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APPROXIMATION OF FINITELY DEFiINED OPERATORS IN FIINCTiON SPACES

F. ALTOMARE

Sunto. - S4{ Atudiano dedffe condiziond necessarie e sufpicients
circa La convengenza dd4 reid dd4 overalord posdtivd verso operatond
findtamente definitdi operan.L su spaz4 dd4 funziond continuc defind-
te su uno spazio Localmenie compattfo e aAeparato. SL presentano

inoltrne diversdi esempd ed applicaziond.

INTRODUCTION. - In this paper we establish some Korovkin - type
theorems for finitely defined operators of order n (nelN, n > 1)
in the context of 1locally convex function spaces defined on a

locally compact Hausdorff space.

These operators have been scudied by many anthors (sc= [7],
(12]), [14]},[15], [16]) in connection with tue Korovkin approximation

theory. However all the result whaich they obtain, concern with

spaces of continuous functions defined on a compact space.

Our results are safficiently general to be applied in many other
spaces which are usefvl in Functional Analysis such as spaces of
continuous functions whic» vanish at infinity, adapted spaces of

continuous functions, weighted function spaces and so on.

In a prelin.nar> sertion we study the convergence of nets of
positive linear operators and of nets of positive contractions
to an arbitrary positive linear operator acting from an ordered

normed space to a %%(KJR} space.
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In Section 2 we completely characterize the Korovkin spaces
for finitely defined operators of order n both for positive linear

operators and for positive contractions (cf. Th.2.1 anc Th.2.2).

This characterization seems to be new also for n=1 and for the

identity operator.

Furthermore other sufficient conditions are stated which ensure

that a subspace is a Korovkin space for finitely defined operators.

Finally Examples and applications are indicated in various func-

*1on spaces.

1. CONVERGENCE OF POSITIVE CONTRACTIONS. - In what follows we
shall denote by X an arbitrary locally compact Hausdorff space.

aﬁ+(X] will be the set of all positive Radon measures on X.

We shall denote by %#(X,R) the space of &£l11 real functions on
X, endowed with the natural order and with either the topology
of the pointwise convergence on X or the topology of the locally
uniform convergence on X (i.e. the uniform convergence on the com-
pact subsets of X ).We shall denote by X (X,R) the space of all

real continuous functions on X having compact support.

The space %b{XJR) of all real continuous functions on X which
vanish at infinity, will be endowed with the natural order and

the sup-norm.

A linear subpspaceE of the space €(X,R) of all real continuous
functions on X, endowed with a locally convex topology which is
compatible with the natural order induced on E by ¢(X,JR) and

which is finer than the topology of the pointwise convergence on
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X, will be simply said a function space on X,

Let E and F be two ordered locally convex spaces, T:E + F a
continuous positive linear operator and H a linear subspace of

E. We say that H {4 a T-Korovkdin space in E 4or positive £Linean

<

operators if for every equicontinuous net :Li)IEI of positive linear

operators from E to F such that lim, Li(h)=T(h) for all heH, we
iel™

also have lim{Li(f]=T{f) for all feE.

iel™
If E and F are ordered normed spaces and T is a contraction

(ITlI < 1), then H is called a T-Korovkin s4pace 4in E for positive

contractsons if a similar property is satisfied by considering
L4

only nets of positive contractions (Li);EI'

If E is an ordered locally convex space, we shall denote by
E; the cone of all continuous positive linear forms on E. Moreover,
if F is a function space on some locally compact Hausdorff space
Y and T:E * F is a continuous positive linear operator, then for

all yeY we shall denote by Lfr € El the linear functional defined

y
by putting uz(f)(y) = T(f)(y) for all f € E.

Finally, if U € E; (resp. u € EL and |uff < 1, whenever E 1is

an ordered normed space), we put

U,(H,¥) = {feE| v (f) = H(f) for all VeE! such that V=4 on H}

(resp. UM(H,uw) = {feE|v(f) = u(f) for all veE!, |Y|<1, such that

V=| on H L

In 17] (Th.4.2 and Coroll. 2.1) (see [9], L1111, n.3, [13]1,

Sect. 1.2, too) the following result has been proved:
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THEOREM 1.1. Let E be an ordered fLocally convex space, Y a fLocal
Ly compact Hausdorgf space, T:E+%(Y,R) a continuous positive Lineax
operator and H a subspace of E. The following propositions axre
equivalent:

a) H 48 a T-Korovhkin space in E for positive Linears operafons;

b) For all y e Y U, (H,u) = E.

Our next goal is to characterize the T-Korovkin spaces (also for

positive contractions) in the contest of spaces of type %E{YJR).

In this context some result has been obtained (with different me
thods) only when T is the identity operator ([ 5], [6], [10]) or for

other types of Korovkin spaces ([1]).

THEOREM 1.2. Let E be an ordered normed space, Y a Locally com-
pact Hausdorg§ space, T : E+¢,(Y,R) a positive Linear contrac-

tion and H a subspace of E .

The following proposiftions are equivalent:
a) H 44 a T-Korovkin space in E for positive contractions.

b) 1) for every yeY Ui(H,uE} - E;

i
=

2) 44 u e E} and 44§ p=0 on H, then u

Proog. a) => b). Let us consider yeY and U‘EE_:_, Ivlf < 1 such

T

that V o= uy on H. Let (Vi) be a neighbourhood base of y con-

iel
sisting of open relatively compact subsets; we consider on I the
order relation < defined by putting i < j if Mu C Ui. For every
iel let g€ fg’ﬂ(‘r’,&l) be a function such that [}igi*’i_l. gi(}r}=1 and
gi(z) = 0 for all ZEYHVi. Let us consider the linear positive oper-

ator
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Li : E'+%B(Y;RJ defined by putting for all fekt

Li[f] = u[f)gi+T(f)(1-gi). The operator 1ﬁ_ is a contraction since
L) < [ v(E) g +ITE) | (1-g<flg+«IfI(1-g;)=lf]  for every

feE. Moreover by a standard argument it is easy to show that

lim¢L. (h) = T(h) in %B(Y,R) for all h e H (see [1], p.425). Conse-

iel

quently for all feE limﬂLi(f) = T(f) aniformly on Y. In particular
1el

limgL, (£)(y) = T(£)(y) and so V(f) = T(f)(y) = u (f).
1€ 1 )
In order to show property 2), let us fix Le E} such that

s= t on H., Suppose that o+ 0,

<

=]

\s in (2, p. 23 we can construct a net (f;) in %, (Y,R)

1€l

such that 0 < fi < 1, ﬂfiH = 1 and fig'-+ 0 uniformly for all

g € ng{YJR}. So for all iel 1let us consider the linear positive

contraction Li . E ~» =€ﬁ(Y,R) defined by putting for all feE

Li{f) = TﬁT—(f}-fi+T(f)(1-fiJ. Then for all heH Li[h}frT{h] uni-

formly and, hence, for all feE Lﬁ[fJ + T(f) uniformly. Therefore

U
—Eii(f) £, = Li(f)-T(f}+T{f) fi + 0 uniformly and so |u(f)|=lull-
A “”" (£)£,1 » 0. Thus w= 0 and this is a contraddition.
U
<
b) = a). Let (lﬂ.Iel be a net of linear positive contractions

from E to %E(Y‘R} such that lim{Li{hJ = T(h) uniformly for all
iel ~
<

ie] does

heH. Let us suppose that there exists feE such that (Li(f)
not converge to Tf in %B(YJR). Then there exists € >0 and for

all iel there exist «o(i)el, oa(i) > i, and yiEY such that
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(*) ILaciy()(yy) - T(E) (v 2 e.

Let w be the point at infinity of Y and let us suppose that

Y;i * w . Then for all g e %h(YJH) g(yi) + 0. For every iel let us

consider the positive linear contraction u; on E defined by putting

ui(g) = L )(gJ(yi). By the Alaoglu-Bourbaki theorem there .exists

a(i
meEl with Juf§ < 1, and there exists a filter % on I finer then

the filter of sections on I such that w*-limf,ui = pu in E'.
iel

Then, if h e H, for all i e I
[y ()| € 1Lgeyy RO -ThOy D [+ITh(y | € KLgeyy (M) -T(R)E+[Th(y )],

hence ui(h) + 0 and so M(h) = 0. By virtue of the hypothesis 2),

in particular we have u(f) = 0; therefore limf ui(f)=0 and so
iel

ii?i*Lu(i)f(Yi]'Tf(Yi) = 0 in contradiction to (*).

<
If (Yi)zel does not converge to w, then there exists a compact

subset K of Y and for all iel there exists B(i)el, B(i) > i,
such that YB(i} € Ku' Let us consider the positive linear contrac-

tion My on E defined by putting ui(g) = Lu(i] g(ys(i]) for all

geE.

Again according to the Alaoglu-Bourbaki theorem there exist nek |

with Jul < 1 and a filter Sﬁ on I finer than the filter of sections

on 1 such that lim_ﬁ B, =u weakly; moreover, since l(ﬂ is compact,
iel

there exists another filter jﬁ on I finer than jﬁ and there exists

yekK such that lim_ y. = y. Now fix heH; since
0 jer2 1
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ul(h) =[Lu(1)h(y8(1])-Th[}'8(1))] + Th(yﬁ(l]]

and

ILaiyh iy -Thygeiy) | 2 Mlyeiy(B)-T(R)I > O,

ali

then we have ljjﬁF us (h)=Th(y)

ul(h), that is u(h)= ui(h). Then
iel”? y y

the hypothesis 1) implies u(f) = u?(f} = Tf(y) and hence

iérlrfi Lu(i)f(-yﬂ(i))_Tf(YB(i)) = 0 in contradiction to (¥*).

REMARK: As the above proof shows, if Y is compact (and hence

¢,(Y,R) = €(Y,R)), then the condition 2) of Th.1.2 may be dropped.

We are able to give a different formulation of the property
2) of part b) of Th.1l.2 provided E is a normed function space
on a locally compact Hausdorff space X which verifies the following

condition:

(A) For all U e El there exists a positive Radon measure ¥ on

X such that E c EQ(x,E} and [ fdi = u(f) for all feE.
X

PROPOSITION 1.3. Let E be a noamed function space on a Locally
compact Hausdorff space X which {4 countable at infinity. Moreoven
Let us suppose that E {s a Lattice, contains X (X,R) and satisfies
(A). Then gor all Linear subspace H of E the gollowing propositions
are equivalent:

a) 14 HeE} and u = 0 on H, then u= 0;
b) For evenry e >0 and for every compact subset K of X zthexre

ex<st heH and wueE, such that 0 < h+u on X, 1 < h+u on K

and lul] < €.
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Proof. a) => b). Given an € >0 and a compact subset K of X,
we can choose fe X¥(X,R) ¢ E, f > 0, such that f=1 on K. From a)
and from a result established in [3] (Th. 1.6 and Rem. 1.7) we
deduce that there exist heH and ueE, such that f<h+u and |ul<e

and so the result follows.

b) = a). Let e E, and suppose that u=0 on H. Let us consi-
der de #'(X) such that E ¢ .‘fl(}{,ﬁ) and u(f) = Jfdl for all
X
feB.

We shall show that § = 0 and to this end, since U is regular
(because X is countable at infinity), it suffices to prove that
u(K) = 0 for every compact subset K of X. Infact if K is a such

subset, then for all € >0 there exist heH and M e E, satisfying

the properties of part b) and se .

0 < TJ'(K) < f(h+u)d'l-1' < .r(h+u)le = H(h)+u(u)=H(u) < Ju| =
K X

Since € > (0 is arbitrary we have 'IT(K) = 0.

REMARK: The implication b) ==> a) remains true even if E is

not a lattice or it does not contains X(X,R).

THEOREM 1.4, Let E be a noamed vector Lattice, Y a 4Locally
compact Hausdorggy space T : E » ¢,(YR) a continuous positive

Linear operator and H a subspace of E. The following propositions

are equivalent:

a) H 44 a T-Korovkin space in E for positive Linear operatons;

b) For alf y e Y U+(H.L§) = E.

Proogf. By imitating the same proof of Th. 1._2 one may show
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that H is a T-Korovkin space in E if and only if 1) U+[H,u5)=E

for all yeY and 2) for all HeE  such that B = 0 on H, one has

W=0.

Now the desired result will follow if we prove that property
1) implies property 2). Infact let u e E! and suppose' that u=0
on H. By applying Th.1.6, (ii), and Lemma 1.2 of [3] to an arbi-

trary functional of the form u;l:, we have that for all feE and

for all €>0 there exist h, KeH and u, veE, such that k-v<f<h+u

and Jul <e and |lvl] < e. Consequently -u(v)<u(f)<u(u) and hence,
since  w(w) < Jullul < elul and w(v) < elul, [u(E)] < elul.
So M(f) = 0 since € is arbitrary.

2. APPROXIMATION OF FINITELY DEFINED OPERATORS.

As an application of the above results we shall study the T-
Korovkin spaces (both for positive linear operators and for positive
contractions) when the operator T is finitely defined of order

n (n >1).

Let E and F be two function spaces defined on some 1locally
compact Hausdorff spaces X and Y. Following A.S.Cavaretta ([7])
we say that a (positive) linear operator T : E + F is finitely
defined of order n (neN, n > 1) if there exist finitely many

continuous functions Ps :' Y + X and ﬂﬁe‘€+(Y;EJ such that

(1) T(f) =

I 13

mi(fnmi) for all feE

i=1

(of course, it 1is assumed that the right-hand side belongs to

F).
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The set of all finitely defined operators of order n will be

denoted by ,FH(E.F). Finally we shall denote by .?’III[E,F) the set

of all operators T in .FH(E.F) which have a representation as

]
(1) with I ¢.=1.
j=1 !

1

In the next results it will be necessary to impose the condition

(A) which makes sense also for locally convex function spaces.

The following theorem generalizes the main result of [14] (Th.3):

THEOREM 2.1. Let E be a normed {function space on a Locally
compact Hausdorff space X. Let us suppose that E 448 a Lattice,
contains X (X,R) and satisfies (A) . For every Linear subspace
H of E and for every neN, n>1, the following propositions
are equivalent:

a) For every ALocally compact Hausdorff space Y and for every

Te 3§(E,F), where F = #F(Y,R) or F = gb(Y,R). H 445 T-Korovkin

sApace in B for positive Linear operatonrns;

b) For every chodice of diffderent points XyseoosX € X, gor every
compact subset K of X such that Kn{xl....,xn} = @ and gon
every €>0 there exists heH and uek such that |julff < €,

0 <h+u on X, 1 <h +u on K and h(xi)+1ﬂxi)-¢5 for atl

j-=]-1---yn-t

Proof§. a) = b). We shall use Th. 2.1 of [3]. Let X{seoesX € X

n
n
be. Let us consider Bisener@ € IR, and put u= 2 a, § (where
n + j=1 1 Xy
GK denotes the valuation functional at X4 defined on E). Then
i

ue #(E,F) where F = R = F({1},R) (it suffices to consider the
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functions "pi‘: {1}>-R and 9; {1}>-X defined by putting 1pi|[1)=u::i
and _tpi(l) = Xy for all i=1,...,n). Hence H is a wu-Korovkin space
in E. From all this and from Th.2.1 of [3] the result directly

follows.

b) = a). Let Te S%(E.F) be given according to a) and suppose
that for all feE

(cf. (1)).

By virtue of Th. 1.1 or of Th. 1.4 it sufficies to show that

n
T . T
for all yeY U (H, E where, in this case = L V.
Y +( HY) n : UY i=lw1 (Y]Gmi[Y)
But this last equality is a consequence of b), taking into

account Th. 2.1 and Prop. 2.3 of [3].

By reasoning as in the above proof and by using the above Th.1l.2

and the Th.2.2 of [3 ] it is easy to prove the further result:

THEOREM 2.2. Let E be a noamed {unction space on a Locally
compacl Hausdorff space X which satisfies (A). Moreover fLet us
suppose that E 44 a Latiice and contains X(X,R) . Let Y be a
Locally compact Hausdorff§ space and T Ef}l(E,ﬁ’D(Y,]R)) with a nrap-

presentation, as (1) of the form T(f) = 3 y (Fo 9;)  for ate
i=1
fekE (n > 1).

Let us consider a ALinean subspace H of E such that §for all

yeY there exist hl,...,hneH Auch that tlte:-t:,(hi(ﬁPj (v)))# 0.

Then the following propositions are equivalent:

a) H 44 a T- Korovkin space in E for positive contractions;
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b) 1) For every €20 fon every yeY and §orn every compact subset

n
K o4 X such that y ¢ () ¢£1 (K), there exisl heH and wue E,
i=1

such that 0 <h + u on X, 1<h+u on K, h(o,(y))+u(9,(y))<e for

n
all i=1,...,n and |ull<e + I b (Y)uCe, (y)).
1=1

2) 44 wue E, and u= 0 on H, then = 0,
When the function space E is not a lattice or does not contain
H(X,R), we can indicate only sufficient conditions in order

that a subspace of E is a Korovkin space for finitely defined

operators.

THEOREM 2.3. Let E be a function space on a Locally compact

Hauadorf g space X which {4 countabfe at infinity and fLei us Auppose

that E satisfies (A)

Let H be a fLinear subspace of E and n eN, n>1 , such that fox
every chodice o4 n+l digferent points “1*""“n+15x thene exisils
heH, h > 0, such that h(xn+1) > 0 and h(xl) = ...=h(xn) = 0,
Then 4on every Locally compact Hausdorgf space Y and for eveny
T e QE[E.F),umEﬂE;F = F(Y,R) (on F = %E(Y;MJ provided E 44 a
noamed vectorn ALattice), zthe subspace H 44 a T -Korovkin aspace

in E forn positive Linear operators.

Proog. Let us fix T e FH(E,F] and let us suppose that T has

a representation

T(f) =
1

"W 13

V. (foq,)
1 1 1

as in (1). By virtue of Th.1.1 (resp. of Th.1.4) it suffices to
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E where, in this case, u

I

show that for all yeY U+(H,u$)

n

= ¥ - 8 . Now from the hypothesis it follows that for
i1 i )% ()

i=1l,...,n there exists h.eH, hiiD such that hi(mj[y)) = Gij for

all j=1,...,n and hence det(hi(¢j(y))] =1 # 0.

Moreover, if xeX and x¢-[wi(yJ,.... ¢n(yj}., then there exists

i

heH, h > 0 such that h(x) > 0 and h(¢1[y)) S .o Zh(mn(y)) = 0.

From all this and from Th. 2.4 of [3] it follows that U, (H, ¥ )=E.

THEOREM 2.4, Let E be a normed funciion space on a Locally
compact Hausdorff§ space X which {48 countable af {nfinity and Let
us suppose that E 4is a vector ZLattice and satysfies (A). Let
nelNbe, n>1, and Let us consider a subspace H of E satisfying

the following conditions:

1) for alk XyseeesX € X <thexre exist h

det(hi(xi]] # 03

1,....,.hn e H AUCh that

2) for alk Xqseoo eX Zhere exists heH + R, such that h > 0,

'xn+1

h[xn+1)>ﬂ and h[xlj

U - h(}'{n) = D;
3) tor all xeX Lhere exisis h e H such that h > 0 and h(x) > 0.

Then H 44 a T-Korovkin space 4in E for positive contractions 4ox

all Teﬁi (E,F) where F = ¢, (Y,R), Y being an arbitrary Localty

compact Hausdor g4 space.

Proof. Let T E.ﬁﬁ(E.F] be; in order to show the result we have
to verify the conditions 1) and 2) of Th.1.2. The condition 1)

is fullfilled by virtue of the hypotheses 1) and 2), of Th.2.4
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n
of [3] and of the fact that in this case ug = I ¥.(y)8
i=

all yeY. As regards condition 2), according to Prop. 1.3 and the
relative Remark we shall prove part b) of Prop. 1.3. Infact, if
K is a compact subset of X, by using hypothesis 3) and a compactness
argument, it is easy to show that there exists heH, h > 0 such

that h > 1 on K and so part b) of Prop. 1.3 obviously follows

by putting u = 0.

COROLLARY 2.5, Let E be a function space on a Locally compact
Hausdorff space X which'is countable at infinity. Let us suppose
that B satysfies (A) and contains the constant function 1. Lei

neN be, n>1 , and £el us consdider a subset S of E satlisfying

the following conditions:

1) for all p = 2,3,....2n SP = {fP|feS} ¢ E;

vl

2) for alk xl.‘..,xn+1ex there exists feS such that f(xn+1)¢f(xi)

gor all i = 1,...,n.

Then the subspace H generated by {1}lJSlJ82...Lf52“ i4 a T-Ko-
rovkin Apace in E gor positive Linear operators for all Te HQ(E.F);
where Fs%(Y,R) ox F=€(Y,R) if BE 44 a noxmed vector Lattice (Y

being an arbitrary Locally compact Hausdorff space).

Proof. It is a direct consequence of Th.2.3 because, if
xl...-..xn+le}(. there exists feS such that f(xnﬂ)#f[xi) for all
isl,...,n. Hence we may choose a polynomial P on R of degree

< n such that P(f(xn+1)) = 1 and P(f(xi))-aﬂl for all i=1l,...,n.

Consequently P®(f) e H, P(f) > 0, PX(f)(x_,,)=1 and P?(f(x,))=0
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for every isl,...,n.

COROLLARY 2.6. Let E be a normed function space cn a Locally
compacl Hausdorff space X which 45 countabfe at infinity and £Let
us suppose that E 44 a vector Lattice which satisfies (A). Let
neN be, n >1 , and fel us consider a subset S of E satisfying

the goflowing conditions:

1) for a2 p = 2,3,...,2n SP ¢ E;

2) for atlt XyseoesX 4 € X there exists f e S such that

f(xn+1) # f(xi) gor every isl,...,n;

3) gor atll XyseoesX € X there exists f e S such that f(xi} £ 0
gor every isl,...,n and (only 4§ n>1) f{xi)%f(xj) for alt
i, jed{l,...,n}, i # j.

2US2n 44 a T-Korovkin

Then the subspace H generated by S US
space in E for positive contractions fon alf T e;?ﬁ(E.Fj whenre
F:t@ﬂ(YJR) , Y being an arbitrary ALocally compact Hausdong

Apaces.

Proof. We shall use Th.2.4, In fact from 3) we deduce that,
if xeX, there exists feS such that f(x)#0 and so fz(x)} 0. Hence
the conditions 3) of Th. 2.4 is satisfied. Again by virtue of
3), if we consider Xys...,X €X then by choosing a function feS

which satisfies 3) and by using a Vandermonde determinant, we

have dat(fp(xi)]liiin - f(xl)...f(xn)l{f{j{n(f(xj)—f(xi))#ﬂ and
1<p<n -

so the condition 1) of Th.2.4 is fulfilled too. As regards condi-

tion 2) of Th.2.4 it suffices to argue as in the proof of Coroll.2.5
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(in this case infact P(f) e H + R_).

EXAMPLES 2.7. 1. Let E be a function space on RP (p>1)satisfying
the cond<f4on (A) and £et neN be,n > 1. Let us suppose that
forn eveny hl,...hpew wA Lh h1+...+hp52n the functions

(2) x21...xzp exp (- x1%) X = (xp,....x ) e RP,
befongs to E (for examplfe E = fgﬂ(]Rp,]R) on E s 19"(1Rp), the space
of rnapidly decreasing, Ainfinditely differentiable real functions
on ]Rp, etc.).

Then 2the subspace H generated by the {functions of the form
(2) 44 a T-Korovkin subspace in E for positive Linear operators
for all Te?l'l(E,F} where F=%(Y,R) ox F:%D[Y,]R} provdided E 445 a noamed

vecton Lattice.

In fact, if we consider n+l1 distinct points X1seeesX e RP, then the func-

n+l
n 2 2
tion h(x) = | ||x-xi|| exp(-x|]”) belongs to H, is positive and
isl

vanishes only on XqseoasX . So the result follows from Th.2.3.

2. Let E be a function space on a Locallfy compact Hausdorff
space X which 44 countable at infinity and Let us suppose that

E satisgies (A) and 1 e E. I§ feE 44 an 4dnjective function, then

Corolf. 2.5 applies to the subspace generated by {1,f,f° Zn,

2 g3 . fiM ¢ g,

p---‘f
for alf n e N such that f

This is the case, for instance, of the function f(x)sx in
€¢(X,R) where X is an interval of R and @(X,R) is endowed with
the topology of the pointwise convergence on X or the topology

of the locally uniform convergence on X.
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Another example may be constructed ad follows. Let X be a locally
compact Hausdorff space which is countable at infinity and let
fe €(X,R) be an injective function such that there exists

lim f(x) e Ru{- o+« } (where w is the point at infinity of X).
X+

Then, for all n e N, n > 1, the conclusion of the Ex.2 is valid

for the space En = {ge € (X,R)| There exists lim E(I%E e R}
x*w 1+f(x)

endowed with the norm |g| = sup |g("%lll-— -
xeX 1+f(x)

3. Let E be a noamed function space on a Locally compact Hausdoxrff
space X which 4is countablfe at 4infinity and Let us suppose that
E 44 a Lattice and satisfies (A). I§ feE 45 an injective function

which never vanishes on X, then Coroll.2.6 applies to the sub-

space genexrated by {f.fz,m..,fzn} for alf n e N such that

2 Zn

f%,...,1 e E.

Il

This is the case, for example; for f(x) X in %’G(]ﬂ,l[).
1

f(x) = x 7 in ¢ ([1,+ [), £(x) = exp(-ax) in ¢ ([0,> [ ) (x>0).
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