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1 Introduction

Geometry of a tangent bundle goes back to 1958 when Sasaki published
([16]). Having given Riemannian metric g on a differentiable manifold M, he
constructed a Riemannian metric G on the tangent bundle TM of M, known
today as the Sasaki metric. Since then different topics of geometry of the tangent
bundle were studied by many geometers. Other metrics on the tangent bundle,
obtained from the base metric g (as lifts), had been considered and studied.
Actually, all these metrics belong to a large class of metrics on T'M, known as
g— natural ones, constructed in ([13]), see also ([5]). g— natural metrics can be
regarded as jets of a Riemannian metric g on a manifold M ([2]).

In this paper we are interested in the classification of Killing vector field
on the tangent bundle TM endowed with an arbitrary g— natural metric G.
The same subject had been studied in ([3]), ([17]) and ([18]) in the particular
cases where G is the Cheeger-Gromoll metric ¢¢“, the complete lift g¢ and the
Sasaki metric ¢°, respectively. In all the cases, a classification of Killing vector
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fields on the tangent bundle had been obtained. Similar results were obtained
independently in ([15]).

We start by developing the method by Tanno ([18]) to investigate Killing
vector fields on T'M with arbitrary, non-degenerate g— natural metrics. The
method applies Taylor’s formula to components of the vector field that is sup-
posed to be an infinitesimal affine transformation, in particular an infinitesimal
isometry. The infinitesimal affine transformation is determined by the values of
its components and their first partial derivatives at a point ([12], p. 232). It
appears by applying the Taylor’s formula there are at most four ”generators”
of the infinitesimal isometry: two vectors and two tensors of type (1,1).

The paper is organized as follows. In Chapter 2 we describe the conventions
and give basic formulas we shall need. We also give a short resumé on a tangent
bundle of a Riemannian manifold. In Chapter 3 we calculate the Lie derivative of
a g—natural metric G on T M in terms of horizontal and vertical lifts of vector
fields from M to T'M. Furthermore, we obtain the Lie derivative of G with
respect to an arbitrary vector field in terms of an adapted frame. By applying
the Taylor’s formula to the Killing vector field on a neighbourhood of the set
M x {0} we get a series of conditions relating components and their covariant
derivatives. Finally we prove some lemmas of a general character. It is worth
mentioning that at this level there is a restriction on one of the generators to
be non-zero. The further restrictions of this kind will appear later on.

In Chapter 4, making use of these conditions and lemmas, we split the non-
degenerate g—natural metrics on 7'M into four classes (Theorem 2).

As a consequence of the splitting theorem and Theorem 3 as well, we obtain
the main

Theorem 1. If the tangent bundle of a Riemannian manifold (M, g), dimM >
2, with a g— natural, non-degenerate metric G admits a Killing vector field, then
there exists a Killing vector field on M.

Conversely, any Killing vector field X on a Riemannian manifold (M, g)
gives rise to a Killing vector field Z on its tangent bundle endowed with a non-
degenerate g— natural metric. Precisely, Z is the complete lift of X.

Finally, in the Appendix we collect some known facts and theorems that we
use throughout the paper and also prove lemmas of a general character.

In part II of this work ([9], see also [10]) further properties of the classes
indicated in Theorem 2 are investigated separately. Moreover, a complete struc-
ture of the Lie algebra of Killing vector fields on T'M for some subclasses is
given. Some classical lifts of some tensor fields from (M, g) to (T'M, G) are also
discussed.

Throughout the paper all manifolds under consideration are smooth and
Hausdorff ones. The metric g of the base manifold M is always assumed to be
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Riemannian one.
The computations in local coordinates were partially carried out and checked
using MathTensor™ and Mathematica® software.

2 Preliminaries

2.1 Conventions and basic formulas

Let (M, g) be a pseudo-Riemannian manifold of dimension n with metric g.
The Riemann curvature tensor R is defined by

R(X,Y) = VxVy — VyVx — Vixy].

In a local coordinate neighbourhood (U, (zt,...,2")) its components are given

by

R(0;,07)0k = R(0i,05,0k) = Ry;;0p =
(0.T%), — 0;Ty, + T.Isy, — T4, Or,

where O = % and F;k are the Christoffel symbols of the Levi-Civita connection
V. We have
Agnk = gnk = Uhigrk + UG- (1)

The Ricci identity is
ViV;iXy = V;iViXy = X ji — Xiij = —X° Rapji- (2)
The Lie derivative of a metric tensor g is given by
(Lxg) (Y, Z)=g(VyX,Z) +g(Y,VzX) 3)
for all vector fields X, Y, Z on M. In local coordinates (U, (z!,...,2™)) we get
(LXTBTg)ij =V X; + V;X;,

where X = g X".
We shall need the following properties of the Lie derivative

LxTW = V;V;X" + X" Ryjisg™ =

59" (9 (Lxgir) + Vi (Lxgie) — Vo (Exgio] - (4

If L XF?i = 0, then X is said to be an infinitesimal affine transformation.
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The vector field X is said to be the Killing vector field or infinitesimal
isometry if
Lxg=0.

For a Killing vector field X we have
LxV =0, LxR=0, Lx(VR)=0,....

([19], p. 23 and 24).

2.2 Tangent bundle

Let z be a point of a Riemannian manifold (M, g), dimM = n, covered by
coordinate neighbourhoods (U, (z7, j = 1,...,n)), . Let TM be the tangent
bundle of M and 7 : TM — M be the natural projection on M. If z € U and
u = uragqx € T, M then (7=1(U), ((2"),(u"), r = 1,...,n)), is a coordinate
neighbourhood on T'M.

For all (z,u) € TM we denote by V(, , T M the kernel of the differential at

(z,u) of the projection 7 : TM — M, i.e.,

V(:z:,u)TM = Ker (d7T|(x7u)) y

which is called the vertical subspace of T(, ,\TM at (x,u).

To define the horizontal subspace of T{, , 7'M at (z,u), let V' C M and
W C T, M be open neighbourhoods of x and 0 respectively, diffeomorphic under
exponential mapping exp, : T, M — M. Furthermore, let S : 7=4(V) — T, M
be a smooth mapping that translates every vector Z € 7~1(V) from the point
y to the point = in a parallel manner along the unique geodesic connecting y
and z. Finally, for a given v € T, M, let R_,, : T,M — T, M be a translation
by u, i.e. R_,(X;) = X, — u. The connection map

of the Levi-Civita connection V is given by
K(x,u) (Z) = d(expp oR_y0 S)(Z)

for any Z € T{, ., TM.
For any smooth vector field Z : M — T'M and X, € T, M we have

K(dZy(X.)) = (Vx2),.

Then H, TM = Ker(K(,,)) is called the horizontal subspace of T(, ., T'M at

(z,u).
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The space T(,,,)TM tangent to TM at (z,u) splits into direct sum
Ty TM = Hy o) TM @ Vg oy TM.
We have isomorphisms
Hpoy TM ~ Ty M ~ Vi) TM.

For any vector X € T, M there exist unique vectors in T(, , TM, X h and XV,
given respectively by drn(X") = X and XV(df) = X f, for any function f on
M. X" and XV are called the horizontal and the vertical lifts of X to the point
(x,u) € TM.

The vertical lift of a vector field X on M is the unique vector field X" on
TM such that at each point (z,u) € T'M its value is the vertical lift of X, to
the point (z,u). The horizontal lift of a vector field is defined similarly.

If ((27), (u?),i = 1,...,n) is a local coordinate system around the point
(x,u) € TM where v € T, M and X = Xj%, then
-0 0 . 0
X=X~ —u' X —, X=X _~
ozi " " Oud’ oud’

where I, are the Christoffel symbols of the Levi-Civita connection V on (M, g).
We shall write 0y = a%k and 6, = -2 (cf. [8] or [11], see also [20]).

BuF

In the paper we shall frequently use the frame (8,?, o) = ((a%k)h ) (%)U>
known as the adapted frame.

Lemma 1. The Lie brackets of vector fields on the tangent bundle of a

pseudo-Riemannian manifold M are given by

[thh](m) = XY - v {R(X.,Ya)u)

h v _ v _ v v
[X ,Y](m) = (VXY = (Vv X)) + X YT
X" YY) = O

for all vector fields X, Y on M.

Every metric g on M gives rise to the class of so called g— natural metrics.
The well-known Cheeger-Gromoll and Sasaki metrics are special cases of g—
natural metrics ([13]). g— natural metrics are characterized by the following

Lemma 2. ([5/, [6]) Let (M,g) be a Riemannian manifold and G be a
g—natural metric on TM. There exist functions aj, bj :< 0,00) — R, j =
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1,2,3, such that for every X, Y, u € T, M

= (a1 +a3)(r*)ga (X, Y) + (b1 + b3)(r?) g (X, u) g2 (Y, w),
az(r?)ge (X, Y) + b2 (r?) 9o (X, u)go (Y, w), (5)

= ax(r)ge(X,Y) + b2(r?) g2 (X, u) g2 (Y, w),
(r)g:(X,Y) + b1(r?) g2 (X, u) gz (Y, u),

Glpuy (XY

)

>
. >
~
~— ~— \_s N~—
|

(
G Xv yh
() (X,
(

= al

where r? = gz (u,u). For dim M = 1 the same holds for b; =0, j = 1,2,3.
Setting a1 = 1, ag = a3 = b; = 0 we obtain the Sasaki metric, while setting
= :ﬁ,agzbgz():(],al—l—agz 1, by + b3 = 1 we get the

Cheeger-Gromoll one.

Following ([5]) we put

(1) a(t) = ax(t) (ar(t) + as(t)) — a3(),
(2) Fj(t) = a;(t) + tb; (1),

(3) F(t) = Fu(t) [F1(t) + F3(1)] - F3(t)
for all t €< 0, 00).

We shall often abbreviate: A = a1 + a3, B = by + bs.

Lemma 3. (/5], Proposition 2.7) The necessary and sufficient conditions
for a g— natural metric G on the tangent bundle of a Riemannian manifold
(M, g) to be non-degenerate are a(t) # 0 and F(t) # 0 for all t €< 0,00). If
dim M =1 this is equivalent to a(t) # 0 for all t €< 0,00).

2.3 The Levi-Civita connection

The Levi-Civita connection V of a Riemannian g - natural metric G on
TM was calculated and presented in ([4], [5], [6]), with some misprints (see, for
instance, ([1]) for correct expressions without misprints).

The same expressions remain valid for non-degenerate g— natural metric
(cf. ([7])):

Let T be a tensor field of type(1,s) on M. For any Xi,...,Xs € T, M,
x € M, we define horizontal and vertical vectors at a point (x,u) € TTM
setting respectively

dimM

WT(X1, . u,. o Xeat = > W' [T(Xn, 0,0y, Xoo1)]",
r=1
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dimM
V{T(X1,ou . Xea} = Y W [T(Xy, 00y, X))

r=1

By the similar formulas we define
h{T(X1,... uy.ooyuy ., Xsoq} and A {T( X1, ..., uy... 0y .., Xs1}.

Moreover, we put h {T(X1, ..., Xs} = (T(X1,..., X)) and v {T(X1,..., X5} =
(T(X1,...,Xs))". Therefore h{X} = X" and v{X} = XV ([4], pp. 22-23).
Finally, we write

R(X,Y,Z) = R(X,Y)Z and R(X,Y,Z,V) = g(R(X,Y, Z),V)

forall X,Y, Z,V € T, M.

Proposition 1. (/1], [7]) Let (M, g) be a Riemannian manifold, V its Levi-
Civita connection and R its Riemann curvature tensor. If G is a non-degenerate
g—natural metric on TM, then the Levi-Civita connection ¥V of (TM,G) at a
point (x,u) € TM s given by

ﬁXm)(x,u) = (VxY)! o+ { A, Xo, Vo)) + 0 {B(u, X0, Ya) )
(ﬁxhyv)(m) = (VXY)u + h{C(u, X, Ya)} + v {D(u, Xa, Ya)}
(%vah)(m) — W {C(u,Ye, Xo)} + v {D(u, Yo, X)),
(Vxo¥?) = PE X Yo} ol Xe, V)
for all vector fields X, Y on M, where P = a}, — %2, =ah+ %2 and
A(u, X,Y) = —“;ZQ [R(X,u,Y) + R(Y,u, X)] +
% [9(Y, u)X + g(X, u)Y]+
1

aoF
[aFQB’ + Blag(Fyby — F1B) + A(a1ba — agbl)]] g(X,u)g(Y,u)+

{ a2 [a1 (FlB — ngg) + a9 (b1a2 — bgal)] R(X, U,Y, U)+

aFyA'g(X,Y) }u,
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2
B(u,X,Y) = 2R(X,u,Y) - %R(X Y, u)—
a

AB [ Y, u)X +g(X,u)Y]+
alF{ CL2 ngg — FlB) + A(bgal — blag)]R(X, u,Y, u)—l—
—CL(Fl—I—Fg) —|— [ ((Fl + Fg)bl — ngz) + ao (GQB — bQA)] :| g(X, u)g(Y,u)

—a(Fy + F3)A'g(X,Y) }u,

C(u, X,Y) = —ajR(Y X)+ 28 o x wy+
u7 ) - 2a 7u7 2a g 7u
1
. (alA’ — agP) g(Y,u) X+
1
CLF{ % [ag (a2b1 — a1b2) —+ a3 (FlB — ngg)] R(X, u, Y, U)—I—
Fy
B + EBP)g(X,Y)+
/ ,, B
[aFlB + <A + 2> [ag (albg - a2b1) + a1 (ngg - BFl)] +

Plag (by (F1 + F3) — bo ) — ay (b2 A — a2B))] ]g(X, u)g(Y,u) }u,

B
142 R(Y,u,X) — %g(X, w)Y +

D(u,X,Y):i{

(AP — apA")g(Y,u)X) } +
1
{a21 [A(a1by — agby) + az(Frby — F1B)| R(X,u, Y, u) —
F
; [;B (A +F3>P] g(X, V)t
/ / B
|: —aFy,B' + <A + 2> [A(a2b1 — albg) + ag(FlB — ngg)] +

P [A(bQFQ — b1(F1 + Fg)) + ag(bgA - GQB)] } g(X, u)g(Y,u)} u
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1
E(U,X, Y) = E (alQ - a2a/1) [g(Xa U)Y +g(Y7 U)X] +
1
(LiF { a [Flbg — Fg(bl — CL/I)] g(X, Y)+
[a(QFlb’Q — ngll) + 2CL,1 [al(agB — bQA) + ag(bl(Fl + Fg) — bgFg)] +

20 [a1(Faby — F1B) + as(aibs — ashy)] } 9(X, w)g(Y, ) } u,

F(u,X.Y) = L (Aaf — Q) [o(X. 0)Y +g(¥,u)X] +
% { a [(F1 + F3)(bl — a’l) — ngg] g(X, Y)—|-
[a((Fl +E), — 2Fb)+ 24, [as(baA — aoB) + A(bsFy — by (Fy + F3))] +

2Q [as(Fi B — Fabo) + A(asby — a1by)] } 9(X,w)g(Y, u)} u.

3 Killing vector field

3.1 Lie derivative

Applying the formula (3) to the non-degenerate g—natural metric G on T'M
and vertical and horizontal lifts of vector fields X, Y, Z on M, using Proposition
1, we get

(Lx»G) (Y, Z") =
big(X, Z)g(Y,u) + big(X,Y)g(Z,u)+
2a19(Y, Z)g(X, u) + 2b19(X, u)g(Y,u)9(Z, u),

(LxnG) (Y, ZY) =0,
whence
v oaQUu\ _ Y/a v QU v ITa h qu
(Lioopsveay G) (05, 0) = V* (LoyG) (83, 07) + Oy H°G (1, 07 ) +
VG (0Y,0])+ 0y H*G (6};, 82) +0/VeG (0,07 .
Next we find
(LxnG) (Y”,Zh) -
—a1R(Y,u, X, Z) + a2g(VzX,Y) + bag(Vz X, u)g(Y,u),
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(LxoG) (Y“, Zh) — a19(V2X,Y) + bi1g(V 2 X, u)g(Y, u)+

ba [9(X, Z)g(Y,u) + 9(X,Y)g(Z,u)] +
2a59(Y, Z)g(X, u) + 2b59(X, u)g(Y,u)g(Z, u),

whence
(LHaag+vaagG> ( }éﬁf) =
H (LoyG) (01, 01') + V* (LayG) (04, 0! ) + op G (9, 0f') +
pVeG (95, 0f) + O HOG (0, 9l ) + O'V°G (9, 95)
Finally, we have

(LnG) (Yh, Zh) = Alg(V2X,Y) + g(Vy X, Z)] +

Blg(VzX,u)g(Y,u) + g(Vy X, u)g(Z,u)] -
az [R(Y,u, X, Z) + R(Z,u, X,Y)],

(LxG) (Yh, Zh> = as [g(V2X,Y) + g(Vy X, Z)] +

b2 [9(VzX,u)g(Y,u) + g(Vy X, u)g(Z, u)] +
Bg(X,Y)g(Z,u) + g(X, Z)g(Y,u)] +
24'g(Y, Z)g(X,u) + 2B'g(X,u)g(Y,u)g(Z, u),

whence
(Lmagwaagc;) (a,’;,alh) -
H (LoyG) (0k.01') + v (Loy @) (0, 01) + o HG (o, 01) +
arvea (ag, a,h) +OhHG (a{;, aj;) +ohvea (a{;, ag) .
Suppose now that
Z = 2%+ 2% = 290" + (Z° + Z°u'TS,)8., = HO! + VoY

is a vector field on T'M, H®, V® being the horizontal and vertical components
of the vector field Z on T'M respectively.
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Lemma 4. Let G be a non-degenerate g— natural metric (i.e., of the form
(5)) defined on the tangent bundle TM of a manifold (M,g). With respect to
the base (8};,8{‘) we have

(LHGBQ-&-V“@]; G) <8,?, 31}1) =
— az [Rakir + Raikr] Hu"+
A [(@?Hﬂ +H" ?k) Jal + <3zhHa +H" ?l) gak} +
B [(a,’gHa v HT gk) Uty + (afHa n HT?Z> uauk} v
az [ (V4 VT8 g + (V4 VITY) gur] +
b [ (O0V" + VT ) waw + (01V" 4+ VT ) wawe | +
2A graVouy, + 2BV ugupuy + B (Viw + Viug),  (6)

(LHaag+Vaag G) (3/75, 8lh) =
— a1 Roppru" H* 4+ 0 H* (Aga + Buguy) +
ag <8[LH“ +H" ?l> Jak + b2 (8{LH“ +H" gl) UgUg+
OV (azgar + bauawuy) +
a1 (VO + VT8 gak + by (V2 + VT8 ) wgupt
2ah, gV oup 4+ 205V uqupuy + by (Viewg + Viug),  (7)

(Lieopeveos G) (01 07) =
az (Op Hga1 + O Hgag,) + b2 (0 Huquy + O Huguy) +
by (Viw + Viug) + 20 gV ouy 4+ 267 V0upugu+
a1 (Vo + OV OGar) + b1 (OLV “uquy + 8V o3uqui) . (8)

3.2 Taylor’s formula and coefficients
Throughout the paper the following hypothesis will be used:
(M, g) is a Riemannian manifold of dimension n with metric g, 9)

covered by the coordinate system (U, (z")).
(T'M, G) is the tangent bundle of M with g — natural non-
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degenerate metric GG, covered by a coordinate system

(x~YU), (z",u*)), r, s run through the range {1,...,n}.

Z is a Killing vector field on TM with local components (2", Z*)
with respect to the local base (9, ds) .

Let

H=7%=Z7%(z,u) =

1 1 1
X+ KpuP + iquupuq + gFﬁqrupuqur + IGgqrsupuqurus +---, (10)
Z% = Z°%(z,u) =
a~ap1apq 1apqr 1apq7‘s
Y+ Plu +§quu u +§Spqru ulu —I—Iqumu wlu"u® + -+ (11)

be expansions of the components Z¢ and zZa by Taylor’s formula in a neigh-
bourhood in T, M of a point (x,0) € TM. For each index a the coefficients are
values of partial derivatives of Z¢, Za respectively, taken at a point (x,0) and
therefore are symmetric in all lower indices. For simplicity we have omitted the
remainders.

Lemma 5. (/18]) The quantities

X = (X)) = (2%(=,0)),
v = (v () = (2°(2,0)),

K = (K (2)) = (6,2 (2,0)),
E = (Ep, () = (6,6,2° (2,0)),

are tensor fields on M.

Applying the operators J; and (9,? to the horizontal components we get

wPulu” + -

1 1
ORH" = Kff + Bfju’ + 5 FpquPu’ + Gl

6£Ha = @an + @ngup—l—

1 1 1
iekquupuq + g@kF;qrupuqur + 5@]6Ggqrsupuqurus + ...
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on a neighbourhood of a point (x,0) € T'M, where for any (1, z)— tensor 1" we
have put
@kTi?z‘j... = val?ij... - ng;T}:ij....'

Moreover, if we put:
S8 = P+ X'TY, = PP — 8, X% + VX = P + V. X7,
Tkap = QZq + Kllc) Zp + Kz Zk?

Fikpg = 0k0p0gZ®(2,0)gar,
Wikpg = (5k5p5qza($a 0) + Epl'eg + Egele, + Ef L% gal =
(Sgpq + Elgkrgq + Egkrgp + E;qrgk) Yal,

a __Y/a c a c a c a c a
kaqr - Vkpqr + kaqrcr + qurrcp + Fkrchq + pgr+ ck>

then the vertical component writes

1 1
Ve=Y*+ Sgup 4+ =T yPud + —

1
a »,.q,,T a P,,d, T, S
511 pa S!qu,,uuu +—4!Z uPutu"u® +

pgrs

and
1

i D

1
oV = Sp + Tiu? + §W,?pqupuq +

RV = OrY" + O, SpuP+

1 1 1
a@kT;} uPu? + i@kW“ wPulu” + I@ng

PouduTus 4 - -
. fim s uiu v + (12)

on a neighbourhood of a point (x,0) € T'M.
We shall often use the following definitions and abbreviations:

Sy =Py +VpX®, Skp=Spgaks Pik = P gal,

K[p = Kggal, Ek;pq - Ekqp — gqgak’v 7—‘”{:]) = T]gpgal‘

Substituting (10) - (12) into the right hand sides of (6)-(8) we obtain on some
neighbourhood of (z,0) expressions that are sums of polynomials in variables
u” with coefficients depending on 2! multiplied by functions depending on r? =
grsu u® plus terms that contain remainders. Suppose that Z = 270, + Z79, is
a Killing vector field on T'M. Then the left hand sides vanish and substituting

u = (u/) = 0 we obtain on M

A(VpX; + ViXy) + a2 (ViY + ViYy) =0, (I1)
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AKy + az (P + Vi Xy + ViXg) + a1V, Y =0, (I1)
az (K + K1) + a1 (Su. + Swi) = 0, (I11)
where A = A(0), a; = a;(0). Differentiating with respect to J;, making use of
the property
Srf(r?) = 2 (r*) grsu®
and substituting v/ = 0 we find

A (VK + ViKyp) + a2 [ViSip + ViSkp — X (Rakip + Rakp)] +
24’91 Yp + B (Yiegp + Yigrp) =0, (I2)

AEj, 4+ a1 (ViSkp — X Raikp) + a2 (Vi Kip + Tigp) +
2a591Yp + by (Yegip + Yigey) =0, (112)

a1 (Tip + Thap) + a2 (Bup + Erip) + b1 (Yagip + Yigrp) + 2a19uY, =0, (I11)
on M, where A’ = A'(0), a; = a}(0) etc.
For any (0,2)— tensor T" we put

— ~

Tab = Tab + Tbay Tab = Tab - Tba

It is easily seen, that the quantities F' and W are symmetric in the last three
indices. Proceeding in the same way as before we easily obtain expressions of
the second order:

(LHﬂaf;-i-VaagG) (62’8;L)pq |(@,0) =
A (VkElpq + VlEkpq) + a2 (Vlepq + VlTkpq) + 2A,gkl§pq—|—
B(ViXp + Skp) g1 + (Vi Xq + Skq) gpi+
(ViXp + Sip) ggk + (ViXg + Sig) gpr] +
ba (ViYpgq + ViYegp + ViYpger + ViYegpr) —
a2 [K§ (Raikg + Rakig) + K (Ratkp + Rarip)] =0, (I3)

(LHaangVaa};G) (8}5» aﬁ)pq l(@.0) =
AFpg + a2Wikpg + a1V Thpg + a2V Ejpg + 2059515 pg—
ai (KgRalk;q + K((;Ralkp) + B (Kpkgq + Kergpl) +
ba (Spkgar + Sqrdpl + Sipar + Sig9pk + ViXpgig + ViXegrp) +
b1 (ViYpgrg + ViYegrp) =0, (I13)
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(Laeoprveos @) (08 00y ey =
az (Flkpq + Fk:lpq) + a1 (I/Vlkpq + Wklpq) + 2allgkl§pq+

b1 (gkpgql + gkqul + glpqu + glquk) +
ba (kagql + qugpl + Kplqu + qugpk) =0. (III?))

Finally, expressions of the third order are:

(LHaagwaagG) <<91?a31h) l(@,0) =
par
A ViFipgr + ViFrpgr] + a2 [ViWipgr + ViWipgr] —
az [Eg, (Ratkr + Rakir) + Egy (Rakp + Rakip) + Epy (Raikg + Rakig)| +
B [ViK gwgir + ViKrqgip + ViKprgig + ViKgpgir + ViKrqGip + ViK prgig] +
b2 [ViSapgir + VieSragip + ViSpraig + ViSapgr + ViSregkp + ViSprre) +
B lgipTkgr + 91¢Tkrp + 91r Trpg + kpTigr + g Tirp + Grr Tipg) +

2B [(9pkql + gk gpl) Yr + (9qkgri + 9regqr) Yp + (9rkgpt + gpkgrt) Yol +
2A/gklMqu = 07 (I4)

(LHaag+vaag G) <8za 31}1)qu l(@,0) =
AGpgr + a2 Z1kpgr + a2V 1 Fipgr + a1V Wipgr—
a1 [Ef, Raikr + Egy Raikp + Epy Raig) +
b [ViK gpgir + ViKrqGip + ViK prrg) +
B g1 (Eqrp + Epkq) + gip (Brig + Egkr) + g1 (Epkr + Ergp)] +
b1 [ViSapgkr + ViSrqGkp + ViSprgrg] +
b2 [9kpTigr + kg Tirp + Gkr Tipg] + b2 [91p Migr + GigMirp + Gir Mipg) +

2% [(9pk9qt + 9ok pt) Yo + (9grgrt + Grk9at) Yp + (Grkgpl + Gpgr) Yol +
2a,2.gk:lMpqr = 07 (II4)

where Myqr = Tpgr + Tyrp + Trpg and
Zlkqu = (Vki)qr + Flgpqrgr + Flgqu—‘gp + Flgrprgq + ;J:quZk) Yal

which is symmetric in the last four lower indices.
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Moreover, we have

(LizoapsvoosG) 0800 por Lm0y =
a2 (Gikpgr + Gripgr) + 01 (Zikpgr + Zkipgr) +
b2 [91r (Egkp + Epkq) + 9ip (Erkg + Eqir) + 919 (Epker + Ervip)] +
b2 [gkr (Eqip + Epig) + gkp (Erig + Eqir) + grq (Epir + Erp)] +
b1 [gkpMigr + gkqaMirp + grr Mipg) + b1 [91pMigr + GigMirp + gir Mipg] +
261 [(gpr9qt + 9ar9pt) Yr + (Gqrgrt + 9rkga) Yo + (9rkgpt + gprgrt) Yol +
201 g1 Mpgr = 0. (I11y)

Important remark: Hereafter, and unless otherwise specified, all the coeffi-
cients aj, b;, aj, b;, A, A', B, B',... are considered to be constants, equal to
the values at 0 of the corresponding functions.

3.3 Lemmas
Lemma 6. Under hypothesis (9) ,we have, on M :

a1 Ty + a2 By = a) (Yigkp — Yigip — Yogrt) — b1Yigkp, (13)

1
AEjy + a2Tigp + ay(91Yp + 9 Ye) + 562(291@% + 91pYe + guYp) =0, (14)

aEjgm = (a2by — arbs — a2a)) grmYi—

1
5(61152 — 2a2a} + 2a1a5)(gimYe + g1Ym), (15)

1
aTipm = (Aa/1+a2b2—Abl)gkaz+§(a2b2—214a/1+2a20'2)(glmyk+glkym), (16)
aMjm = [2a2(b2 + a5) — A(by + a))|(gemY? + 9ixYm + gnu¥z).  (17)

Moreover,

a2 [Vk (VlXp + Vle) + V; (VkXp + VpXk) — Vp (Vle + Vle)] +
a1 (ViViYy, + ViViYy) = 24'guY, + B (Vg + Yigrp) »  (18)

a (ViKyp + ViKiy) + (a2bs + 2a1 A" — 2a9a5) Y9+

1
5(—a2b2 + 2a1 B + 2a2a%) (Yegip + Yigrp) = 0. (19)
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Proof. Alternating (IIl3) in (I,p), then interchanging the indices (p,k) and
adding the resulting equation to (II12), we obtain (13).
Differentiating covariantly (I11;) we get

a2 (VkKlp + Vkal) + a1 (VkSlp + VkSpl) =0.

Symmetrizing (I13) in (k,p) and subtracting the resulting equation from the
above one we find (14).

Now (15) and (16) result immediately from (13) and (14).

From (11;) we easily get

AVLKp, + a2 (Vi Pyp 4+ ViV X + ViiViXp) + a1V VY, = 0,

whence, symmetrizing in (k,[), subtracting from (I3), by the use of the Ricci
identity, we obtain (18).

To prove (19) first we symmetrize (//2) in (k,[) and combine it with (I2) to
obtain

a (VK + ViKyy) — a2 [A(Egm + Erm) + a2 (Tikm + Tham)] +
2 (a1 A" = 2a2a) g Ym + (a1 B — 2a2b2) (91m Y + grm Y1) = 0.

On the other hand, symmetrizing (14) in (k,!) and subtracting from the above
we obtain (19). This completes the proof. QED

Lemma 7. Under hypothesis (9) we have, on M

2aV Ky = a1Y" Rypt — a1BgemYi+
(—alB + agby — 2a2a'2)glek + (—ang — 2(1114, + 2a2a'2)glem, (20)

2a (vlskm - XTerkm) + a1a2YTR7"mkl - QQngmYl+
[—agB +A (bg — 2a'2)] Jim Y + [—QagA' — A (bg — 2a’2)} guYm = 0. (21)

Proof. From (II) we subtract (14) to obtain

b
aoV i Kim + a1 (ViSkm — X" Ryigm) + <a/2 - 22> (9:1Ym — gmuYs) = 0. (22)

On the other hand, interchanging in (/1) k and m, differentiating covariantly
with respect to O, alternating in (k,!) and applying the Ricci identity, we find

A (VK — ViKem) + a2 (VS — ViSkm) + a2 X Ry + a1Y " Ry = 0.
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Subtracting from (I2), in virtue of the Bianchi identity, we get

2AV  Kpn + 2a2 (ViSkm — X" Ryjkom) —
a1Y" Rympt + 2A' g1 Yo + B (im i + gkm Y1) = 0.

The last equation together with (22) yields the result. QED
Lemma 8. Under hypothesis (9) suppose dim M > 2. Then, on M, we have

Ti =T, =2 (b1 — a}) Sp + b2 Ky =0, (23)

1 . . . _
a2 Fiapr + a1 Wigpr + 552 (Kklgab + Ky gak + Kagok + Kakgbl> +
b1961Sak + a4 (k1 Sab + garSer) = 0. (24)

Proof. Replacing in (I113) the indices (p,q) with (a,b), alternating in (a,l),
then again in (k,[) and adding to the first equation we get

a2 Fiapr + a1 Wigpk+
1 ~ N _
§b2 (Kklgab + 2Ky gar + Kauger + Kakgbl> +
b1(gotSak + 9akSn) + @t (—9arSer + gr1Sab + garSek) = 0.

Alternating in (a,b) we find
goiTak — gokTal — garTor + gakTo = 0,
whence (n — 2)T,;, = 0 results. Then (24) is obvious. QED
Lemma 9. Under hypothesis (9) suppose dim M > 1. Then
(n—1)BY; =0
on M holds, where
B =2A(b% — a — ayb)) + (arba — 2a2by)(3by + 2a}) + 2as [2a (b + ab) + azb!] .

Proof. First, replace in (I114) the indices (p, q,r) with (a,b, c). Alternating an
equation obtained in such a way in (a,l), then in (k,l), and adding the result
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to the first one, we get
a2Glabek + a1 Z1abek+

1
552 [(Eket — Eick)9ab + (Expi — Eivk)9ac + 2(Ebel + Ecbi)Gak + (Eact — Elac) goe+

(Eack + 2Ecak + Egac) 9ot + (Eabl — Eiba)gek + (Eavk + 2Epak + Ekab) o] +

by (Micigak + Mackgsr + Mapiger) + a1 (—Mpergar + Mockgar + Mapegri)+
Y [(9019ek + gokger)Ya + 29ak (9aYs + g Ye) + (9acgbi + Gabgel) Yi—
(gacgbk + gabgck)yn =0.

Alternating in (k,b) and contracting with g?¢*¢ we obtain
by [(n — 2) Epis +nEps] g7 + (n — 1) (b1 — a7) Myisg"™ + (n+2)(n — 1)b}Y; = 0,
which, using (15) and (17), yields the result. QED

Remark 1. In ([3]) it is stated that the Killing vector field on T'M with

the Cheeger-Gromoll metric ¢ depends on three generators X, Y and P. By
the Lemma 9, the vector field Y vanishes everywhere on M.

Lemma 10. Under hypothesis (9)

3AFmn + 3a2Wikmn + B (961K mn + gim K en + ginKem) +
(b1 — @) (Yo9km + Ym,i9kn + YiiGmn) +
2(bz + ab) (gr1Smn + GimSkn + GinSkm) +
2b2 [grm (Xnt + Sim) + Gkn (Xmi 4 Sim) + gmn (Xig + Si)] =0 (25)
1s satisfied on M.

Proof. Differentiating covariantly (13) and subtracting from (I13) we get

AFimn + a2Wigmn + B (gim Kk + gin Kimi) +
(b1 — a}) (Yna9km + Ymi9kn — Yii9mn) —
a1 (K] Regom + K, Retken) + 2a5G10Smn~+
b2 [gkm (Xni 4 Sin) + Gkn (X + Sim) + 9inSkm + GimSkn] = 0. (26)

Antisymmetrizing in (k,m) and symmetrizing in (k,n) we have

B [gri (Kmn — 2Knm) + gim (Kin + Knk) + gin (Kpk — 2Km)] +
2(b1 — a1) (2Ym19kn — Yni9km — Yii9mn) + 3a1 (K} Ryimik + K Ryimn) +
b2 [29kn (X1 + Sim) — gkm (Xn g + Sin) — gmn (Xkp + Six)] +
(b2 — 2a%) (29imSkn — 9inSkm — gkiSmn) - (27)
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Exchanging in (26) the indices k and m, then multiplying by 3 and adding to
the last equation we obtain (25). This completes the proof.

Lemma 11. Under hypothesis (9) relation

3ag [Ey, (Rpkat + Ri,;) + Ebe (Rpror + Ryy,) + Eby (Rpka + Ri) | +
6 A" g1 (Tave + Toea + Teab) + 9beKkal + geaKibi + gapKra+
9etLavk + 9arLvck + 9viLeak + 9ekLavl + gakLver + gokLear =0 (28)

holds on M, where

Ko = Kok =
— 2b2 (Skayt + Siak + Xagt + Xaak) — (01 — ay) Yo + Yaur), (29)

Lapk = Liak = 2BK ap ;. + 3BTjap + (b2 — 2a5)Sap i + 3B (gkaYs + grpYa)- (30)

Proof. To prove the lemma it is enough to differentiate covariantly (25) and
eliminate covariant derivatives of F' and W from (Iy). QED

Lemma 12. Under hypothesis (9) suppose dim M > 2. Then the relation

ar [2E Ryier, — Bfy Rptae + Ep Rpta, — Bfy Ryive + ELe Ry, +
B[(Eekty — Eeb) gai + (Ecak — Egac) g+
(Eabk + Ebak) gt — (Eabe + Ebac) gri] +
(b1 — a}) [ViSsegak — ViSpkgac| +

~ 3 1 3 1
bo [Vlchgab + Gak <2lebc + QVchb> — Yac (2lebk + 2Vszb>} +

ba (ViKacgok — ViKakgee) +
(b2 — 2a5) (Mapkger — Mabegrt) + b2 [9okTiac — GoeTiak + JakTibe — GacTivr] +
265 [(gok el — gvegkt) Ya + (Jakgel — Gacgrr) Yot
(9argok + gakger) Ye — (9argve + Gacgsl) Y] =0

holds on M.

Proof. Firstly, we change in (24) the indices (I, a, b, k) into (k, a,b, ¢) and differ-
entiate covariantly with respect to ;. Setting in (I14) (a, b, ¢) instead of (p, q,7),

subtracting the just obtained equation and, finally, alternating in (k,c) we get
the result.
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Lemma 13. Under hypothesis (9) relations

3
A = (3a1B — a2b2) Vi Xy, + (—2a2b; + ialbg + 2(12(1/1 — 3a1a'2)VkYm+

aaB(Kpm — 2Kmi) + (3a1B — 2aby + 2a2a5) Sgm+
(—a2b2 + 2(120,/2)Smk =0, (31)

Fii + By = 2a2b2(Lx )k + (dagby — 3arby — 4asay)(Ly ) g+
2 (3a2b2 + 33 A — 4a2a'2) Sk +2a9BK;,; =0

hold on M.

Proof. First, we change in (14) the indices (I, k,p) into (I, m,n), then differen-
tiate covariantly with respect to Jy and symmetrize in (k,[). Next, change in
(I3) the indices (p, q) into (m,n) and subtract the former equality to obtain

(b2 - 2(1/2) (Yn,lgk:m + Ym,lgkn + Yn,kglm + Ym,kgln) - b2 (Yk,l + Yi,k)gmn_
ag [K:L (Rrklm + erkm) + K:;l (Rrkln + erkn)] + 2A/gkl§mn+
B [gln (Xm,k + Skm) + gim (Xn,k + Skn) +
9kn (Xm,l + Slm) + Gkm (Xn,l + Sln)] =0.

1
2

Eliminating between (27) and the last equation the terms containing curvature
tensor we obtain

gmanl + glemn + glnAkm + gknAlm + glmAkn + gkmAln = 07

where
Foun = 2a2BK 1y + 2(2a2bs + 3a1 A" — 4a2ab)Spn,

Bkl = 2a2b2(LXg)kl + (4a2b1 — 3(11()2 — 4a2a'1)(Lyg)k1 + 2a2b2§kl.

Now, the result is a simple consequence of Lemma 15. QED

4 On the classification

_ To simplify furiher considerations put for a moment X = Vi X, + V, X4,
Y =VY,+VY,, S=Pyu+ P +V X+ VX, K=Ky + K. Symmetrizing
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indices in (/1;) and taking into consideration equations (11), (/11;) and (23) we

obtain a homogeneous system of linear equations in X, Y, S, K :

A a9 0 0
as aip az A
0 0 al a
0 0 2b be

= wal < >
oo oo

where b = by — a). The system has a unique solution if and only if
G(Qbag - a1b2) 75 0,

where a = a1 A — a3.

Suppose a # 0 and 2bas — a1bs = 0.

If agbs # 0, then multiplying the third equation by by and the fourth one by
ae we transform the whole system to

A a 0][X 0
a% ajas —al |Y| = 0
0 0 al g —CLQF
with determinant equal to ajasa.
Therefore, if a1 # 0 and agbs # 0, we get
L A _
X4+S5=0, Y=215 K=-%g (33)
an a9

On the other hand, if a; = 0 and agby # 0, then b = 0 and (32) yields

A a 0 071X 0
a9 0 as A ? o 0
0 0 0 ao| S|  |0]”°
0 0 0 bl |K 0

whence

X+S5=0, AX+aY =0, K=0.
Now suppose az = 0. Then by 2bas — a1bs = 0 we have either a; = 0 or
by = 0. But a3 = a3 = 0 would give a = 0. On the other hand as = by = 0
reduce the system (32) to

A 0 0 0]([X 0
0 a1 0 Al |Y| |0
0 0 a1 Of S| |0
0 0 2 0| |K 0
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Since a2 = 0 and a # 0 hold if a1 A # 0, we obtain

X=0, S=0, AF—F(“?:O
Finally, if b = 0 but az # 0, we have b = b; — a} = 0 and from (32) we easily
get (33). Thus we have proved

Lemma 14. Under assumption a = a1 A — a3 # 0 the system (32) has the
following solutions:

(1) If 2bag — a1by # 0, then X =Y =S = K = 0.

(2) If [2bas — a1by =
X+5=0Y =

and |either (ajazbs # 0) or (ba = 0 and ag # 0)], then
S K=-u5

9‘:[>|_.

2
(3) Ifay =b=0, then X +S =0, AX +aY =0, K =0.
(4) If ag = by =0, then X =0, S =0, AK +a1Y = 0.
Conwversely, if a # 0, then the above four cases give the only possible solutions
to (52).

Combining the above lemma with (1), (I11), (II11;) and (23) we obtain the
following

Theorem 2. Let (TM, G) be a tangent bundle of a Riemannian manifold
(M, g), dimM > 2, with non-degenerate g— natural metric G. Let Z be a Killing
vector field on T M with its Taylor series expansion around a point (x,0) € TM
given by (10). Then for each such a point there exists a neighbourhood U C M of
x such that one of the following cases occurs:

(1) 2bas — a1by # 0. Then
Vi X+ Vi Xy = 0, VY[ +VY,=0, (34)
Pu+Pr = 0, Kiy+ Kj,=0. (35)

(2) [2bag — a1ba = 0] and |either (ajasba # 0) or (az # 0 and by = 0)]. Then

P+ P +2(Vi Xy +ViXg) = 0, (36)
ao (kal + Vlyk) + A (Vle + Vle) = 0, (37)
a2 (Kkl + Klk) —al (Vle + Vle) = 0. (38)

(8) asba #0 and ay =b=10. Then
Pu+ Py +2 (Vi Xi + Vi Xy) = 0, (39)
ao (Vle + Vlyk) + A (Vle + Vle) = 0, (40)
K+ Ky = 0. (41)
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(4) az = by =0. Then

ViXi+Vi Xy =0, Pyu+Pr=0 AKj+a1V;Yr=0. (42)

In the above theorem we have put a; = a; (r2)|(x’0)€TM, b = bj(r2)|(x’0)€TM,

I (02 —
a; = aj(r®)|@z0erm, A= a1 + as.

Proof of the Theorem 1:
It is clear that the above results together with Proposition 3 yield Theorem

5 Appendix

5.1 An algebraic lemma
Lemma 15. Let on a manifold (M,g), dimM > 2, (0,2)— tensors A, B,
F satisfying the condition

g X, Y)F(U,V)+g(UV)B(X,Y)+
g Y, VYAX,U)+ g(X,V)AY,U) + g(Y,U)A(X, V) + g(X,U)A(Y,V) =0

for arbitrary vectors X, Y, U,V be given.
Then F and B are symmetric. Moreover, A = 0, B+ F = 0 and nF —
(TrF)g=nB— (TrB)g=0.

Proof. In local coordinates (U, (z*)) the condition writes

glemn + gmanl + glnAkm + gknAlm + glmAkn + gkmAln =0.

By contractions with g*, ¢"", ¢*™ we obtain in turn

Q(Akl + Alk) + nBy + F;’gkz =0,
(n + 2)Aln + B+ Fi, + Aggln = 0. (43)

Now, the symmetry of F' and B results from the first two equations. Contracting
the first equation with ¢”" and the third one with ¢! we get

4Ab +n(BY+ FF) = 0,
2n+ )AL+ By + F) = 0,
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whence TrA = TrF + TrB = 0 results. Applying these to the first system we
easily get

whence F'+ B = 0 and Ay + Apm = 0. Now (43) yields A = 0. The further

statements are obvious. QED

5.2 Complete lift X¢

If X = X"0, is a vector field on M, then X = X709, +u*0,X"5, = X"O" +
u?*V X0 is said to be the complete lift of X to T'M.

Lemma 16. Let X be a vector field on (M, g) satisfying

Lxg = fg, (44)

f being a function on M, and X© be its complete lift to (TM,G) with non-
degenerate g-natural metric G. Then

(LxcG) (0 0F) = [a20f + J(A+ A7) g+ (2B + B'r¥)up +

1
5[)27'2 (kaul + Vlfuk) ,

1
(LxcG) (a}év 5zh> = Ju (Vifur — Vifur +0fgu) +
1
flaz + abr?) g + f(2ba + bhr?)ugu; + §b17“2vzfuk,

(LxcQ) (07,90)) = fla1 + a'lrz)gkl + f(2b1 + b'1r2)ukul,

where Of = u"V,.f.

Proof. Straightforward calculations with the use of (6) - (8) . Relations (1) and
(4) are useful. QED

Theorem 3. Let X be a vector field on (M, g) such that (44) is satisfied.
Then X© is a Killing vector field on (TM,G) with non-degenerate g-natural
metric G if and only if f =0 on M.
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Proof. If f =0, then the theorem is obvious by the previous lemma.
Suppose that LycG = 0 on T'M holds for some f ## 0. At first, contracting
the third equation with ¢*/, next transvecting with u*u!, we easily find

flar + a’1r2) =0,
2b1 + b}r?) = 0.
f( 1

Consider now x € M such that f(z) # 0. The restriction to T,, M of the first
equation gives f(z) [a1(r?) + af (r?) 7] = 0 for all (z,u) € T, M, where r* =
9o (u, u). Using the fact that f(z) # 0, we obtain a;(r?) + a} (r?) r* = 0 for all
(x,u) € T, M. We deduce then that a; (t)+a](t)t = 0 for all t €< 0, 00), whence,
by continuity, we get a1(0) = 0. Consequently, a;(t) = 0 for all ¢ €< 0,00). By
the same argumentation we obtain by (t) = 0 for all ¢ €< 0,00). The second
equation of Lemma 16 yields, by contraction with ¢** and then by transvection
with u®u!,

flag + a/2r2) =0,
f(2by + byr?) = 0.

By the same argumentation as before, we get as(t) = 0, for all ¢ €< 0,00).
Consequently, a(t) = a1(t) [a1(t) + a3(t)] — a3(t) = 0, for all ¢ €< 0, 00), which
is a contradiction. This completes the proof. QED
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