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TENSORTOPOLOGIES AND EQUICONTINUITY ()
Klaus FLORET

Dedicated to Gottfried Kothe on the occasion of his 80th birthday
on December 25, 1985.

Summary. The behavior of the wvarious known tensortopologies with respect
to equicontinuity will be studied. In particular, it will be shown that Iin
the category of all locally convex spaces the tensortopology of hypocontinuity

on bounded sets is the finest of all tensortopologies which respect equicontinuity

of sets of linear mappings.

1. Let LOC be the category of all 1locally convex spaces,
the objects being (not necessarily Hausdorff) locally convex spaces
and the morphisms linear continuous maps. A tensortopology
M assigns to each pair (E,F)elLOCxLOC a 1locally convex topology
u(E,F) on the algebraic tensorproduct E®F of E and F (shorthand:
E@uF) such that (see [3]):

(1) the bilinear map ExF =~ E@u]? is separately continuous;

(2) if U° ¢ E' and V° ¢ F' are equicontinuous sets of linear

functionals on E resp. F, then

U° 8 v2 :={9 8y |9eU®, ve V°
is equicontinuous on EQJF;
(3) if SeL(El.Ez) and TeL(FI,Fz) are linear continuous operators
then

S@uT:E1EHF1-+ 52

is continuous (the mapping property).

@qu

(*) This paper was written while I visited +the Department of
Mathematics of the University of Lecce. I thank the Department
and in particular V.B.Moscatelli for the kind invitation.
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In particular, E x F » E ﬁul-“ is a functor LOC x LOC -+ LOC
which acts on the wunderlying vectorspaces as the algebraic
tensorproduct. Obviously, this definition can as well be given
for subclasses of LOC, e.g. for finite-dimensional spaces,
normed or Banach-spaces, dual spaces (with the dual mappings
as morphisms), etc.. Note that, if E' or F' is {0}, then @=0
is the only separately continuous bilinear functional on ExF

and EEUF has the indiscrete topology for all tensortopologies u.

Tensortopologies respect complemented subspaces and complemented
quotients, but in general do not respect dense subspaces nor the
embeddings E “* E; (even for normed spaces: take, as an
example, the inductive topology defined below and normed spaces
E and F such that E® F 5 E®_F, where 7 points at the projective

topology).

In studying topological-geometric properties of locally
convex tensorproducts, in particular if one wants to take
advantage of the bounded approximation property ( i= there
is an equicontinuous net of finite-rank operators converging
pointwise to the identity), it 1s sometimes useful (see e.g.
Defant-Govaerts [l]) to consider uniform tensortopologies

these are tensortopologies py which satisfy

(3') the uniform mapping property: I1f C ¢ L(El,EZ) and D{:L(FIJE)

are equicontinuous,then
C&D :={SQ@T|SeC, TeD'!}

is equicontinuous in L(E1 R, Fl’ E2 EIJFZ).
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Clearly, (3') implies (3) - and (2), the latter provided there

is an Em Y Pm which does not have the indiscrete topology.

If u is a uniform tensortopology, E and F have the bounded
approximation property, then it 1is immediate that E &, F and

the completion E ﬁu F have the b.a.p. as well.

A tensortopology is uniform if it satisfies (3') for families
C and D of projections and injections (i.e. continuous, injective
mappings which are open onto their image); this can be easily

deduced from the diagram (obvious definitions)

<o oo IC & IID - oo
LT (E)) @ £7(F) - 17(E,) 8 2% (F,)
4
IS & IT PS & PT
S R T
El ﬂu Fl > EZ @u F2

For the tensortopologies NORM x NORM -+ NORM this can be

improved: Let E be a normed space and R(xn):={xn_l) the right-shift
GnﬂftZ,E). Using Rnlﬂ = In and PGR'“=PH for the canonial injections

and projections, the same type of diagram yields the

PROPOSITION: Let ypu: NORM x NORM » NORM a tensortopology. If

“Tl Q) T, = 1 for all surjective isometries T, and T,,then y is
uniform,
2. Examples: The following examples of tensortopologies

(with the exception of (e)) were already studied by A.Grothendieck.
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(a) The inductive topology 1 which 1is characterized by the fact
that a bilinear map ExF » G 1is separately continuous if and only
if its linearization E & F » G is continuous. Property (1) (for a
locally convex topology p on E & F) is equivalent to: 1 is finer

than y , notation: 1ou. It is easy to see that 1 is a tensortopology.

(b) The injective topology e which is the topology of uniform
convergence on all U° & Vo ¢ E* § F*, Property (2) is equivalent
to uoe. The injective topology 1s even a uniform tensortopology;

1 1is the finest and ¢ the coarsest tensortopology:
EQ F~>E®@ F~EQ F
In particular: E @u F is Hausdorff if E and F are.

(c) The projective topology ©® (a bilinear map E x F =+ G 1is

continuous if and only if its linearization B& F - G is continuous)

is a uniform tensortopology.

(d) If E and F are normed spaces, then EﬁEF and E@ﬂF are normed
in a natural way and e(°*;E,F) < m( *3E,F) for these norms.
Grothendieck's metric theory of tensorproducts [5] deals with
tensornoms g which, by definition, assign to each pair (E,F)

of normed spaces a norm « (*;E,F) on E®F such that

(1/29% e (e« 3E,F) < a(*3E,F) < w(-3E,F) on E®F (in this case

@« is called reasonable) ,

(3") IS Q@ T : E, @ F, » B, 8 F,| < S| IT| for all SeL(E,E,)

and TEL(FI’FZ} (the metric mapping property),

The natural extension to locally convex spaces (tensorize the

canonical normed quotient-spaces Ep and Eq of E and F) was



Tensortopologies and equicontinuity 41

introduced and studied by Harksen [6]; these so-called tensornorm-
topologies g are uniform  tensortopologies. Obvioulsy m is the

finest and e the coarsest tensornorm-topology.

Most of the usual tensornorms are finitely generated, i.e, for

all E,F € NORM and z ¢ E & F
a (z;E,F) = infa(z:M,N), (*)

where the infimum is taken over all finite-dimensional subspaces
M of E and N of F such that zeM & N.If E and F have the metric

approximation property, then (%) holds for all tensornorms U:

To see this, observe first that the right side of (*) defines
a tensornorm E;:f!- Let P and Q be finite-dimensional projections
on E and F respectively of norm one coming from the m.a.p.

and take zeE & F; then the metric mapping property gives
-+ + =
¢ (z;E,F) < a(z-PRQ(z);EF) +a(PRQ(z);E,F)
> -
< a(z-PRQ(z);:E,F) + a(PRQ(z);:PE,QF)

a(z-PRQ(z):;E,F) + a(PRQ(z);PE,QF)

I

< a(z-PRQ(z);E,F) + a(z;E,F).

Since the first term converges to zero (P and Q according to

the m.a.p.),it follows that o <a.

Since there are Banach-spaces without the metric approximation
property, there are relevant tensornorms which are not finitely
generated: Take for an example the tensornorm g which is induced

by the embedding

EQFc (B'@F")’
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i.e., the norm on E 8 F considered as a subspace of the integral
operators | E' » F, Assume « were finitely generated; since
it coincides on finite-dimensional spaces with 7T (see e.g. [B].
p.296(9)) and nm is finitely generated, this would imply @ =N and,
by [8], p.312(2), all Banach-spaces would have the metric approxima-

tion property.

(e) The topologies of hypocontinuity due to L. Schwartz [9]:
Let E,FeLOC and al(E}. resp. az(F), be covers of E, resp. F, by
absolutely convex subsets such that al(E) and aZ(F) are filtrating
with respect to inclusion. For every GeLOC, a bilinear map
E x F » G is called {aI(E),aZ{FJ)—hypacontinumus if its restrictions
to all Al x F and E x A2 (for Aleal(E) and Azeaz(F)) are continuous
(induced topology). It is not difficult to see that the locally
convex topology n on E & F of uniform convergence on all equi-
-Lalfﬁ),az(F))-hypmcmntiHUﬂUE. sets of bilinear forms E x F » K

has the following properties:

(1) N is the finest 1locally convex topology V on ERF such

that E x F » (E & F,Vv) is (al(E),az[F]]—hprCDntinuaus.

(2) A bilinear map E x F =+ G 1is ((al[E),az(F))—hypacantinuﬂus
if and only if its linearization (E @ F,n) - G is continuous.
If al(E) and aZ(F) consist of bounded sets only, a bilinear
map : E x F » G 1is (al(E),aZ(FI}hprCDntiHUGus if and only
if for every zero-neighbourhood We‘%G(D), every Aleal(E) and

Azeaz(F},thera are UE%E(U) and Ve@%(ﬂj such that

®(A;,V) ¢ W and ¢(U,A,) c W.

Denoting by [A] the normed space span A (with the Minkowski-gauge
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functional mAJ this 1is equivalent to: All restrictions of ¢

[A] x F > G
E x [A,]+G

are continuous.
According to [3]|,a cover-prescription a (on LOC) assigns to each

EeLOC a cover a(E) of E as before such that

T(a(E;)) ¢ a(Ey)

whenever TEL(EI,EZ}_ If aq and a, are two cover-prescriptions,

E ﬁa a F denotes E & F equipped with the unique locally convex
172

topology coming from the covers al[E} and azﬁF) of E and F

respectively. It is easily seen that the assignment {E,F)w*+Eﬁa a F
172
is a tensortopology: the (al,az)-hypﬂcantinuaus tensortopology, 1If
a; = a, = { finite-dimensional subspaces },one obtains the inductive
topology 1 and, if a; = a, = {all subspaces }, the projective
topology w : obviously all hypocontinuous topologies are between

1 and .

3. For b : = { bounded, absolutely convex subsets } the (b,b)-
hypocontinuous tensortopology is denoted by R. Since equicontinuous
sets map bounded sets into bounded sets, it 1is easy to see

that B is a uniform tensortopology.

PROPOSITION: B is the finest uniform tensortopology on LOC X LOC.
Since 13 B (e.g. for some normed spaces), the inductive tensor-

topology 1 is not uniform.
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Proof. For a uniform tensortopology u and E,FelLOC it has to be

shown that the tensor-map

@ : E x F~» E ﬁh F

is (b,b)-hypocontinuous. So, by symmetry, it is enough to
find, for every zero-neighbourhood W of EQ, F and Aeb(E), a

zero-neighbourhood V of F such that A & V c W.

' -
Take X, € E and ¢GEE such that <@y X > 1. Then

c : ={$D ® vy | vy e A} ¢ L(E,E)

is equicontinuous and hence C & {idF }  is equicontinuous

E &, F-+E &, F as well. Denoting by J the canonical continuous
map {X,} X F 5 E ﬂu F (property (1) of tensortopologies),
it follows that (C & -{idF}) o J is equicontinuous, whence there

is a V EE%F{DJ such that
wWo(C & {idF}]ﬂJ(KG,V) = A& V.

The result implies that, in the category of all locally
convex spaces, tensortopologies are not uniform if they are
not coarser than B - such as 1 or, e.g., the (c,c)-hypocontinuous
topology (¢ the compact, absolutely convex sets). Though this
is unfortunate, the situation improves on subclasses: €. g.

R always holds - the statement

on barrelled spaces, where

of the proposition is meaningless in this case.

For a more interesting example of a somehow better situation,
take the category DUAL of duals of locally convex spaces (with
the strong topology) and the dual mappings as morphisms. If

e is the cover-prescription of all absolutely convex, equicontinuous
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sets, then (G,F) -~ F@B bF is a uniform tensortopology on
DUAL X LOC, the uniform mapping property interpreted as follows:
If C ¢ L(EZ,EI] and DEL{FI,FZJ are equicontinuous, then

C' ® D ¢ L((ElJﬁ ﬂe,bFl’(EZJﬁ @e,bFE) is equicontinuous.
Now, taking for U© ¢ E5 equicontinuous the set
C = {9s xD|m € UG} ¢ L(E,E)
as in the proof of the proposition, vields:

The (e,b)-hypocontinuous tensortopology is the finest uniform

tensortorology on DUAL x LOC.

The (e-b)- hypocontinuous topology was used, for example,
in [2] to obtain a Radon-Nikodym-theorem for operator-valued
measures., Again the same proof shows that the (e,e)-hypocontinuous
tensortopology is the finest uniform tensortopology on DUALxDUAL-

with the appropriate interpretation of the uniform mapping

property.
4., In his thesis Grothendieck ([4], <chap. I, p.93-95)
mentioned another condition in order to study '"interesting"

tensortopologies p; his condition is equivalent to:

(G) If ¢e(E &,F)"' then

1 .. .
o ® idp : B R, F ~ F, & F

o <2 1 ,
ldE 0 O I &u F > E ﬁl Eb

are continuous.

1

E - F! and 02 . F » E/ the linear maps associated

b b
with ¢&). Since the trace-functional tr is i1-continuous, the formula

(o
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L @ id. > = | 25 _
<lIp, 9 & ldF:>— {trE,ldE B o4>= 9

yields that the continuity of one of the mappings in (G) implies

that ¢ e (E @U F)'.

Taking for E a space which 1is not quasibarrelled (i.e.,
IEE—wa]ﬂg is not continuous), the map &:=tre(E®, E')' shows that
the inductive topology v does not satisfy (G). The condition
seems only to be interesting for barrelled spaces: Grothendieck

([4], chap. I, p. 95) states that 1 ,m and € satisfy it for

barrelled spaces. More generally:

PROPOSITION. If « is a finitely generated tensornorm and E
and F are barrelled, then the tensornorm-topoelogy & on E & F

satisfies (G) .

Proof. If e (E ®4F)', then there are zero-neighbourhoods

™l

T !
U and V and ¢ﬂ C (EU Eﬂ EV) such that

¢ = ¢ o,
(KU R K

0 V} ’

A folklore result (see e.g. [7], p.410) says that

1, . ~ ~ L
®"Q id, : By 8y G > (Fy)' 8y G

is continuous for every Banach-space G and hence for every
locally convex space G (by the very definition of the tensornorm-
topologies). Using now that 1= on the tensorproduct of a
Banach- and a barrelled space and the mapping property for

1 and 7w, it follows that

1 o~

R idF + E @ F EU R F (FV)' B, F = (FV)' @, F » FE R, F
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is continuous. The continuity of idE & 34 follows from this

applied to the transposed tensornorm at on F & E.

Since E @8 F - G 1is continuous if and only if all

[Al &, F > G A e b(E)
E &, [B] ~ G B e b(F)
are continuous (see 2.(e)), the proposition implies as well

that B satisfies (G) for barrelled spaces; note that 1 = 8
for barrelled spaces.
PROPOSITION: Neither 1+ B+ T+ € nor any tensornorm-topology
@ (for finitely generated ¢ ) satisfies condition ((G) on the

class of all locally convex spaces.

Proof.For the inductive topology 1 this was shown before. Let
@« be a finitely generated tensornorm, (G,| «]) a Banach-space

and T : G' -+ G' a nuclear operator with infinite-dimensional

range . Define

E := (G',]«1), F := (G,]+I) @ (6,06(G,G"))
and ¢e (E Q.F)' ¢ (E ®, F)' by

®(op B(x,¥)) :=-¢Tm,K>G, G

Obviously &r = I,oT,where I, : E = G' » G' & G' = F' is
the embedding on the first component. If ¢1 f idF, E & F~» FéﬁlF
were continuous, then
. 1..
id ¢ ﬁldE
Y ¢ E R F —— Eg,F - Fy & F— K

W W
(¢, VIR(x,y)y><e, y>
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would be continuous as well,which means that there are ml"“’mnEGl
with
| <Tn,y>| = [<¥,n@(0,y)>| < Inlg, max <@,y >
i=l,...,n
hence T(G') ¢ span {vl,..., ¢n}. This is impossible. So a does

not satisfy (G).

Since on the tensorproduct of a Banach- and arbitrary locally
convex space B and m coincide and the counter-example was

of this type, B does not satisfy (G) as well.
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