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SOME RESULTS ON TITS' GEOMETRIES OF TYPE F4

ANTONIO PASINI

Summary. It is known that all finite thick geometries of type
Cn (n>4) with known parameters are buildings (see fl{}] and [6]).
Several facts suggest the conjecture that the same holds in general.

Morecover, a finite thick geometry of type F, with known parameters

o

is a building unless 1its parameters are as below

o—d_D—0
2 2 2 2

(see [ﬁ]). It is sensible to conjecture that all finite thick

geometries of type F, are buildings. I am not able to prove this

4

conjecture. But I collect 1in this paper some partial results

related to this problem. They improve other results given

in [9] and [6].

1. DEFINITIONS AND PRELIMINARY RESULTS.

All geometries <considered in this ©paper are understood
to be residually connected (that 1is, strongly connected, by [}],

because we deal with geometries of finite rank).

In this section the symbol T always denotes a geometry
belonging to the diagram

0 L P H
a8 [ e §

where the letters O,L,P and H denote types. We say that the

elements of type 0 are points, the elements of type L are lines,
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those of type P are planesand those of type H are hyperlines,
We denote the incidence relation of T' by the symbol . If I' admits
parameters m,n where m > n, we always adopt the convention

to mark types as below

O L P H
o—d O——0
m m I I

Given an element x of T and a type 1i=0,L,P or H, the set of
elements of type i incident with x is the 1i- shadow of x and it
is denoted by Ui(xJ (see [3]). Given two distinct points a,b

of I ,we say that they are collinear and we write a b if

there is some line incident with both them. Given a point a of

I''y, the set of all points collinear with a 1is denoted by a-+

L
and, given a set X of points of T , the symbol X denotes

the set of points <collinear with all of the points in X.

| : . . .
x~. The collinearity graph is the graph defined

That is, X

M
xeX
by the collinearity relation on the set of points of T . Given two
points a and b, the symbol d,(a,b) denotes the distance from a to
b in the <collinearity graph. Given two distinct hyperlines
u and v, we say that they are cocollinear and we write u 1 v
if there is some plane incident with both them. The definitions of
the symbols u',XT, of the cocollonearity graph and of the sympbol

dT{u,v) are similar to those given for al,Xd, for the collinearity

graph and for d,(a,b).

In several statements the words 'point'" and T'Thyperline",
the words 'collinear'" and '"cocollinear'" and the words '"line'" and

"plane"” can be permuted without any loss of sense. When those
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permutations are allowed in a given statement, the statement got

by them is said to be the dual of the previous one,

If the geometry I' is a building, then the following assertions

hold:

(LL) (see [17], Sect.6). Given two collinear points a and b,

there is exactly one line incident with both them.

(LH) (see [17], Sect.6). Let x be a line and let u be a hyperline.
If uﬁ(x) A GD(U) contains more than one point, then we have

X *= U.

(HH) (see [17], Sect.6). Let a,b be distinct points. If there are

two distinct hyperlines incident with both them, then we have a ; b.

Tits considers in [17] another property besides LL,LH and HH,
namely the property 0 of Sect.6 of [1?]. That property turns
out to be rather weak. On the other hand, for geometries of
type F4, it is a consequence of LL. Thus, we shall not make any

use of it.

The reader can see [17] for the definition of covering,

2- covering, simple connectedness and J-connectedness.

The following results are well known:

PROPOSITION A (Tits [17])_ The universal 2-cover of I' is a

building if all residues of I of type C3 are 2Z2-covered by buildings.

(This proposition is a specialization of Theorem 1 of [17]).

PROPOSITION B (Brouwer and Cohen [2]). Let T be finite and thick

Then ' is a building if it is 2 -covered by a building.

(This proposition 1is a specialization of Proposition 9 of {}]).
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PROPOSITION C (Tits |[17]).The geometry T is a building if the
properties L, LH and HH hold in it.

(This proposition 1is a specialization of Proposition 9 of
[17]).
PROPOSITION D (Aschbacher [1]).Let T be finite and thick and
let us assume that all residues of [ of type Az are desarguesian
projective planes and all residues of [ of type (é are classical
generalized gquadrangles. Then I' is a building if it has a
flag-transitive automorphism group.

(This proposition is a specialization of Theorem 3 of [1]).

PROPOSITION E (Tits [17]).The geometry T is 2 -connected if
it is a building.

(This proposition is a specialization of Theorem 1 of [17]).

2. A CONJECTURE ON GEOMETRIES OF TYPE C3.

In this section, except in Proposition G.1, G.2 and in
their Corollary, the symbol T always denotes a geometry belonging

to the diagram:

oints lines lanes
P D———jﬁ:T_*Dp

o p—— i e

4 q P

where q and p are positive integers and denote orders. The

geometry is finite, by Corollary 2 of [9].
The following result is proved in [11].

LEMMA 1. Given two distinct points of [ , there are at most

pq+l 1lines incident with both thenmn. Moreover, the following
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conditions are egquivalent:

(i) ¢iven any two collinear points, there are exactly qp+]l lines

incident with both them.

(ii) Every point is incident with all planes.

(see [11], Lemma 5.9 and 5.6).

If the (equivalent) conditions (i) and (ii) of Lemma 2 hold

in T , then T is said to be flat., Trivially, if T is flat, then
it has exactly (qp+l)(p+1l) planes, (QD+quz+q+1] lines and
q2+q+1 points and the collinearity graph of T is complete.

Moreover:

LEMMA 2.Let T be flat. Then q<p, . and we have (q =D if
and only if the incidence relation of I induces on the set of

planes and lines of | a geometry belonging to the diagram

lanes L lines
pld O 0

(see [11], Lemma 5.10).

Most of finite geometries of type C3 admitting parameters are

either buildings or flat. Indeed:

, Rees |13

PROPOSITION F. (Ott |[8], Rees & Scharlau |15

2

Leibler [6]).

Let  (q.p) = (q.q).(t?,t7) (where t> 1) or (t-1,t+1) (where t > 3).

Then T is either a building or flat.

ret (q,p) = (t,t?),(t%,t), (t+l,t-1) or (t,1) (where ¢t >1).

Then T 1is a building.

Moreover, there 1s not any geometry of type {% with parameters
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(qg,p) = (t3,t2) (t >1).

The resu!t on (gq,p) = (g,q) has been proved by O0Ott. He
did not consider the case of qg=1. At any rate the statement 1s

trivial in this case.

The result by Ott has been generalized by Rees and Scharlau
to all known 'thick' parameters except the cases of (tz,t),
(t+1,t-1) and (t-1,t+1). The case of (t,1) is settled in [13].
In that paper Rees proves that [I' is covered by a building if
it has parameters (t,1). Then T must be a building by the

result of |2| on C,. All remaining cases have been settled by

Liebler in |6].

We warn that the statement of Proposition F is false if (q,p)=
= (1,t). A counterexample is implicitly given in [14]: set

r = s = t>1 and n >1 in Example 2 of that paper.

The parameters listed above are all parameters for which
we presently know examples of generalized quadrangles. So
we shall call them known parameters. Then Proposition F

can be rTestated as below:

PROPOSTION F. bis.Let ' have thick lines and known parameters.

Then I is either a building or flat.
The following lemma follows from Theorem 1 of [17] by the same
argument used in the proof of lemma 10 of [9],

LEMMA 3. Let the parameters q.p of I be such that every
geometry with those parameters 1is either a building or flat.

Then T is 2-connected.
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=

Then, by Proposition F. bis:

COROLLARY. ©Let T have thick lines and known parameters.

Then [ 1is ?-connected.

Proposition F. bis and the classification of finite geometries
with thin lines given in [4] show that there is just one family
of finite geometries with Kknown parameters that are neither
buildings nor flat, namely the <class of geometries got by
setting r = s = t >1 and n » 2 in Example 2 of [14]. This

fact suggests the following conjecture:
CONJECTURE.If q# 1 then the following statement holds:

(*) The geometry [ is either a building or flat.

Let us mention two propositions related to this conjecture.

PROPOSITION G.1 (Pasini [10] and Liebler [6]). Let T be a fini-

te geometry belonging to the diagram

O———() = = == == - - oL D (n nodes, n > 45 q#l)
qQ q q q p

Let us assume that the statement ( +) holds in all residues of

['of type C3' Then [ is a building.

Then, 1f the previous conjecture were true, all finite

geometries of type Cn ( n > 4) with thick lines and admitting

parameters would be buildings.

PROPOSITION G.2 (Liebler [6]).Let T bs a finite geometry

belonging to the diagram
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Let us assume that the statement (*) holds in all residues of

I' of type CS. Then either I is a building or qu + 1 divides

4

1

By Proposition G.1, G.2 and F.bis we have

COROLLARY,., Let I be a finite geometry of type Cﬂ (n > 4) with

thick lines and known parameters. Then [ is a building.

Let ' be a finite thick geometry of type F4 with known
parameters. Then either T is a building or its parameters

are as below

Only one example is presently known of a finite thick non-
building geometry belonging to a diagram of Lie +type. First
constructed by Neumanier in |[7], it has many different descriptions.
Here 1is the easiest one. Let us take a set S of 7 objects
as set of points, all 3-subsets of S as lines and let 7w be
a projective plane of order 2 over S. Let us take the orbit
of m# under the action of the alternating group A7 on S as
set of planes and define incidences by set-theoretic inclusion.

We get a flat geometry in the diagram

This geometry 1is often known as the A7-geometrg_ The reader
can see [1],[11] and [12] for further characterizations of this

geometry. The following result is due to Rees:
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They form two conjugacy classes ¥ and &* in A?. Each of these
two conjugacy classes has size 15. Every outer automorphism

of A? induced by inner automorphisms of S? exchange € with @*.
The A?~g9ﬂmetry can be described as follows:

The subgroups of the first kind are points and those of
the third kind are lines. The planes are the subgroups belonging
to one of the two classes ¢ and ¢* of subgroups of the fourth
kind. If we choose the class @ , then the twin geometry is
got by <choosing ¢«*. Let, H,K be subgroups of A? taken as

above. They are incident in the geometry if HNK # 1,

5. AN IMPROVEMENTOF A THEOREM BY LIEBLER.

In this section T is a geometry belonging to the diagram

0 L P H

D e S0

q q P P

where q,p are integers such that g > p>1 and denote orders.

Moreover, we assume that the property (*) (see Conjecture

of §82) holds in all residues of T of type CS'

We use the following notations:
Fy = {ala is a point and the residue r, of ais flat}
By ={b[b is a point and ' is a building}

FH = {u|lu is a byperline and Pu is flat }

)
il

y ={v|v is a byperline and [ is a building !}

By (*) the set FO_U BU is the set of all points of T and
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-he set FHUBH is the set of all hyperlines of T .

Moreover we have FH = @ if q>p, by Lemma 2.

LEMMA 4. Let a,b be points of [ such that there 1s not any
hyperline of T incident with both them. Then there are hyperlines

u,v and a point ¢ such that a %= U %* C = V %« b. And dually.

(See Lemma 4 of [9]).

COROLLARY. The geometry T is finite.

(trivial, by the previous lemma and by Corollary 2 of [9]).

LEMMA 5.Let aeFﬂ. Then UH(a) c BH'
The statement is trivial 1if q > p because 1in this case

we have FH = . The case of q=p has been settled in [9], Lemma 12.

Now we can state the following theorem that improves Proposition

G.2.

THEOREM 1. Either T is a building or q = p = 2.

The geometry I'is finite by the Corollary of Lemma 4. By
Lemma 5 at least one residue of T of type C3 is a (finite

thick) building. Then, by Theorem 4.11 of [18] we have either

q = P2 or g = p (the case of q = td and p = t2 is excluded

because, by Proposition F, there 1is not any geometry of type

£ O £

C3 with parameters o——-a O ). Then either I' 1is a building

or gq=p=2, by the Corollary of Proposition G.Z. 0.E.D

4., THE CASE OF q = p = 2.

In this section T is a geometry belonging to the diagram
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Then every residue of T of type (%5 is eithor a building or
flat, by Proposition F. The symbols FO‘BD’FH and BH have

the meaning stated in §3.
LEMMA 6. The geometry T is a building iff FU - FH = Q.

The "only if'"" part is trivial. The "if" part 1is an easy

corollary of Proposition A and B.

LEMMA 7. Let a,b be collinear points and let aeFD_ Then there
is exactly one line irncident with both g and Db

(see Lemma 11 of [9]).
LEMMA 8. Wwe have BU F @ # BH.

This lemma can be proved by the same argument used in the

proof of Theorem 2 of [9]. The reader is referred to that
paper for all details.

LEMMA 9, Let g be a point in FU and let b,c be distinct points

in ai'. Let us assume that there 1s not any 1line 1incident

with all of a,b, and c. Then there 1is just one plane incident

with all of a,b, and C .

Indeed let x,y be the 1lines through a and b and through
a and c¢, respectively (the lines x,y are uniquely determined
by Lemma 7). We have x # y by our assumptions on a,b and c.
There 1is just one plane incident with both x and y by Lemma 2,

Moreover, every plane incident with all of a,b,c must be incident
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with x and y, by Lemma 7. We are done. Q.E.D.

COROLLARY. Let a be a point in FU.Then alLJ{a_} is a maximal

cligue in the collinearity graph of T.

(trivial, by Lemma 9).

LEMMA 10, The collinearity graph of I 1induces a discrete graph
on the set FD.
(see Lemma 14 of [9]).

LEMMA 11. Let a be a point 1in FU and let b be a point
distinct from g such that UH(a) N UH[bj contains at least two

hyperlines. Let wus assume that, for every point ¢ collinear

with b, there is just one 1line through b and ¢ .Then we have

bEBU EﬂdaJ_b,

Let u,u' be distinct hyperlines incident with both a and b.
In I‘;:1 we find a plane w incident with both u and u', because

ﬂEFU. If w«b, then a ; b and b e E.0 by Lemma 10. Let us assume

that a , b, by contradiction. In r, we find a line x and

a plane v such that wxxxvxb (recall that Ty is a building

by Lemma 5). Similarly, in I+ we find a line x' and a plane

v' such that wxx'«v'xb. In r, we find a point ¢ incident with

both x and x'. We have c e B, by Lemma 10, because cjaeF,.
In r, and in [+ we find lines vy,y' through ¢ and b. We have

y = y' by our hypothesis on b. Then we get y%xw in the building

rc' Then bxw. We are done. Q.E.D.
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COROLLARY.Let a,b be distinct points in FU . Then there 1is

at most one byperline incident with both them,

(trivial, by Lemmas 7 and 11).

LEMMA 12. Let us assume that the Property LL holds in T .
Let a,b be distinct points in FU . Then UH[a] N UH{b) = (@,
Indeed let us assume that UH[a) N UH(b) # (0, by contradiction,
and let ue UH(a) N UH(bJ . Then UEBH by Lemma 5. Then there are
distinct points c¢c,d 1in Pu such that both ¢ and d are collinear
with both a and b in Pu but ¢ and d are not collinear in Fu

Let X1 g%y Yy, be the 1lines in I, incident with a and c,
with a and d, with b and ¢ and with b and d, respectively.
Of course, we have xa#ya and xb#yb. By Lemma 2 there 1is a

plane W in T, incident with both X and Y a and there 1is

a plane Wy in Fb incident with both Xy and Vi * In Fwa there

is a line z_ indicent with both ¢ and d. In Fwt} there 1is
a line Zy incident with both ¢ and d. We have Z, = Zy by the
property LL. Let us set Z=27 (= zb). In I, there is a hyperline
v 1incident with both W and Wy - In I‘V the points ¢ and d
are collinear. Then u#v because c and d are not collinear
in T, We have a contradiction by the Corollary of Lemma 11.
Q.E.D.

The following two theorems deal with the properties LL,HH

and LH.

THEOREM 2. ™he following conditions are egquivalent:
(i) The geometry T is a building.
(ii) The Property LH holds in T

(iii) The Property LL and its dual hold in T
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ul

The equivalence of (i) and (ii) has already been proved in [9]
(see Theorem 4 of [9]). The equivalence of (i) and (iii)

easily follows from Lemma 6.

THEOREM 3. The geometry I is 2-connected if either the Property
LL or the Property HH together with its dual hold in T
We have already proved in [9] (Theorem 6 of [9]) that T is

2-connected if LL holds in it.

Let us assume that the Property HH and its dual hold inT.
If FOlJFH = (0 then I' is a building by Lemma 6, Then I is 2-connected
by Proposition E. Let us assume that PULJFH # 0 Let £ : T > T be

the universal 2-covering of I . Then f is a 3-covering by

the Corollary of Lemma 3 and by Proposition F.
Let us set

0 - {a]a is a point of T and Fa is flat}.

||

0= {b|b is a point of T and Ph is a building }.

oo

We have f(F = F, and f(EGJ = B, because f is a 3-covering.

0)
By Proposition 5.3 of [14] there is a subgroup A of Aut(T)
acting regularly on each of 1its orbits in the chamber system
and such that, for every chamber C of f , the orbit A(C) of
C under the action of A is the fibre f-l(f(C)) of f over C.
The stabilizer in A of an element of r is the trivial subgroup
of A because f is a 3-covering and A is regular on each of its
orbits. Let us prove that A stabilizes every element of F{}UFH‘

Then we shall have A=1 so that f 1is an isomorphism and the

2-connectedness of ' will be proved.



66 A.Pasini

Let us assume F #@. Let aeFo and let us assume, by contradiction,
that there is some geA such that g(a) # a. There 1is not any
hyperline incident with both a and g(a) because f is a 3-

covering. By Lemma 1, there 1is a point b of T and there are

hyperlines u,v of T such that axuxbxvxg(a). Of. course, we

have u#v and a#b#g(a). Then f(b) # f(a) (= f(g(a)) and f(u)#f(v)
because f 1is a J3-covering. By the Property HH there is a line
x of I incident with both f(a) and f(b). We have x% f(u) and

x* f(v) Dbecause f(a}eFO. The 1line x 1ifts to a wunique line

x*v by the same reason. Then a*x in I, and g(a)*x in I, because f
is a 3-covering. Then a = g(a) by the same reason. We have
the contradiction. Then A fixes a. Then A = 1 and we are done.
If we assume FH # @ then we can use the argument dual of the

previous one. Q.E.D.

In the forthcoming the symbol Aut(I') will denote the group

of special automorphisms of 1T.

THEOREM 4.The geometry I is a building if one of the following
conditions holds:
(i) The group Aut(r') is transitive on the set of lines of T
(ii) The group Aut(l') 1is transitive on the set of points of T and
either the Property LL or its dual holds in T
(iii) The group Aut(r) is transitive both on the set of points and

on the set of hyperlines of T
Let us assume that Aut(r') 1is transitive on the set of lines
of T.

Then FD = (. Indeed let FO 7 @, by contradiction. Then
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every line 1is incident with some point 1in FU because Aut(Il)
is transitive on the set of lines ¢f T . But every plane 1is

indicent with at most one point in ]ﬂ), by lemma 10. We have

the contradiction. Then :FU @, let us assume that Iﬁ{ # 0,
Every line 1is incident with exactly one huperline 1in FH by
Lemma 10 and because Aut(I') is transitive on the set of lines.
Given a point a let Na be the number of hyperlines in'UH(a)FWFH.
Then Na' 15 is the number of lines incident with a. Then Na=9.
Let P be the number of points and let NF be the number of
hyperlines 1in F‘H' We have 9+ P = 7'FH. Then there is a positive
integer a such that P=7a and..NF=9ﬂ . Let P%S be the number of
hyperlines 1in BH. If we count the number of incident point-
hyperline pairs we get the equality NF+9-jNB=9'E¥. Then NB=6& .
Let us count the number of pairs (u,v) where UEFH, 'VEBH and
uTv. By Lemmas 7 and 10 we have N+ 30 < vEBHXv where X is
the number of hyperlines in FH that are cocollinear with v.
We easily get that IV = 45 for every veBH. Indeed {vT)r‘IFH
is an anticlique in the cocollinearity graph of I , by Lemma 10.
For every ue(vT*) N Pﬁi let W be the plane through u and v
(the plane w ~is uniquely determined by Lemma 7). Let us set
WV = {'wu|ue(vT‘)ﬂIH{}. Kv is the number of planes in wv, by
Lemmas 10 and 7. But given any two planes w,w' in WV there
is not any line incident with both them, by Lemma 10. Then
W contains at most 45 planes. Then Xv = 45 for every VEBH

\'

because we have Ng=30 < VéBHXV'

Given an element x of T' we denote the stabilizer of x in

Aut(T) by the symbol ﬁx. Given a line x let u be the hyperline
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in FH incident with x. Of course Ax is a subgroup of Au. Let
L. be the number of 1lines in ' . We have L = 35-NP. Then

L = 315a . The group A has index 315@ in Aut(I') because Aut(T)
is transitive on the set of 1lines of T . But Aut(I') 1is also
transitive on FH and IH{ contains exactly 9&¢ hyperlines. Then
Au has index O9ua in Aut(Tl). Then AK has index 35 in Au. By
Proposition H, the residue Pu of u is the A, -geometry. Let
Gu be the element-wise stabilizer of ﬂi. Then the group ﬁuzﬁuqu
is a subgroup of the alternating group A? in its action on
the .A7—genmetryu Moreover Gu is a normal subgroup of AK, too.
And the group EK = A /G  has index 35 in ‘E‘u' But it is known
that the alternating group A? has just one subgroup whose
order 1is divisible by 35, namely A7 itself (see page A.,[25
of [&]J. Then ﬁh_:= A?. So éﬂl is transitive on the set of planes
incident with u. Let y be such a plane. Then A}" is a subgroup
of A, (by Lemma 10). The group ﬁy' = Anyu is the stabilizer
in A, of a plane of the A, -geometry. Then ﬁy:L3(2) and ﬁy
has index 15 1in ﬂu (=A?J. Then AY has index 135¢ in Aut(l )

because Au has index 9a¢ in Aut(I'). Let v,v' be the two hyperlines

in BH incident with y. We have two possibilities.

Case 1. The group AY permutes v and v', Then Aut(I') is transitive

on By, because it 1is transitive on FH and, for every u'eFH,
the group £H1 is transitive on the set of planes incident with
u, and every vEBH is cocollinear with some UTEFH.Trivially, the
stabilizer AY v of y and v has index 2 in Ay. But we have seen

that Ay = L3(2] and L3(2) is simple. Then Ay,v acts as A}, on the

residue of {y,u }. Then there is an element g of AY that permutes
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v and v' and such that g acts as the identity mapping on the residue
of {y,u}. Then g fixes every point in I because I, is
flat. Then g fixes everything in ' because Fu is the A?—gemmetry.
Let us take a point a 1in ﬂl. Let us consider the action of

g in the building IE. The building :21 is the polar space of the

symplectic form

O =X Y XY PR Y g XY ot XY g P XYY 3K LY 5K gV T XY T XY 6T XY 5

yver the ©6-dimensional vector space K6 over the Galois field

K = GF(2).

By the information that we have collected about g we can prove

. . 6 _
by long but easy computations that g acts in K~ as a matrix

of form

0 1 0 0 0 0
0 r+s 1 0 0 0 (r,s =0 or 1)
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

if u corresponds to the vector (1,0,0,0,0,0) in K°. We know that
g permutes v and v'. Then s=1, otherwise h should fix any hyperline

cocollinear with u 1in Iﬁ. Given g hyperline w in ]la’ let

(xl,xz....,xﬁ') be its coordinates 1in Kﬁ. We have u T w in I"a

iff x,=1. We know that Ta contains 8 hyperlines in EH{ different

from u and they are not cocollinear with u or with each other.

Moreover g fixes FHﬂ(UH(a)—{u}). Let weFHﬂ(gH(a)~{u}). Then g(w)#w.



70 A,.Pasini

Indeed, if otherwise, w 1is cocollinear with both v and v' in
Fa’ because it is <cocollinear with some hyperline incident
with y but it 1is not cocollinear with u, and g permutes v and
v'. Then w 1is cocollinear with u because itis cocollinear with
both v and v' and u is incident with the plane y that is incident
with both v and v'. We have the contradiction. Then g(w) # w.
Then, by the matrix representation of g, we get that, if
(xl,xz,...,xﬁ) are the coordinates of w in Kﬂ. we have (x2=1
because w ¥ u and) r=0 or r=1 and Xx,=Xg. But we have w T g(w)

because g(w) e FH' Then, by the matrix respresentation of g

we get X, + X,r = 0.

But FH ﬂ({jH(ﬂ)' {u}) contains 8 hyperlines. Then there is
another hyperline w' in that set such that w # w' # g(w).
Let (yl,yz,...,yﬁ) be the coordinates of w' in Kﬁ. We have
w¥w'rg(w). By this conditions, by easy computations, we easily

get that the equality [x4 + y4)(1+r) = 1 holds. Then r = 0,

Then we get X¢ 0 by the relation Xe + X,T = 0 proved above.

The stabilizer ﬁa u of a and u is ¢transitive on the set of

planes incident with u because ﬁu = A7. Then acting by elements

of Aa , We can interchange the roles of the vectors (0,0,1,0,0,0),

(0,0,0,1,0,0),(0,0,0,1,0) and (0,0,0,0,0,1) of Kﬁ. But Aa 4

fixes the set FyN(oy(a)-{u}). Then the equation x, = 0 leads
to other 3 linearly independent equations. All these four equations

must hold on the set of vectors representing hyperlines in

FuN(oy(a) - {ud).
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Then this set cannot contain 8 Thyperlines. Indeed we

have collected 1in this may 5 linearly independent equations:
Xg = 0 and the further three equations got by

We have the contradiction.

Case 2. The group AF fixes both v and v . Then AY < Av'

Let m be the index of ,AY in Avj Every hyperline in I%i is

cocollinear- with 45 hyperlines in FH' We have proved that
Aut(T ) 1is transitive on the set of planes incident with

hyperlines in FH. Then Aut(I') has either one or two orbits
on BH' If Aut(TI') has just one orbit on BH then 6 m is the
index of AY in Aut(r). Then 6-m-a= 135a. We have a contradiction.

Then Auf(I’J has two orbits on BH' If X is the size of one

of them we get 135 ¢ mX®&., Then the two orbits Bl’BZ of

Aut(T) on BH have the same size. Then X = 3 @ because BH
contains ©0a@ hyperlines. Then m = 45 and Av is transitive
on EH N (VT ). Let us assume that 4 is incident with x.
The Stabilizer Ax,v of x and v 1is the stabilizer of x and

y. Then it has index 105 in Au.

So Ay y has index 945¢ in Aut(I' ). Then it has index 315

in Av' Then AV is transitive on the set o¢f 1lines of T, - The

group A x y either fixes all planes incident with x and v

or permutes two of them and fixes the third one.let WF be the set of
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planes of T that are not incident with any hyperline in FH'
The set WF is an orbit of Aut(I') and Aut(I') has at most four
orbits on WB' Every line 1is incident with exactly 3 hyperlines
in each of the orbits Bl’BZ of Aut(T) on BH and every plane
in WF is incident with exactly one hyperline in each of Bl
and 82' Every plane in WB is incident with at least two hyperlines
in the same set Bi‘ Then Aut(TI') has at least two orbits on
Wy Let us assume that Aut(I') has more than two orbits W, W, Wa,yt
on WB“ Let us assume, by contradiction, that for every i=1,2,3
there 1is a plane Y in Wi such that UH(}ri)ﬂBl%t,?}. Then there
is some vEBl such that v 1is incident with some plane 1in each
of the sets wl,wz and WB' But this 1is not possible because
we have already proved that AV has at most two orbits on the
set of planes ijp[v) N WB. We have the contradiction. Then we
can assume that GH(E) N Bl = () for every zews. Then UH(Z} c B2
for every ZEWS. Then if x is a line there 1is just one plane
in qp(x)—(wlu WZ). Then Aut( I') has just three orbits on WB
because 1t 1s transitive on the set of lines of T . Moreover
x must be incident with just one plane in Hi (or 1in sz and
with exactly two planes 1in W2 (or in wl, respectively). Then

W and W have different sizes: one of them has size double

1 2
of the other one. But the stabilizer of a pair (x,v), where
veBl and xe UL(v), fixes all planes incident with both x and
v. Then wl and W2 have the same size. We have a contradiction.

Then Aut(I) has just two orbits W,,W, on WB' We can assume

that w1 is the set of planes incident with at least two hyperlines

in Bl and w2 is the set of planes incident with at least 2
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hyperlines in BZ' For every line x we have 4 planes in UP(K)HWB
and GP(:{)ﬂ ‘.'Jl £ @ # GP(x) nwz. We have two essentially distinct

possibilities:

1) Both the sets Up(x)ﬂwl and Up{x)ﬂW2 contain 2 planes. Then
UH_{z}ﬂBi £ @ for every ze Up[x)ﬂ(wluwz) and for every 1i=1,2.
A straightforward verification shows +that it 1is not possible
to select one point u in a projective plane of order 2 and
to give wedges 1 or 2 to the other 6 points so that every
line through u has one point of wedge 1 and one point of wedge
2 and two of the other four 1lines have two points of wedge
1 and one point of wedge Z and the remaining two lines have

two points of wedge 2 and one point of wedge 1.

Then this case is not possible.

2) The set cjp(x){1w1 contains just one plane 2z and the set
UP{K] N W2 contains three planes Z1sZ9sZz. A straightforward
verification shows that the only possibility is the following
one: 'UH(Z) [~ Bl and o H(zi) n B, contains two hyperlines and

UH(zi)ﬂBl contains one hyperline, for every i=1,2,3.

Let u be the hyperline in UH(XJFH%{. Let v be a hyperline

7 The stabilizer Ax v of x and v <coincides with

the stabilizer in Au of the pair (x,y) where y is the plane

- 4]
in H(KJF1B

incident with v and u. By the action of A? on the A?—gemmetr}f

we get that fka v is transitive on UO(;:::] and permutes the two

planes in Up(x)ﬂwz whereas it fixes y. Let Gv be the elementwise

stabilizer of I}_ and let us set szﬁv/Gv. The group Av acts

on Pv as a subgroup of the symplectic group 56(2) in its natural
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action on the building I, and it 1is transitive on the set

of incident point-line pairs of Pv' Then its order divides
27 3. Moreover the stabilizer ﬁy v of ¥ in ﬁv acts flag-transitively

on the plane y. Then AY v = G» L3(2) or G-+ Frob(21) where G

]

+ m .
is a 2-group of order 25 where m < 6. Moreover the orbit of

y under the action of ﬁv has size 45. There are 135 planes

in T . Then f\v has index 2°™.3 or 2°™.3 in S, (2) according
to whether EY v = G- Lz(2) or G-Frob(2l). Let a be a point
incident with vy. Let ﬁa , be the stabilizer of a in ﬁv and
let ﬁﬂ vV be the stabilizer of the pair (a,y) in ﬁv' The
group Ay,v is flag transitive on the plane vy. Then Aa,y,v
has index 7 in A . Moreover A has index 63 in A_ because
Y,V a,v v

Av is transitive on the set of points of Fv' Then 'Aa,y,v has
index 5 in ﬁa v+ That 1is, the orbit of y under the action
of ﬁa v has size 5. The group ﬁa v has order Zh- 15 where
h = m+3 or m according to whether ﬁv has index Zﬁ_m-S or

9-h

29, 3 in S,(2). Then ﬁa v has index 2 3 in the stabilizer

]

*
K-5,(2) of a in S.(2) (K is a group of order 2°). Let A be

the action of ﬁa , on the residue of the flag (a,v). The group

*
A has index Zk*SS in 84{2) for some nonnegative integer k<4,

Moreover A* has an orbit of size 5 on the set of planes of

the residue r, of the flag (a,v). The group 84(2} has one

]

normal subgroup Aﬁ of index 2 in 84(2) and acting flag-transitively

on T, . Then A*NA, has index K. 3 or 2K-

1,3 in A. and has
a,v 6

an orbit of size 5 on the set of planes of Ty v But there
is not any subgroup of A, having these properties (see 4],

page A.25). We have the contradiction. Then FH = (.
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Then T is a building by Lemma 6.

We have proved that T is a building if Aut(I') is transitive

on the set of lines of T.

Let us assume that Aut(I') is transitive on the set of points
of I' . Then FD = @ by Lemma 8. If either the Property LL holds
or Aut(I') is transitive on the set of hyperlines of I , we
have FH=G and T is a building by Lemma 6. Let us assume that
the dual of LL holds in T and let us assume by contradiction
that FH # . Then every point 1is incident with exactly one
hyperline in Eﬁi by Lemma 12 and because Aut(I' ) 1is transitive

on. the set of points of r . Trivially, the group Aut(l) is

transitive on E&r Let NF be the number of hyperlines in FH’

let .NB be the number of hyperlines 1in Iﬁi and let D%] be the
number of points. By easy computations we have N{] = ?*NF and
NF+9-NB = Q-Iﬁj. Then there 1is a positive integer «a such that
NF = 9a , NB = 06Z2a and I*CI{j = 63a . Given an element x of T,

we denote the stabilizer of x in Aut(I' ) by the symbol P‘x
The symbol GK will denote the elementwise stabilizer of the
residue T, of x and we set A, = A /G . Let a be a point and
let u be the hyperline in UH(a) N FH' We have Aa < Au. Moreover
we have |Aa|63u = |AU]9:1 because Aut(T) 1is transitive on Fy
and on the set of points of T . Then Aﬂ has index 7 in Au
Then Au is transitive on the set of points of I’u. But Pu is the
A,-geometry by Proposition H. Then ﬁu is a subgroup of A,

in its natural action on the A?—gemmetry. But f’ku is transitive

on the set of points of FU. Then one of the following conditions

holds:
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1) We have Au = A?.
2) We have ﬁu = LS{Z} and ﬁu is either the stabilizer of a
plane of r, or the stabilizer of a plane in the geometry twin
of Fu.

3) We have ﬁu = Frob(21).

4) The group Au is cyclic of order 7.

Every hyperline v in BH is cocollinear with at most 5 hyperlines
in FH' Indeed given 'uEFHFWﬁfT), let w(u) be the plane through
u and v and let us set wv = w(u)fuef}{ﬂ(vT_)}. Two planes in
wv cannot have points in common by the dual of Lemma 7 and
because every point 1is incident with just one hyperline in PH*
Then WV contains at most 5 planes. But WV and FHF}(VT] contailns
the same number of elements by the duals of Lemmas 7 and 10.
Then FH tﬁfr) contains at most S5 elements. For every i=0,1,...,5

let B, be the set of hyperlines v 1in BH such that FH[W(VT )

i
contains i hyperlines and let Bi 1""’Bi n be the orbits
¥ ¥ i
of Aut(T) on Bi (if Bi = () we set n, = 0). Let |Bi| be the
5
size of Bi' We have 062 a = iED|Bi| and, if we compute the number

of pairs (u,v) such that UEFH, veBH and ulv, we get 9030 =

IS
1=0

of 1,3=0,1,...,5, because 62 does not divide 9+ 30. For every

i|B1|. Then Bi%Q%BJ for at least two distinct values

i=0,1,...,5 and for every k=l,....ni, let N, g be the number
of hyperlines in UH(aJYWBi  for some point a (the numbur*ni y
dﬁes not depend on the choice of a because Aut(l') is transitive

on the set of points of ' ). An easy computation shows that

iBi,kw = 0y Q. Moreover, if i#0 and B.#0, let Ci,k be the
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number of hyperlines in (uT)ﬂBi K where UEFH (the number Ci K
does not depend on the choice of u because Aut(I') is transitive

on Fg). Of course we have 1 < C, x £ 30. An easy computation

shows that |Bi’k|* i=9q - Ci,k' Then Ny g = (9 - Ci’kjfi. Let

VE(uT:JﬂBH_ and let AU v be the stabilizer of the pair (u,v).
We have |Au,v . [AU:AH'F]- 9a¢ = [Aurvl* LAV:Au,v}ni,ku .  Then
LAU:AU,v1 = [AV:Au’v]' C; /i. Let us write h _  instead of
‘Av:ﬁu,vL We have hu,v < i, i- [Au:Au,v]fhu,v:Ci,k and N S
= Q*EAH:Auiv]/hu’v. But i%kni,k @ < 6Za. Then an easy computation
shows that we have hu v 5 for some choice of u and v. Then
i=5 for that value of h and C, = [A A ] must be divisible

u, i,k u " u,v

by 5. This condition is not satisfied if ﬁu L3(2). Frob(21)

of Z?. Indeed if fhu = L3(2) and is the stabilizer of a plane
of the geometry twin of Tu, then it has orbits of size 7 and
8 on the set of planes of T . If Eﬂ = L.(2) is the stabilizer
of a plane of Tu or if ﬁu = Frob(21) or Z? then its orbits
on the set of planes of Ih. have sizes 1 and 14 or 1,7,7 or

1,7,7 respectively.

Then Ru = A, and it is transitive on the set of planes

7

of Pu' We have Ci,k = 15 or 30. if Ci,k = 30 then 1i=5 and

B,-B, is an orbit of Aut(I). It has size 54a ., So BO contains

H 0

8a hyperlines. If Ci K = 15 then 1=3 or 5 because 1 divides

9. 15, If 1i=3 then n; o = 45. So one orbit of Aut(l') on Biy
has size 450 , Let Cj,h be the other orbit of Aut(I') on Bii-By -
Then Cj.,h has size 27a¢ or 45a according to whether j=5 or 3.
In both cases By contains more that 620 hyperlines. We have
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a contradiction. Then i=j=5 and both the orbits of Aut(7rI)
on BH—BU have size 27 a . Then BH-BU contains 54 o hyperlines
and BD contains 8a hyperlines. Fvery point 1is incident with
8 hyperlines in BO and 54 hyperlines in BHABU' Let ae UD(UJ.
The group Aa is a subgroup of Au and acts as Aﬁ on T . Then
Ea is a subgroup of the stabilizer K-S4(2} of u in the symplectic
group 86(2) (in its natural action on the building Ié) where
K is a group of order 25. Moreover ﬁa has the form G'AE] where
G is a group of order 2" (m<5). The stabilizer in S (2) of
u and v, where v 1is any hyperline in Ta not cocollinear with
u, 1is the group 34{2}. Indeed there are 32 hyperlines 1in
T, that are not collinear with a, whereas the stabilizer in
86(2J of u and v is transitive on the pairs (C,%) where
is an apartment of the generalized quadrangle ﬁT N v' in ]?a
and C is a chamber of % . Then there is some hyperline v in
r,» not cocollinear with wu, such that, if Gu,v (= 84(2})

is the stabilizer in 86(23 of the ordered pair (u,v), we have

N A i i A : n A 7=2M
that Gu,v Aa is the alternating group !ﬂi and [Aa Gu.v .Aa] 27,

Moreover, Aa fixes the set BU ﬂch(aJ that contains 8 hyperlines.

L 1
Let w € GliﬂaJ-(BO) U u ). Let Aw 4 be the stabilizer of the

flag {a,w}. We have mw,a; fa :A, 10 63a= [A, |- [AA, 1-Y
where Y = 27a¢ or Y = 54a . Then [A:A _]-7 = [Aw:Aw*a]-Z
where Z = 3 or 6. Then 3 divides [AE:AW a]' But we have
A 1 - [E - & - oM _

[dau&.}r‘aj = [A, + AN Gu,v] 2°. Then v e B,. Therefore m=0,1,2

or 3 because B, N UH(a} contains 8 hyperlines. The set

-
UH(a) '((VT) U (u )LJBU} contains 9 hyperlines. Their orbits

under the action of Aa have sizes divisible by 3, Then the
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stabilizer in ﬁa of any of those hyperlines gives a subgroup

M of ﬁa of index divisible by 3 in ﬁa' Moreover, each of these

subgroups has index < 9 in Aa' But AS is the only subgroup

M of Ag such that 9 > [Aﬁ:ﬂj and Lﬁﬁ:HJ 0 (mod.3). We have

[Aﬁ:A51 = 6. Then we are compelled to split a set of 9 hyperlines
in disjoint orbits each of one has size 2'6 for some nonnegative

integer t. This is not possible. We have the final contradiction.

Then FH = @ and I' is a building by Lemma 6.
Q.E.D.
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