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CONTINUOUS FAMILIES OF LINEAR FUNCTIONALS
R.E. EDWARDS

Dedicated to the memory of Professor Gottfried Kothe

Abstract. We begin by recalling an elementary (but not widely advertised) theorem concern-
ing finite families of linear functionals. After that, the principle aim is an analogous theorem
(again not widely advertised) concerning suitable infinite continuous families of linear func-
tionals. The discussion might well find a place in a first course on linear functional analysis,
especially if it is desired to provide some concrete applications of general theorems.

In all that follows E is assumed to be a complex linear space, f a linear functional on
E,T aset, and ( f,);cpr a family of liner functigonals on E. Trivial changes take care of the
case in which F is a real linear space.

1. THE FINITE CASE

Here we take 7" tobe {1,2,...,n} for some natural number n > 0. The theorem in question
1S

Theorem 0. Assume E, f and ( f;);c;c. 0 be as stated above. Define the seminorm v on
E by
v(z) = sup |f(z)| forallxz € E.
1<i<n

The following conditions are pairwise equivalent:

(Ip) (3m € R,)(Vz € E)(|f(2)| < m.v(x));
(1) () ker(f) C ker(f);

1<i<n
(I1,) f is a linear combination of (f)i<icns

(II11,) (Vs € EM)[(Vie{1,2, oy mp(lim fi(s,) = 0) = lim f(s;) = 0}.

The proof is omitted.
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As an 1llustration, suppose that n € IN, that E 1s the linear space (pointwise operations)
of all complex valued polynomial functions on R, that (a)y <<y, IS an injective sequence

of real numbers, and that, for all £k € {0,1,...,n}, f, denotes the linear functional on E
defined by
fi(z) = z(a,) forallz € E.

Then
() ker(f) = {R x {0}},

0<k<n

the zero element of F. Accordingly, Theorem O ensure that to every linear functional f on
E corresponds (a})gcxc, € €™ such that

(0) f(zx) =E a,z(a,) forallz € E.
k=0

To make the result more specific, one may introduce the appropriate Lagrange polynomials
Ly,Ly,...,L_defined by

L;(&) = H (ﬂi—ﬂk)_l(f—ﬂk):

k=0, ki

for which
Li(a}-) = ‘5:‘;' forall) <1, <n

Then L. € E forall i € {0,1,...,n}, and (0) implies that
a, = f(L,) forallke{0,1,...,n}

and hence that
(0,) f(z) =) f(Lp)z(ay) forallz€E.
k=0
In particular, choosing £ € R and f(z) = z(¢) forall z € E,(0,) yields

(0,) z(§) = Y Li()z(a,) forallz € Fandall§ €R.
=0
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1
Choosing f(z) = / z(§£)d¢ forall z € E (or directly from (0,) )
0

1 Al
(03) -/{J.m(.f)dt':E/{; L, (§)déx(a,) forallz € E.

k=0

2. THE INFINITE CASE

We now pass to the study of analogues of Theorem 0 in which the finite family ( f,), ..., 1S
replaced by possibly infinite families ( f,),cp

One may expect (I1,) to be replaced by the assertion that f is some sort of limit of finite
lincar combinations fo the f, with ¢t € T'. Examples will show that at least two simple minded
analogues are false.

For every compact Hausdorff space S, denote by C(S) the linear space (pointwise alge-
bra) of all continuous complex-valued functions on S.

Example 1. Take T’ = N, E = C([0, 1]). Enumerate the rationals in ]0, 1[ as the range
of the injective sequence (r,), ., and define ( f,) and f by

f.(z) =xz(r,) forall n€ N ;and allz € E

f(x) = z(0) forall z € E.

Define further
v(z) = sup |f,(z)| forallz e E.
nelN

Plainly
|If(z)| <v(z) forallz€E.

However, if s € EN is defined to be (s),cpn, Where
8, (§) =max{l —k{,0} forall{€[0,1]andallk € N,

then
klim f,(8,) =0 forallneN
and yet
lim f(s,) = lim s,(0) = lim 1=1.

k—o0 k—o0 k—o0
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Example 2. Take F and f, as in Example 1, now regarding E' as a Banach space with the

uniform norm

lz|| = sup |z(&)| forallz e E.
§€(0,1]

Define f by

1
f($)=./u. zd)\ forallz € F,

where )\ denotes Lebesgue measure on R . Plainly

() ker(f,) = {10,1] x {0}},
ncIN

{10, 1] x {0}} being the zero element of C([0, 1]).
Nevertheless one can prove that there 1s no complex-valued sequence ( ), Such that

) e, f ()
neN

is convergentin R forall z € F and

f(z) =) a,f(z) forallz€E.
neN

3. Turning from negative to positive results, we remark that if it be assumed that E is a
barrelled topological linear space, that each f, is a continuous linear functional on E, and

that

v(z) =sup |fi(z)| < oo forallz € E,
teT

then v is a lower semicontinuous, hence continuous, seminorm on E. Hence the condition:

for some m € R,
|If(z)| < m.v(z) forallz € E,

implies continuity of f, which in turn implies that

ii;n f(s,) =0

for every net (s_) of elements of E such that

ims_=0
~ @



Continuous Families of Linear Functionals 233

weakly in . However, we do not wish to assume ab initio that E 1s a barrelled topological
linear space cic.

4. In order to formulate Theorem 1 below we list the following definitions and hypotheses.
For every locally compact Hausdorff space T°, denote by Cy(T") the linear space (point-
wise operations) of complex-valued continuous functions v on 7" such that

f.lim u(t) =0,
equipped with the uniform norm
|lull = sup Ju(t)].
teT

(It T" 1s compact, C,(T") 1s usually denoted by C(T'); its elements are just the complex-
valued continuous functions on 7°). We denote by <(7T') the set of all compact subsets of T°;
and by p(T") the set of all bounded complcx Radon measures on 7.

As hypotheses we consider:

(H,) F i1sacomplex linear space and f a lincar functional on E

(H,) T isalocally compact Hausdorff space

(H3) (fier 1s a family of linear functionals on E and

v(z) =sup |fi(z)|< oo forallz€E
teT

(H,) Forall z € E, the function

u, :t— f(z)

with domain 7", belongs to C,(T').

S.

Theorem 1. Assuming (H,) — (H,) above, the following statements are pairwise equiva-
lent:

(1) (3m € R,)(Vz € E)(|f(z)| < m.v(zx))

(1I) (Im e R,)(3p € p(T))
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<|#|(T) <mA(Vz e E) (f(:c) = finft(w)du(t)))

(IIT) (Vs € EN){[sup v(s,) < co A(VF € x(T))( lim (sup |£,(s,)]) = 0))

keN k—oo tep
= Eim f(s,) =0}
(I11') (Vs € EN){[SUE v(s) < oo A(VEET)(lim f,(s,) = 0)]
ke —e0

= lem f(sg) =0}

(IV) (Zm e R, )(Ve > 0)(3F € x(T))(Vz € E)
(|f(2)| € ewv(z) +msup |f,(2)]).

teF

Sketch Proof. The major component is the proof that (I) <> (II). Assuming (I), choose
m € R™ asindicated. Define

M={u_:z€ E}C Cy(T).

By (D), f(z) = f(y) forall z,y € E suchthat u_ = u,. Hence there exists a linear functional
g on M such that

(1) g(u,) = f(z) forallz€ E

and thus

(11) lg(u)| < msup |u(t)|] forallue M.
teT

By the Hahn-Banach theorem ([1], Theorem 1.7.1) g can be extended to C,(7") in such a
way that (i1) holds for all u € C,(T"). By the Reisz representation theorem ([1], Chapter 4),
there exists i € p(T') such that

(111) g(u)=/:;u(t)dp(t) forallu € Cy(T),

which implies via (11) that
(1v) (1) < m.
Finally, by (1),
F(z) = gluy) = fT f.()du(t) forallz € E

Thus (I) = (II). The implication (IT) = (I) is immediate. In connection with (I1I”) one invokes
the Lebesgue dominated convergence theorem.
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6. REMARKS

(1) If we assume merely that 7' is an arbitrary nonvoid set, and retain (//,) and ( H,), then
(I) implies that there exists a finitely additive complex measure ~ of total variation at most

m such that

f(z) = /Tft(:r.:)dry(t) forallz € E.

But this is insufficient to imply (I11I).

In a similar way, we might assume (in place of ( H,) ) that T is a completely regular
topological space, and (in place of ( /1) ) that for every z € E the function u_ belongs to
BC(T) (the space of all bounded continuous complex-valued functions on 7'). Regarding

BC(T) asaBanach algebra (pointwise algebra and uniform norm), denote by T the maximal
ideal space of BC(T') with its Gelfand topology. (f i1s homeomorphic to 7', the Stone-
Cech compactification of T'; see [2], Chapter 7). Then T' can be regarded as an everywhere
dense subspace of T', and every u € BC(T) has a unique continuous extension u which is
an element of C (f). (I) will then imply that there exists a complex Radon measure y on the

compact space T such that

f(z) = /_ Ez(?)dp(?) forallz € E.
T

Once again, however, this is insufficient to imply (III).
(2) If E is areal linear space and

sup fi(z) < o0 forallzx € E,
teT

and if (I) 1s replaced by

m € R, A(Vz € E)(f(x) < m.sup f(2)),
tel’

then in (IT) ¢ be taken to be a non-negative Radon measure on " such that u(77) < m.

(3) Example 2 provides an instance in which £ = C([0,1]) is a Banach space; T' = N
is a locally compact, non-compact Hausdorff space with discrete topology; and ( H,;) —( H,)
are satisfied. Yet in this case (I) is true and (IIT) and (III’) are false. The breakdown is due, at
least in part, to a violation of ( H,).
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7. ANALOGUES OF THEOREM 1

Suppose that K and f areasin (/{;) and T" is as in ( H,). Suppose also that X is a chosen
non-negative Radon measure on 7', that p is chosen from [1,00[, and that in ( H;)v is

replaced by

1

(1) v,(z) = (/ | £ () |pdk(t)> F <oo forallz€e E.
T

If it be assumed that m € R, and

(2) f(2)| < mv(z) forallz € E,

then one may infer that there exists w € LP (T, )) such that |jw||,y < m and

(3) f(x) = f w(t) f,(z)dA(t) forallz € E;
T
;. : 1 1 .
here p’ 1s defined by E - E = 1. If also p €]1, oo[, it follows that for every € > 0 there

exists F' € «(T') such that

1
P

(4) |f(2)| < eyy(z) +m (f |ft(x)|Fd,x(t)) forallz € E.
F

From (3) 1t also follows that

(5) lim f(s;) = 0

k-—00

for every s € EN such that

(6) sup v (8;) < 00
kEN
and
(7) gim fft(sk)u(t)dh(t) =0 forallvelV,
—00 [

where V' denotes any subset of LP’(T, A) whose linear span 1s dense¢ 1n LP*(T, M.
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In the special case in which T is an arbitrary non-void set (with its discrete topology) and
A 1S conting measure on T, the integrals are to be replaced by the corresponding sums. Then
(2) reads
1

up(n:)=(2|ft(m)lp> < oo forallx € E;

teT

in (3), w € ##(T) and

f(z) =) wt)f(z) forallz € E;

tel’

(4) reads
L

£(2)] < e, (z) + m (E |ft(m)lp) for all z € E;

teF

and (7) may be replaced by

lim f,(s,) =0 forallteT.

k—oc0

Interested readers will be able to formulate still more analogues of Theorem 1.

8. TWO ILLUSTRATIONS OF THEOREM 1

(a) Consider the following situation: E = C°(R), the space of indefinitely differentiable
complex-valued functions on R which have compact supports; T' = K, a compact subset of
R;

fi(z) = f exp(1tE)xz(€)dE = z(t) forallt€e R andall x € F,
R

f(z)=A¢(f)ﬂ5)d& for all z € E,

¢ denoting a given locally integrable complex-valued function on R .

Hypotheses ( H,) — (H,) are all satisfied and Theorem 1 and its proof affirm the equi-
valence of the following two statements:

() me R, and K € x(R) and

(8) /; ¢(E)I(E)d£| < m.sup |2(t)| forall z € E;

te K
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(i) m e R, and K € x(R) and there exists 4 € p(R) supported by K and having
total mass at most m and such that

(9) p(€) = / exp(1t&)du(t) foralmostallé € R.
K

A consequence of (ii) is that, by suitable modification of ¢ on a negligible subset of R, one
may assume that the equality 1n (9) holds for all £ € R..

A similar appeal to the substance of §7 shows that if in addition 1 < p < oo, then the
statcment

(ip) m € R and K € (R ) and

1

(10) /Rtﬁ(f)ﬂ:(f)df|£m<'/;(|f(t)lptfi)” forallz € E

15 equivalent to the statement
(iip) m € R and K € x(R) and there exists a complex-valued function w € LP (R)

which vanishes on R \ K and satisfies Hm”f(R) < m such that

(11) d(€) =/ w(t)exp(ité)dt for almostallé € R.
R

Here again a suitable modification of ¢ on a negligible subset of R will arrange that the
equality in (11) holds for all € € R.

Assuming this modification to have been made, either of (i1) or (iip) implies that ¢ is
(the restriction to R of) an entire functio.i of order one and exponential type on €. More
specifically, either of (it) or (iip) implies

9P (€+in)| < m. l:g{'i(ltlkﬁmp( —tn))

forall k € N and all £,7 € R.

1 1 .
In addition, if 2 < p < 0o and — + — =1, (11ip) implies
p P

L

N P p{k ! F{ ﬁ
(_/ 1Py (€ +17) |pdf> <m (/; 1t|P *exp(~pnt) |w(t)] rit)
R

forall ke N andall £, n € R.
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It is perhaps a little surprising that inequalities (i) or (ip) should imply that ¢ is (after
modification) so extremely regular,

Compare these results with the Paley-Weiner theorem.

(b) Now consider the situation in which £ = C°(] — 1,1[); T = N with the discrete

topology;

1
fn(:r.)=/ £"x(€)d¢ forall n€ N and all z € E;
~1

1
£(z) =f1¢(£)m(5)d£ for all z € E;

¢ denoting a complex-valued function which 1s locally integrableon ] — 1, 1[.

Hypotheses ( H{) — (H,) are again satisfied and Theorem 1 and its proof affirm the
equivalence of the following two statements:

(1) m € R, and

1
/ E"E(E)d{| forall z € E;
1

1
(12) |/1 ¢(E)m(f)d£| < m. sup

ncIN

(iv) m € R, and there exists w € £' (IN) such that
S lp(m] < m
neN

and

(13) $(€) = ) w(mE™ for almost all £ €] —1,1[.
ncIN

If also ¢ is continuous on ] — 1, 1[, the equality in (13) holds for all £ €] — 1, 1[. In any
case, w is uniquely determined by ¢, and one may denote by ¢° the function

£— Y wne
neIN

with domain the disk
A={(eC:[{|<1}.

The function ¢° is continuous on A and holomorphic interior to A .
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Since 2! (IN) is acommutative Banach algebra with identity relative to pointwise addition
and scalar multiplication and a product defined by truncated convolution,

w*xo(n) = E w(p)o(q),

p+g=n

it follows that
A ={¢" w el (N)}

1s likewise a commutative Banach algebra with identity relative to pointwise operations and

16°1] =) lw(m)].
ncEN

norm

Further examination shows that the maximal ideals in _# are of the form
M, = {4’ € 4 :¢°(¢) =0}

as ¢ ranges over A . From this it follows that an element ¢° of _# has an inverse in £ if
and only if

cﬁu(f)%[] forall € €A.

Again it is a little surprising that (iit), together with the continuity of ¢, entails such extreme
regularity of ¢.
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