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Abstract. We give a short introduction to the subject of representation growth and rep-
resentation zeta functions of groups, omitting all proofs. Our focus is on results which are
relevant to the study of arithmetic groups in semisimple algebraic groups, such as the group
SLn(Z) consisting of n×n integer matrices of determinant 1. In the last two sections we state
several results which were recently obtained in joint work with N. Avni, U. Onn and C. Voll.
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1 Introduction

Let G be a group. For n ∈ N, let rn(G) denote the number of isomorphism
classes of n-dimensional irreducible complex representations of G. We suppose
that G is representation rigid, i.e., that rn(G) <∞ for all positive integers n.

If the group G is finite then G is automatically representation rigid and the
sequence rn(G) has only finitely many non-zero terms, capturing the distribu-
tion of irreducible character degrees of G. The study of finite groups by means
of their irreducible character degrees and conjugacy classes is a well established
research area; e.g., see [10] and references therein. Interesting asymptotic phe-
nomena are known to occur when one considers the irreducible character degrees
of suitable infinite families of finite groups, for instance, families of finite groups
H of Lie type as |H| tends to infinity; see [14].

In the present survey we are primarily interested in the situation where G is
infinite, albeit G may sometimes arise as an inverse limit of finite groups. Two
fundamental questions in this case are: what are the arithmetic properties of
the sequence rn(G), n ∈ N, and what is the asymptotic behaviour of RN (G) =∑N

n=1 rn(G) as N tends to infinity? To a certain degree this line of investigation
is inspired by the subject of subgroup growth and subgroup zeta functions which,
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in a similar way, is concerned with the distribution of finite index subgroups;
e.g., see [16, 8].

In order to streamline the investigation it is convenient to encode the arith-
metic sequence rn(G), n ∈ N, in a suitable generating function. The represen-
tation zeta function of G is the Dirichlet generating function

ζG(s) =
∞∑

n=1

rn(G)n−s (s ∈ C).

If the group G is such that there is a one-to-one correspondence between iso-
morphism classes of irreducible representations and irreducible characters then,
writing Irr(G) for the space of irreducible characters of G, we can express the
zeta function also in the suggestive and slightly more algebraic form

ζG(s) =
∑

χ∈Irr(G)

χ(1)−s (s ∈ C).

The function ζG(s) is a suitable vehicle for studying the distribution of
character degrees of the group G whenever the representation growth of G is
‘not too fast’, a condition which is made precise in Section 3. Groups which meet
this requirement include, for instance, arithmetic groups in semisimple algebraic
groups with the Congruence Subgroup Property and open compact subgroups of
semisimple p-adic Lie groups. In recent years, several substantial results have
been obtained concerning the representation growth and representation zeta
functions of these types of groups; see [12, 13, 2, 1, 3, 4, 5, 6]. In the present
survey we discuss some of these results and we indicate what kinds of methods
are involved in proving them.

2 Finite groups of Lie type

Our primary focus is on infinite groups, but it is instructive to briefly touch
upon representation zeta functions of finite groups of Lie type. For example,
the representation theory of the general linear group GL2(Fq) over a finite field
Fq is well understood and one deduces readily that

ζGL2(Fq)(s) = (q − 1)
(
1 + q−s + q−2

2 (q + 1)−s + q
2(q − 1)−s

)
. (2.1)

It is remarkable that the formula (2.1) is uniform in q in the sense that both the
irreducible character degrees and their multiplicities can be expressed in terms
of polynomials in q over the rational field Q. In general, Deligne-Lusztig theory
provides powerful and sophisticated tools to study the irreducible characters of
finite groups of Lie type. In [14], Liebeck and Shalev obtained, for instance, the
following general asymptotic result.
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Theorem 1 (Liebeck and Shalev). Let L be a fixed Lie type and let h be
the Coxeter number of the corresponding simple algebraic group G, i.e., h+1 =
dimG/rkG. Then for the finite quasi-simple groups L(q) of type L over Fq,

ζL(q)(s)→
{

1 for s ∈ R>2/h

∞ for s ∈ R<2/h

as q →∞.

The Coxeter number h is computed easily. For example, for G = SLn and
L(q) = SLn(Fq) one has h = n. In the smallest interesting case n = 2 and for
odd q, the zeta function of SL2(Fq) is

ζSL2(Fq)(s) = 1+q−s+ q−3
2 (q+1)−s+ q−1

2 (q−1)−s+2( q+1
2 )−s+2( q−1

2 )−s, (2.2)

which is approximately the expression in (2.1) divided by (q − 1). From the
explicit formula one can verify directly the assertion of Theorem 1 in this special
case.

3 Abscissa of convergence and polynomial represen-

tation growth

In Section 1 we introduced the zeta function ζG(s) of a representation rigid
groupG as a formal Dirichlet series. Clearly, ifG is finite – or more generally ifG
has only finitely many irreducible complex representations – then the Dirichlet
polynomial ζG(s) defines an analytic function on the entire complex plane.

Now suppose that G is infinite and that rn(G) is non-zero for infinitely many
n ∈ N. Naturally, we are interested in the convergence properties of ζG(s) for
s ∈ C. The general theory of Dirichlet generating functions shows that the
region of convergence is always a right half plane of C, possibly empty, and that
the resulting function is analytic. If the region of convergence is non-empty, one
is also interested in meromorphic continuation of the function to a larger part
of the complex plane.

The abscissa of convergence α(G) of ζG(s) is the infimum of all α ∈ R such
that the series ζG(s) converges (to an analytic function) on the right half plane
{s ∈ C | Re(s) > α}. The abscissa α(G) is finite if and only if G has polynomial
representation growth, i.e., if RN (G) =

∑N
n=1 rn(G) grows at most polynomially

in N . In fact, if the growth sequence RN (G), N ∈ N, is unbounded then

α(G) = lim sup
N→∞

logRN (G)

logN

gives the polynomial degree of growth: RN (G) = O
(
Nα(G)+ε

)
for every ε > 0.
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Two fundamental problems in the subject are: to characterise groups of
polynomial representation growth – motivated by Gromow’s celebrated theorem
on groups of polynomial word growth – and to link the actual value of the
abscissa of convergence α(G) of a group G to structural properties of G. In
general these questions are still very much open. However, in the context of
semisimple algebraic groups and their arithmetic subgroups a range of results
have been obtained. A selection of these are discussed in the following sections.

4 Witten zeta functions

In [20], Witten initiated in the context of quantum gauge theories the study
of certain representation zeta functions. Let G be a connected, simply con-
nected, complex almost simple algebraic group and let G = G(C). It is natural
to focus on rational representations of the algebraic group G and one can show
that G is representation rigid in this restricted sense. The Witten zeta func-
tion ζG(s) counts irreducible rational representations of the complex algebraic
group G. These zeta functions also appear naturally as archimedean factors of
representation zeta functions of arithmetic groups, as explained in Section 8.

For example, the group SL2(C) has a unique irreducible representation of
each possible degree. Hence

ζSL2(C)(s) =
∞∑

n=1

n−s,

the famous Riemann zeta function. In particular, the abscissa of convergence
is 1 and there is a meromorphic continuation to the entire complex plane.

In general, the irreducible representations Vλ of G are parametrised by
their highest weights λ =

∑r
i=1 aiωi, where ω1, . . . , ωr denote the fundamen-

tal weights and the coefficients a1, . . . , ar range over all non-negative integers.
Moreover, dimVλ is given by the Weyl dimension formula. By a careful analysis,
Larsen and Lubotzky prove in [13] the following result.

Theorem 2 (Larsen and Lubotzky). Let G be a connected, simply con-
nected, complex almost simple algebraic group and let G = G(C). Then α(G) =
2/h, where h is the Coxeter number of G.

It is known that Witten zeta functions can be continued meromorphically to
the entire complex plane. Further analytic properties of these functions, such as
the location of singularities and functional relations, have been investigated in
some detail using multiple zeta functions; e.g., see [18, 11]. It is remarkable that
the same invariant 2/h features in Theorems 1 and 2. Currently there appears
to be no conceptual explanation for this.
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5 The group SL2(R) for discrete valuation rings R

If G is a topological group it is natural to focus attention on continuous
representations. A finitely generated profinite group G is representation rigid
in this restricted sense if and only if it is FAb, i.e., if every open subgroup H of G
has finite abelianisationH/[H,H]. This is a consequence of Jordan’s theorem on
abelian normal subgroups of bounded index in finite linear groups. We tacitly
agree that the representation zeta function ζG(s) of a finitely generated FAb
profinite group G counts irreducible continuous complex representations of G.

Let R be a complete discrete valuation ring, with residue field Fq of odd
characteristic. This means that R is either a finite integral extension of the ring
of p-adic integers Zp for some prime p or a formal power series ring Fq[[t]] over
a finite field of cardinality q.

In [12], Jaikin-Zapirain showed by a hands-on computation of character
degrees that the representation zeta function ζSL2(R)(s) equals

ζSL2(Fq)(s) +

(
4q

(
q2−1

2

)−s
+ q2−1

2 (q2 − q)−s + (q−1)2

2 (q2 + q)−s
)
/(1− q1−s),

where the Dirichlet polynomial ζSL2(Fq)(s) is described in (2.2). It is remarkable
that the above formula is uniform in q, irrespective of the characteristic, absolute
ramification index or isomorphism type of the ring R. In the case where R has
characteristic 0, Lie-theoretic techniques combined with Clifford theory can be
used to gain an insight into the features of this specific example which hold
more generally; see Sections 6 and 9.

Clearly, the explicit formula for the function ζSL2(R)(s) provides a meromor-
phic extension to the entire complex plane. The abscissa of convergence is 1
and, in view of Theorems 1 and 2, this value could be interpreted as 2/h, the
Coxeter number of SL2 being h = 2. But such an interpretation is misleading,
as can be seen from the following general result obtained in [13].

Theorem 3 (Larsen and Lubotzky). Let G be a simple algebraic group over
a non-archimedean local field F . Suppose that G is F -isotropic, i.e., rkFG ≥ 1.
Let H be a compact open subgroup of G(F ). Then α(H) ≥ 1/15.

Taking G = SLn and F = Qp, we may consider the compact p-adic Lie
groups SLn(Zp). For these groups 2/h = 2/n → 0 as n → ∞, whereas
α(SLn(Zp)) is uniformly bounded away from 0. Currently, the only explicit
values known for α(SLn(Zp)) are: 1 for n = 2 (as seen above), and 2/3 for
n = 3 (see [4]). Unfortunately, these do not yet indicate the general behaviour.
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6 FAb compact p-adic Lie groups

Let G be a compact p-adic Lie group. Then one associates to G a Qp-
Lie algebra as follows. The group G contains a uniformly powerful open pro-p
subgroup U . By the theory of powerful pro-p groups, U gives rise to a Zp-Lie
lattice L = log(U) and the induced Qp-Lie algebra L(G) = Qp ⊗Zp

L does not
depend on the specific choice of U . It is a fact that G is FAb if and only if L(G)
is perfect, i.e., if [L(G),L(G)] = L(G). Conversely, for any Qp-Lie algebra L
one can easily produce compact p-adic Lie groups G such that L(G) = L, using
the exponential map. This supplies a large class of compact p-adic Lie groups
which are FAb and hence have polynomial representation growth.

Using the Kirillov orbit method and techniques from model theory, Jaikin-
Zapirain established in [12] that the representation zeta function of a FAb com-
pact p-adic analytic pro-p group can always be expressed as a rational function
in p−s over Q. More generally, he proved the following result, which is illustrated
by the explicit example G = SL2(R) given in Section 5.

Theorem 4 (Jaikin-Zapirain). Let G be an FAb compact p-adic Lie group,
and suppose that p > 2. Then there are finitely many positive integers n1, . . . , nk
and rational functions f1, . . . , fk ∈ Q(X) such that

ζG(s) =
k∑

i=1

fi(p
−s)n−si .

In particular, the theorem shows that the zeta function of a FAb compact
p-adic Lie group G extends meromorphically to the entire complex plane. The
invariant α(G) is the largest real part of a pole of ζG(s). It is natural to inves-
tigate the whole spectrum of poles and zeros of ζG(s).

Currently, very little is known about the location of the zeros of representa-
tion zeta functions. In 2010 Kurokawa and Kurokawa observed from the explicit
formula given in Section 5 that ζSL2(Zp)(s) = 0 for s ∈ {−1,−2}. We note that
if G is a finite group then ζG(−2) =

∑
χ∈Irr(G) χ(1)2 = |G|. Based on this fact

and the results in [12] one can prove the following general result.

Theorem 5 (Jaikin-Zapirain and Klopsch). Let G be an infinite FAb com-
pact p-adic Lie group and suppose that p > 2. Then ζG(−2) = 0.

7 Rational representations of the infinite cyclic group

Before considering arithmetic subgroups of semisimple algebraic groups, let
us look at representations of the simplest infinite group, i.e., the infinite cyclic
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group C∞. The group C∞ has already infinitely many 1-dimensional represen-
tations. Hence in order to say anything meaningful we need to slightly adapt
our basic definitions.

We make two modifications: firstly let us only consider representations with
finite image and secondly let us consider irreducible representations over Q
rather than C. More precisely, for any finitely generated nilpotent group Γ let
r̂Q
n (Γ) denote the number of n-dimensional irreducible representations of Γ over

Q with finite image. Then it turns out that r̂Q
n (Γ) is finite for every n ∈ N and

we can define the Q-rational representation zeta function

ζQ
Γ (s) =

∞∑

n=1

r̂Q
n (Γ)n−s.

Using that every finite nilpotent group is the direct product of its Sylow p-
subgroups and basic facts from character theory, one can show that ζQ

Γ (s) admits
an Euler product decomposition

ζQ
Γ (s) =

∏

p prime

ζQ
Γ,p(s), (7.1)

where for each prime p the local factor ζQ
Γ,p(s) =

∑∞
k=0 r̂

Q

pk(Γ) p−ks, enumerating
irreducible representations of p-power dimension, can be re-interpreted as the
Q-rational representation zeta function of the pro-p completion Γ̂p of Γ. For
more details and deeper results in this direction we refer to the forthcoming
article [9].

Let us now return to the simplest case: Γ = C∞, the infinite cyclic group.
Since the group C∞ is abelian, its irreducible representations over Q with fi-
nite image can be effectively described by means of Galois orbits of irreducible
complex characters. In the general setting, one would also need to keep track
of Schur indices featuring in the computation of ζQ

Γ,2(s). A short analysis yields

ζQ
C∞

(s) =
∞∑

m=1

ϕ(m)−s,

where ϕ denotes Euler’s function familiar from elementary number theory.

The Dirichlet series ψ(s) =
∑∞

m=1 ϕ(m)−s is of independent interest in an-
alytic number theory and has been studied by many authors; e.g., see [7]. The
Euler product decomposition (7.1) can be established directly

ψ(s) =
∏

p prime

(
1 + (p− 1)−s/(1− p−s)

)
.
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The abscissa of convergence of ψ(s), which can be interpreted as the degree
αQ(C∞) of Q-rational representation growth, is equal to 1. In fact, writing

ψ(s) =
∏

p prime

(
1 + (p− 1)−s − p−s

)

︸ ︷︷ ︸
converges for Re(s) > 0

·
∏

p prime

(1− p−s)−1

︸ ︷︷ ︸
Riemann zeta function ζ(s)

,

one sees that ψ(s) admits a meromorphic continuation to Re(s) > 0 (but not
to the entire complex plane) and has a simple pole at s = 1 with residue
c = ζ(2)ζ(3)/ζ(6) = 1.9435964 . . . This yields very precise asymptotics for the
Q-rational representation growth of C∞; in particular,

N∑

n=1

r̂Q
n (C∞) = #{m | ϕ(m) ≤ N} ∼ cN as N →∞.

One may regard this simple case and its beautiful connections to classical an-
alytic number theory as a further motivation for studying representation zeta
functions of arithmetic groups.

8 Arithmetic lattices in semisimple groups

In this section we turn our attention to lattices in semisimple locally compact
groups. These lattices are discrete subgroups of finite co-volume and often, but
not always, have arithmetic origin. For instance, SLn(Z) is an arithmetic lattice
in the real Lie group SLn(R). More generally, let Γ be an arithmetic irreducible
lattice in a semisimple locally compact group G of characteristic 0. Then Γ is
commensurable to G(OS), where G is a connected, simply connected absolutely
almost simple algebraic group defined over a number field k and OS is the ring of
S-integers for a finite set S of places of k. By a theorem going back to Borel and
Harish-Chandra, any such G(OS) forms an irreducible lattice in the semisimple
locally compact group G =

∏
℘∈S G(k℘) under the diagonal embedding, as long

as S is non-empty and contains all archimedean places ℘ such that G(k℘) is
non-compact. Examples of this construction are SLn(Z[

√
2]) ⊆ SLn(R)×SLn(R)

and SLn(Z[1/p]) ⊆ SLn(R) × SLn(Qp). Margulis has shown that in the higher
rank situation all irreducible lattices are arithmetic and arise in this way. For
precise notions and a more complete description see [17].

Throughout the following we assume, for simplicity of notation, that Γ =
G(OS) as above. In [15], Lubotzky and Martin gave a characterisation of arith-
metic groups of polynomial representation growth, linking them to the classical
Congruence Subgroup Problem.
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Theorem 6 (Lubotzky and Martin). Let Γ be an arithmetic group as above.
Then α(Γ) is finite if and only if Γ has the Congruence Subgroup Property.

The group Γ has the Congruence Subgroup Property (CSP) if, essentially,
all its finite index subgroups arise from the arithmetic structure of the group.

Technically, this means that the congruence kernel ker(Ĝ(OS) → G(OS)) is

finite; here Ĝ(OS) is the profinite completion and G(OS) ∼=
∏

p6∈S G(Op), with
p running over non-archimedean places, denotes the congruence completion of
G(OS). For instance, it was shown by Bass-Lazard-Serre and Mennicke that the
group SLn(Z) has the CSP if and only if n ≥ 3. That SL2(Z) does not have the
CSP was discovered by Fricke and Klein. Retrospectively this is not surprising,
because SL2(Z) contains a free subgroup of finite index. We refer to [19] for a
comprehensive survey of the Congruence Subgroup Problem, i.e., the problem
to decide precisely which arithmetic groups have the CSP.

Suppose that Γ has the CSP. Using Margulis’ super-rigidity theorem, Larsen
and Lubotzky derived in [13] an Euler product decomposition for ζΓ(s), which
takes a particularly simple form whenever the congruence kernel is trivial.

Theorem 7 (Larsen and Lubotzky). Let Γ be an arithmetic group as above
and suppose that Γ has the CSP. Then ζΓ(s) admits an Euler product decompo-
sition. In particular, if the congruence kernel for Γ = G(OS) is trivial then

ζΓ(s) = ζG(C)(s)
[k:Q]

∏

p 6∈ S

ζG(Op)(s). (8.1)

For instance, for the groups SLn(Z), n ≥ 3, the Euler product takes the
form

ζSLn(Z)(s) = ζSLn(C)(s)
∏

p prime

ζSLn(Zp)(s).

In Sections 4 and 5 we already encountered individually the factors of these
Euler products: ζG(C)(s) is the Witten zeta function capturing rational repre-
sentations of the algebraic group G(C) and, for each p, the function ζG(Op)(s)
enumerates continuous representations of the compact p-adic Lie group G(Op).
Larsen and Lubotzky’s results for the abscissae of convergence of these local
zeta functions include Theorems 2 and 3 stated above.

Regarding the abscissa of convergence of the global representation zeta func-
tion, Avni employed in [1] model-theoretic techniques to prove that the ab-
scissa of convergence of ζΓ(s) is always a rational number. In [13], Larsen and
Lubotzky made the following conjecture, which can be regarded as a refinement
of Serre’s conjecture on the Congruence Subgroup Problem.

Conjecture 1 (Larsen and Lubotzky). Let G be a higher-rank semisimple
locally compact group. Then, for any two irreducible lattices Γ1 and Γ2 in G,
α(Γ1) = α(Γ2).
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Roughly speaking, the conjecture states that the ambient semisimple lo-
cally compact group does not only control whether lattices contained in it have
the CSP (as in Serre’s conjecture), but also what their polynomial degree of
representation growth is. A concrete example of a lattice in SLn(R) which is
rather different from the most familiar one SLn(Z) is the special unitary group
SUn(Z[

√
2],Z), consisting of all matrices A = (aij) over the ring Z[

√
2] with

detA = 1 and A−1 = (aσji), where σ is the Galois automorphism of Q(
√

2)

swapping
√

2 and −
√

2.

9 New results for arithmetic groups and compact

p-adic Lie groups

The short announcement [2] summarises a number of results obtained re-
cently by the author in joint work with Avni, Onn and Voll. Details are ap-
pearing in [3, 4, 6]. The toolbox which we use to prove our results comprises a
variety of techniques which can only be hinted at: they include, for instance, the
Kirillov orbit method for p-adic analytic pro-p groups, methods from p-adic in-
tegration and the study of generalised Igusa zeta functions, the theory of sheets
of simple Lie algebras, resolution of singularities in characteristic 0, aspects of
the Weil conjectures regarding zeta functions of smooth projective varieties over
finite fields, approximative and exact Clifford theory.

In summary our main results are

• a global Denef formula for the zeta functions of principal congruence sub-
groups of compact p-adic Lie groups, such as SLmn (Zp) ⊆ SLn(Zp);

• local functional equations for the zeta functions of principal congruence
subgroups of compact p-adic Lie groups, such as SLmn (Zp) ⊆ SLn(Zp);

• candidate pole sets for the non-archimedean factors occurring in the Euler
product (8.1), e.g., the zeta functions ζSLn(Zp)(s);

• explicit formulae for the zeta functions of compact p-adic Lie groups of
type A2, such as SL3(Zp) and SU3(O,Zp) for unramified O;

• meromorphic continuation of zeta functions and a precise asymptotic de-
scription of the representation growth for arithmetic groups of type A2,
such as SL3(Z).

These results are clearly relevant in the context of the Euler product (8.1).
Moreover, a large part of our work applies in a more general context than
discussed so far. We recall from Section 6 that a compact p-adic Lie group G is
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representation rigid if and only if its Qp-Lie algebra L(G) is perfect. Let k be
a number field, and let O be its ring of integers. Let Λ be an O-Lie lattice such
that k⊗OΛ is perfect of dimension d. Let o be the completion Op of O at a non-
archimedean place p. Let O be a finite integral extension of o, corresponding
to a place P lying above p. For m ∈ N, let gm(O) denote the mth principal
congruence Lie sublattice of the O-Lie lattice O⊗O Λ. For sufficiently large m,
let Gm(O) be the p-adic analytic pro-p group exp(gm(O)).

Using the Kirillov orbit method for permissible Gm(O), e.g., SL1
n(Zp), we

can ‘linearise’ the problem of enumerating irreducible characters of the group
Gm(O) by their degrees. We then set up a generalised Igusa zeta function, i.e.,
a p-adic integral of the form

ZO(r, t) =

∫

(x,y)∈V (O)
|x|tP

⌊d/2⌋∏

j=1

‖Fj(y) ∪ Fj−1(y)x2‖rP
‖Fj−1(y)‖rP

dµ(x,y),

where V (O) ⊂ Od+1 is a union of cosets modulo P, Fj(Y) ⊂ O[Y] are poly-
nomial sets defined in terms of the structure constants of the underlying O-Lie
lattice Λ, ‖·‖P is the P-adic maximum norm and µ is the additive Haar measure
on Od+1 with µ(Od+1) = 1. The integral ZO(r, t) allows us to treat ‘uniformly’
the representation zeta functions of the different groups exp(Gm(O)) arising
from the global O-Lie lattice Λ under variation of the place p of O, the local ring
extension O of Op and the congruence level m. In particular, we derive from
our analysis a Denef formula and local functional equations.

Theorem 8 (Avni, Klopsch, Onn and Voll [4]). In the setup described, there
exist r ∈ N and a rational function R(X1, . . . , Xr, Y ) ∈ Q(X1, . . . , Xr, Y ) such
that for almost every non-archimedean place p of k the following holds.

There are algebraic integers λ1, . . . , λr such that for all finite extensions O

of o = Op and all permissible m one has

ζGm(O)(s) = qfdmp R(λf1 , . . . , λ
f
r , q
−fs
p ),

where qp is the residue field cardinality of o, f denotes the inertia degree of O

over o and d = dimk(k ⊗O Λ). Moreover, there is the functional equation

ζGm(O)(s)|qp→q−1
p

λi→λ
−1

i

= q
fd(1−2m)
p ζGm(O)(s).

Furthermore, we obtain candidate pole sets and we show that, locally, ab-
scissae of convergence are monotone under ring extensions.

Theorem 9 (Avni, Klopsch, Onn and Voll [4]). In the setup described, there
exists a finite set P ⊂ Q>0 such that the following is true.
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For all non-archimedean places p of k, all finite extensions O of o = Op and
all permissible m one has

{
Re(z) | z ∈ C a pole of ζGm(O)(s)

}
⊆ P.

In particular, one has α(Gm(O)) ≤ maxP , and equality holds for a set of posi-
tive Dirichlet density.

Furthermore, if p is any non-archimedean place of k and if Op = o ⊆ O1 ⊆
O2 is a tower of finite ring extensions, then for every permissible m one has

α(Gm(O1)) ≤ α(Gm(O2)).

By a more detailed study of groups of type A2, we obtain the following the-
orems addressing, in particular, the conjecture of Larsen and Lubotzky stated
in Section 8. Analysing the unique subregular sheet of the Lie algebra sl3(C)
and using approximative Clifford theory, we prove the next result.

Theorem 10 (Avni, Klopsch, Onn and Voll [4]). Let Γ be an arithmetic
subgroup of a connected, simply connected simple algebraic group of type A2

defined over a number field. If Γ has the CSP, then α(Γ) = 1.

Employing exact Clifford theory, we obtain the following more detailed result
for the special linear group SL3(O) over the ring of integers of a number field.

Theorem 11 (Avni, Klopsch, Onn and Voll [6]). Let O be the ring of inte-
gers of a number field k. Then there exists ε > 0 such that the representation
zeta function of SL3(O) admits a meromorphic continuation to the half-plane
{s ∈ C | Re(s) > 1 − ε}. The continued function is analytic on the line
{s ∈ C | Re(s) = 1}, except for a double pole at s = 1.

Consequently, there is a constant c ∈ R>0 such that

RN (SL3(O)) =
N∑

n=1

rn(SL3(O)) ∼ c ·N(logN) as N →∞.

A key step in proving this result consists in deriving explicit formulae for
the representation zeta function of groups SL3(o), where o is a compact discrete
valuation ring of characteristic 0 and residue field characteristic different from 3.
In fact, we also derive similar results for special unitary groups SU3(O,O).

10 New results regarding the conjecture of Larsen

and Lubotzky

Very recently, in joint work with Avni, Onn and Voll we prove the following
theorem in connection with the conjecture of Larsen and Lubotzky which is
stated in Section 8.
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Theorem 12 (Avni, Klopsch, Onn and Voll [5]). Let Φ be an irreducible
root system. Then there exists a constant αΦ such that for every number field
k with ring of integers O, every finite set S of places of k and every connected,
simply connected absolutely almost simple algebraic group G over k with absolute
root system Φ the following holds.

If the arithmetic group G(OS) has polynomial representation growth, then
α(G(OS)) = αΦ.

On the one hand, Theorem 12 is weaker than the conjecture of Larsen and
Lubotzky, because it does not resolve Serre’s conjecture on the Congruence
Subgroup Problem. However, Serre’s conjecture is known to be true in many
cases and we have the following corollary.

Corollary 1. Serre’s conjecture on the Congruence Subgroup Problem im-
plies Larsen and Lubotzky’s conjecture on the degrees of representation growth
of lattices in higher rank semisimple locally compact groups.

On the other hand, Theorem 12 is stronger than the conjecture of Larsen
and Lubotzky, because it shows that many arithmetic groups with the CSP
have the same degree of representation growth, even when they do not embed
as lattices into the same semisimple locally compact group. For instance, fixing
Φ of type An−1 for some n ≥ 3, all of the following groups (for which we also
display their embeddings as lattices into semisimple locally compact groups)
have the same degree of representation growth:

(1) SLn(Z) ⊆ SLn(R),

(2) SLn(Z[
√

2]) ⊆ SLn(R)× SLn(R),

(3) SLn(Z[i]) ⊆ SLn(C),

(4) SLn(Z[1/p]) ⊆ SLn(R)× SLn(Qp),

(5) SUn(Z[
√

2],Z) ⊆ SLn(R).

Presently, the only known explicit values of αΦ are: 2 for Φ of type A1 (see
[13]), and 1 for Φ of type A2 (see Theorem 10). It remains a challenging problem
to find a conceptual interpretation of αΦ for general Φ.

For the proof of Theorem 12 and further details we refer to the preprint [5].
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