ON STRONGLY NON-NORMING SUBSPACES

V.B.MOSCATELLI (*)

ABSTRACT. A Banach space X has a strongly non-norming subspace in its dual if and only if X has infinite codimension in its second dual.

Let X be a Banach space. A closed subspace M of the dual X' is said to be total if it is w*-dense in X'. M is said to be norming if its unit ball is w*-dense in some multiple of the unit ball of X'. Clearly, this is equivalent to $M^1=X'$, where M^1 (= the derived set of M) is the collection of all limits of w*-convergent and bounded nets in M. In any case, we may define the successive derived sets M^n of M by $M^n = (M^{n-1})^1$ and we shall call M strongly non-norming if $M^n \neq X'$ (i.e., $M^n \neq M^{n+1}$) for all n.

In [3] Davis and Lindenstrauss proved, in a constructive and elegant way, that a total non-norming subspace exists in X' if and only if X is non-quasi-reflexive (i.e., dim X"/ $X=\infty$).

In [4] S. Dierolf and the author showed that a certain problem in Fréchet-space theory (the so-called Bellenot-Dubinsky problem) was intimately connected with the Banach-space question of the existence of strongly non-norming subspaces and we refer to [4] for a detailed analysis. Now the latter question has a long history which goes back to Banach himself, who already observed in his

^(*) Partially supported by the Italian Ministry of Education (MPI).

312 V.B.Moscatelli

book [1, p.213] that there are (many!) quotients of co with strongly non-norming subspaces.

However, the question of the existence of strongly non-norming subspaces is of interest in its own right and in full generality, and led the author to conjecture (cf. [5], Problem 17) that a strongly non-norming subspace exists in the dual of every non-quasi-reflexive Banach space.

The purpose of this note is to settle the conjecture in the affirmative.

THEOREM. Let X be a Banach space with $\dim X''/X=\infty$. Then X' contains a strongly non-norming subspace.

Proof. We accomplish the proof in two steps.

1) First we show inductively that for every n there is a subspace M of X' such that $M^n \neq X'$. For n=1 this is already proved in [3].

Now it follows from [2, Corollary 3] and the proof of the theorem in [3] that there are a separable subspace Y in X and an infinite-dimensional subspace Z in X" such that dim Y"/Y= ∞ and Z \cap (Y"+X)={0}. By the induction hypotesis, Y' contains a total subspace V with $V^n \neq Y'$. If $q: X' \rightarrow Y'$ is the map which assigns to every feX' its restriction to Y, it is easily seen that the subspace $N=q^{-1}(V)$ is total and satisfies $N^n \neq X'$.

Since Y is separable, the w*-closure of the unit ball of V is compact and metrizable in the w*-topology, hence is separable and, consequently, V is w*-separable. Let (y_k') be a sequence of unit vectors in V whose linear span is w*-dense in V (hence in Y').

As in the proof of Lemma 1 of [3] we define a map T:Y'' + Z by $Ty'' = \sum\limits_k \varepsilon_k y''(y_k') z_k$, where (z_k) is a normalized basic sequence in Z and the sequence (ε_k) satisfies $\varepsilon_k > 0$, $\sum\limits_k \varepsilon_k \le 1/2$. Put $U = \{y'' + Ty'' : y'' \in Y''\}$ and $M = U^\circ$ (polar in X'). Clearly ker TcU and hence Mc(ker T) \circ (polar in X')cN. Now let fcM^1 : there exists a bounded net (f_i) in M such that $f = w^* - \lim_i f_i$. Denote by p: X' + Z' the map which associates with each fcX' its restriction to Z and let T_Y be the restriction of T to Y. Then T_Y is compact and hence so is $T_Y': Z' \to Y'$. Since $f_i \in M$ we have $f_i(y) = -f_i(T_Y y)$ for all $y \in Y$, i.e. $q(f_i) = -T_Y' p(f_i)$. Thus, for a subnet (f_j) we have that $q(f_j)$ converges in norm to q(f) and hence weakly: $q(f)(y'') = \lim_j q(f_j)(y'')$ for all $y'' \in Y''$. Now take any $y'' \in Y''$. Since $Mc(ker T)^\circ$, $q(f_j)(y'') = f_j(y'') = 0$ for all j, hence f(y'') = q(f)(y'') = 0 and, therefore, $fc(ker T)^\circ cN$.

We have shown that M^1 c N, hence M^{n+1} c $N^n \neq X'$.

2) By [2, Theorem 2 and Corollary 3] X contains a basic sequence (x_n) for which there is a partition (N_k) of the positive integers into mutually disjoint infinite subsets such that neither $[x_n: neN_k]$ nor $\mathbb{Z}/[x_n: neN_k]$ are quasi-reflexive, where $\mathbb{Z}=[x_n]$. If (x_n') is the sequence in \mathbb{Z}' of biorthogonal functionals associated to the sequence (x_n) , for every k denote by \mathbb{Z}_k' the w*-closure in \mathbb{Z}' of span $(x_n': neN_k)$. By 1) each \mathbb{Z}_k' contains a total subspace \mathbb{M}_k with $(\mathbb{M}_k)^k \neq \mathbb{Z}_k'$. Put $\mathbb{V}=\Sigma \mathbb{M}_k$. If for some k we had $\mathbb{V}^k=\mathbb{Z}'$, it would follow $(\mathbb{M}_k)^k=\mathbb{Z}_k'$ which is impossible. Thus $\mathbb{V}^k\neq \mathbb{X}'$ for all k and V is strongly non-norming in \mathbb{Z}' . But then so is $\mathbb{M}=q^{-1}(\mathbb{V})$ in \mathbb{X}' , if $\mathbb{Q}:\mathbb{X}' \neq \mathbb{Z}'$ is the canonical quotient map.

REFERENCES

- [1] S.BANACH: "Théorie des opérations linèaires". Chelsea, New York 1955.
- [2] W.J.DAVIS and W.B.JOHNSON: "Basic sequences and norming subspaces in non-quasi-reflexive Banach spaces". Israel J.Math. 14,353-367 (1973).
- [3] W.J.DAVIS and J.LINDENSTRAUSS: "On total nonnorming subspaces".

 Proc. Amer. Math. Soc. 31, 109-111(1972).
- [4] S.DIEROLF and V.B.MOSCATELLI: "A note on quojections". Funct. Approx. Comment. Math. 17, 131-138(1987).
- [5] Open Problems, Presented at the Ninth Seminar (Poland-GDR) on Operator Ideals and Geometry of Banach Spaces, Georgenthal, April 1986.

Dipartimento di Matematica Università - C.P. 193 I-73100 LECCE ITALY