'
(2) (U + Un+1) N En < Un+1 n En c Un.

n+1

a basic T -

In an analogous fashion, there is Un n+1

+1°

neighborhood of O in E 407 such that

{Un+2 +- Un+2} N En+1 c Un+1' From this and (2) it

follows that (Un+2+Un+2+Un+1) N En < Un' If we con-

a basic T =

tinue in this way, we can find Un+j' n+9

neighborhood of 0O in En j > 1, such that for every r €N,

+57

So, ( U z U ,.) N E_ < U_ and using (1) we have
331 1Ejfr n+7j n n

( U T Un+' + Un + Un + .., * Un) N En c
r>3 isisr O - ‘
n-terms

) N E +U0_ + ,..+U0U_ <cU_ + .,. +0_ < W_.
] n n n n n

&

Un+

L \'d - b W

n-terms (n+1) ~terms
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By 3.7, W := U (Un + ... +U_ + z U ) is a T-neigh-
r>1 - g 1<j<r
n=terms

borhood of O in E. Therefore w N En is a Té—neighbcrhncﬂ

of O in En cointained in W_ which implies that T, < Te

COROLLARY 3.23 = The striet inductive Llimit of a sequence
of TVS over a locally right-bounded topologiecal division
ring 18 a Hausdorff TVS <Zf, and only ©f, each element of

the sequence i1s a Hausdorff TVS.

COROLLARY 3.24 - Suppese that {F,TF} 18 a locally right-

bounded topological division ring and let (E,T) = ind{En,Tn).
R
neN

If for each n€N E_ is closed in (E ), then E_ 18

T
n+1’ n+1

closed in (E,T).

PROOF: Let n €IN be given and suppose that En is closed in

(E It is clear, by induction, that E_ is closed

n+1’Tn+1}'

in (En+p’Tn+p]’ p>1. Let x € E be such that x ¢ En' Then

there is p>1 such that xEEEn . Since'En is closed in

+p

a T -neighborhood of O in

(E , T ), there is vn+p' n+p

n+p’ n+p

En+p’ such that (x+Vn+p) ﬂ_En = ¢, By 3.22, there is a

T-neighborhood V of O in E such that V N En+p = Vn+p'

Then (x+V) N En =@, i.e., CEn is T-open in E.

LEMMA 3.25 - Let be a bounded sequence in (E,T)

(annEIﬂ

and let (ln]nEZ be a vonvergent sequence to O in {F,TF).

IN

Then (A X ) 18 a convergent sequence to 0O in (E,T).

n €N
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PROOF: Let B = {x_; n€N} and let W be a t-neighborhood
of O in E. Since B is T1-bounded, there is a.TF—neighbmrhamd
V of O in F such that VB € W. Because ln - 0 in F when

n » o, there is n €N such that A €V for every n > n_.
Let n > n be given. Then 1nB c W, which'implies that

}‘nxn € W.

PROPOSITION 3.26 - Suppose that (F,TF) 18 a met¥izable

locally right-bounded topological division ring and let

(E,T) = EE? {En,Tn}, where for each n €W E_ 18 closed
neN
n {En+1’Tn+1)' Let B be a non—empty subset of E. Then B

is bounded in (E,T) 41f, and only of, there is n €N such

that B 1s bounded in {En,Tn].

PROOF: The sufficiency of the condition is immediate
because the canonical embedding from {En,Tn} into (E,T)

is continuocus for every n €N and in this case it is not
necessary to suppose that (F,TF) is metrizable. Conversely,
suppose that B is bounded in (E,T) and B & En for every

n€N. By 3.20, without lost of generality, let (x ) _ .

be a sequence in B with X, € E_ i1 and X ¢ E o 0=1,2,... .

Let (X ) g Pe a sequence in F~{0} with A, = O when n - e,

Since by 3.24 for every n €N 2 is closed in (E,T) we can
find a strictly decreasing sequence {Un+1)nEﬂN of basic

T-neighborhoods of O in E with Ueq * Upyq €U, and such

that hnxn g U + En‘ Let Wn = U n En’ n=1,2,... .

n+1 n+1

Then, by 3.22, Wn is a Tn—neighborhﬂmd of O in En' Let

U= U z Wk’ where A is the set of all finite subsets
JEA ke€J

of N. So, by 3.7, U is a T-neighborhood of 0 in E and
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since Uc U (E + I W,) ¢ U (E +U ) = E 40U , W€
TEA n KET K TEA n n+l n n+l
k>n+1

have Enxn £ U for all n€N. But this is a contradiction

because, by 3.25, Anxn - 0 in (E,T) when n-e, So B < Erl
O

for some nﬂ €EIN, We have also that B is E.Tn -bounded in En
O o)

because, by 3.22, T coincides with T in En and, by
o o)

hypothesis, B is T-bounded in E.

PROPOSITION 3.27 - Suppose that {F,TF) 18 a metrizable lo-
cally right-bounded topological division ring and let
(E,T) = @ (Eu'TuJ be a Hausdorff TVS. Let B be a non-
a€EN

empty subset of E. Themn B <s bounded <n (E,T) 1f, and
only 1f, there are a finite subset {u1,...,un} c A and
bounded subsets M of (E_ ,T1_ ), 1<i<n, such that

n %3 3 %4 T
Bec T I (M, ), where I, ts the canonical embedding from

i=1 7i i
Eu tnto E for each a € A,

PROOF: It is immediate that the conditicn is sufficient

and in this case it is not necessary to suppose that

(f,TF] is metrizable. Conversely, suppose that B is bounded
in (E,T). We claim that there is a finite subset A = A

such that P_(B) = {0} for all c€EA~NA, where P, is the pro-
jection from (E,T) onto [EH,TH) for each oo € A, and in

this case B« I Iu(Pa{B}}. For this, suppose that there is

aEA
a countable subset A, 1= {ui,iEﬂN} < A such that P (B)+{0},
i
o, € A, Let P, := (P_ ) be the projection from E onto
1 o A4 ., .
o i 1 €N
o \ E, - Since B is bounded and P, is continuous we have that P, (B)
o, € i ‘© o
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k
is bounded in @ (E ,T ) =ind e (E_ ,7T_ ) (see example
: o € A o 0 — J=1 D'.j C'ij
| fe kK €N K
3.21). But for every k €N Ph (B) € e (Eu Ty ), which is
O =1 "1 7]

a contradiction by 3.26.

COROLLARY 3.28 - Suppose that (F,T.) is a metrizable
locally right-bounded topologtecal division ring and let
{EH'THJHEﬂ be an infinite family of Hausdorff TVS over
1t. Then (E,T) = @& (Eu'Ta) 18 not metrizable.

a€EN
PROOF: Let ¢ and Y be disjoint subsets of A such that

A =% U Y, Then, since (E,T) = ( e {Eﬂ'Tﬂ))x( & (Eu’Tu)}
acd aeY

(see 3.16), it is enough to prove the assertion when we
consider a countable subset ¥ of A. Then, suppose that Y is

the set N of all natural numbers and let (G,n):= @ {En,Tn].
neiN

Suppose also that (G,n) is metrizable and let (UijEIJ

be a monotonically decreasing fundamental sequence of

n-neighborhoods of 0 in G. For each j €N, let

{Gj,Bj) = 1{E{j{En,Tn). Then, (G,n) = EEQ (Gj,Bj) and for
M 5 €N

each j €IN Gj is a proper subspace of G closed in (Gj+1,Tj+1).

€IN

X 3 Uj, j €EWN. Since X ¢ Gj for each j €N, it follows from
3.26, that (Kj}

Let (xj)j be a sequence in G such that X g Gj and

5 €W is a non-bounded segquence in (G,n),

which contradicts the fact that (Uj}j is a monotonically

EIN

decreasing fundamental sequence of n-neighborhoods of O in G

and xj € Uj for every 3 €W.
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COROLLARY 3.29 - Let (E _,

o Tu}mﬁﬂ be a family of sequentially

complete (resp. quasi—-complete) Hausdorff TVS over the same
metrizable locally right-bounded toplogical division ring

(F,T,). Then (E,T) = o [Em'Ta) 18 a sequentially complete

F €N

(resp. quasi—-complete) TVS.

PROOF: Let (xn]n be a Cauchy sequence in (E,T). Then

€EIN
B = {xn: n EN} is a bounded subset of (E,T). Let P, be the

projection from E to Eu' By 3.27 there is a finite subset

A, := {og,...,a) } such that P_(x) = O for x€B if af A_.
. - : . . o i
Since the P 's are (uniformly) continuous, }n = Pu_(xn}, n €N,

defines a Cauchy sequence in {Eu r Ty ) . By hypothesis there is
i 1
%1 ®3 %5 o
} EEﬁi such that ?’n > ¥ » 1 <1<k, Set} = 0 if
— Q .
uEEﬂ*uﬂG and x := (} }uEZﬂ' Then X > X in (E,T) when n =+ o,

PROPOSITION 3.30 - Let {F,TF] be locally right-bounded

topological division ring and let {E’T) =rigim_(En,Tn] and

(G,n) be TVS over <t. Suppose that (E,T) is a topological
subspace of (G,n). If for each n€N E_ <is closed in (G,n),

then E is elosed in (G,n).

PROOF: Suppose that E # E'. Then there is x € E'| such that
X £ E. Hence, from the hypothesis, it follows that x £ En
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for every n€N. So since for each n€WN E_ is closed in (G,n),

we can find a sequence {Wﬁ} of n-neighborhoods of O in G

n €IN
such that (x+W£} N En = @ and W$+1-FW£+1-bWA+1c:W£, n >
Let Wn:= Wﬁ N E, n>1. Then (Wn}neEN is a sequence of tT-neighbor-
hoods of O in E with (x+W_) N E_ = @ and Wogq W 4 +W_,EW

, n>1, Then for every n&€lN U,

n
for every n €N, Let U = W_ N E
n n n -

is a T_-neighborhood of O in E_ and setting U := U r I.(U,)
n n . itTi
JEA 1€J

where A is the set of all finite subsets of N and for each
j*EmIIj_is the canonical embedding from Ei into E, we have that
U is a t-neighborhood of O in E by 3.7. It is easf to prove that
" is a neighborhoocd of O in EV with respect to the induced

topology n_n . Since x €EE" we infer that {x%ﬁ'}f1E=tﬁ. Hence

E
there i1is some nDEHN such that {x#ﬁn}f1En # . We claim that
O
U < EnD + Wnﬂ+1 + WnD+1. In fact, if 3EZU, then for some k €IN,

which can be chosen greater than n ,E}E' )3 Ii{Ui}.
© 1<i<k

Therefore 3 € X I.(U.) + T I.(U0.) <
I 1<i<n * % n +1<i<k * *
c E -+ b W. < E + W + W . SO
e nD+1fiik 1 na nm+1 nm+1
_r] LT 1 | . _T-]
U ; U + ﬂn +1 € Enﬂ + an' Since (x+U ') N Enﬂ + @,

it follows that [x+W£ ) N En ¥+ @, which is impossible,
o o)

So E ='Eﬂ.

COROLLARY 3.31 - Let (F,TF} be a complete locally right-
bounded topological division ring and let (E,T) = ind {En,Tnj,
n €N

where for each n€N (E ,T. ) is a complete Hausdorff TVS

over {F,TFJ. Then (E,T) 18 complete.
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PROOF: By 3.23 (E,t) is a Hausdorff TVS. Let (E,T) be a

completion of (E,T). Since (E,T) is a topological subspace
of (E,7) and for each n€W E_ is closed in (E,7), from 3.30

A A
it follows that E 1is closed in (E,T1). Thus (E,T) is complete.

COROLLARY 3.32 = Let (F,Ty) be a complete Hausdorff locally

right-bounded topological division ring and let (EﬂTn]nEjN

be a sequence of complete Hausdorff TVS over {F,TF).Then

(E, 1) = @ [En,Tn} 18 a complete TVS.
n €N
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