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Abstract. The aim of this paper is to introduce a generalized digital (ko, k1 )-homeomorphism
of the digital curve and the digital surface in Z". The generalized digital (ko, k1)-continuity
is studied with the n kinds of k-adjacency relations in Z". The k-type digital fundamental
group of the digital image comes from the generalized digital (ko, k1)-homotopy, ¢ € {0,1}.
Furthermore, we show how a digital (ko, k1)-homeomophism induces a digital fundamental
group (ko, k1)-isomorphism.
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Introduction

The digital k-adjacency on digital curves and digital surfaces in Z3 are in-
vestigated in [7, 8, 9]. The digital continuity was introduced in [1, 2, 10] and
further an advanced concept of the digital continuity was also introduced [1].

Recently, the digital (kg, k1)-continuity was investigated with relation to the
digital (ko, k1)-homeomorphism, and further it is a generalization of the concepts
from [1, 2, 10] relative to the dimension and the adjacency.

By virtue of a generalization of the k-adjacency relations, we consider the
generalized digital (kg, k1)-continuity and the generalized digital (kg, k1 )-homeo-
morphism in Z* and Z°.

We work in the category of finite digital images and digitally (kq, k1)-conti-
nuous maps.

1 Notation and basic terminology

In the set Z™ of points in the Euclidean n-dimensional space, n = 4,5, that
have integer coordinates, two metric spaces (Z",d,) and (Z",d,) are considered
with the following metric functions:

dp,dy : Z" x Z" — N U {0} are defined by

(M1) dn(p,q) = 25y Ipi — @il and
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(M2) d*(p, Q) = mawﬂpi - Qi’}iEMv M = {17 2, 7n}7 respectively

for two points p,q € Z", N is the set of natural numbers.

By use of the above two metric functions we get the k-adjacency relations
of a digital image in Z* and Z°.

Basically, two pixels (p1,p2), (q1,q2) € Z? are called 4-adjacent if |p; — q1| +
|[p2—g2| = 1. And they are called 8-adjacent if max {|p1 —q1], |p2 —q2|} = 1[7, 8].

Two voxels (p1,p2,p3), (q1, 42, q3)(€ Z*) are called 6-adjacent if

Ip1 —q1| + |p2 — q2| + |ps — 3| = 1.

They are called 26-adjacent if maz{|p1 — qi1|, |[p2 — @2|, |ps — 3|} =1 [8, 9].

Furthermore, two points are 18-adjacent if they are 26-adjacent and differ
in at most two of their coordinates [8].

Concretely, a digital picture is considered as a quadruple P = (V,k, k, X)
with black points set X C V and white points set V — X. If V = Z2, (k, k) =
(4,8) or (8,4), and if V = Z3, (k, k) = (6,26), (26,6), (6,18) or (18,6)[11, 8, 9].

The point p = (p1,p2,p3,P1,p5) € Z5 is considered as a 5-cube {(p; +
1/2,p2 £1/2,p3 £ 1/2,py £ 1/2,p5 £ 1/2)} with a center p, whose edges are
parallel to each axes.

Now in Z°, we consider the following equations which are relevant for the
k-neighborhood and the k-adjacency relations.

For two 5-xels p = (p1,p2,p3,P4,P5), 4 = (41,92, G3, 44, 45) € Z°
= 1 = then p shares a point with ¢,
= 1 = then p shares an edge with g,

(3) ds(p,q) = 3, d. = 1 = then p shares a face with g,

(4) ds(p,q) = 2,d«(p,q) = 1 = then p shares a cube with g,

(5) ds(p,q) = 1,d«(p,q) = 1 = then p shares a 4-cube with q.

Consequently, in Z®, the 5 kinds of digital k-neighborhoods are obtained
from (1) ~ (5) above and by the properties of the combination as follows:

(1)" Nosa(p) = {q € Z%|d5(p,q) < 5,d«(p,q) = 1} from the above formula
(1) such that #{q € Z°|ds(p,q) < 5,d«(p,q) = 1} = 242, where £ means the
cardinality of the set.

(2)" Noto(p) = {q € Z%|ds(p,q) < 4,d«(p,q) = 1} from the above formula
(2).

Namely, for p = (p1,p2,p3,p4,05) € Z°, Na1o(p) = Naaa(p) — X5(p), where
Xs(p) = {q € Z°|ds(p,q) = 5,d.(p,q) = 1}. In fact, X5(p) = {(p1 £ 1,p2 £
1,p341,ps£1,ps+1)}. Now we use the notation, X5(p) = U2_X5(p)’ in terms
of the following notations:

X5(p)? = {(p1 + L,p2 + L,ps + 1, ps + 1,ps + 1)} with $X5(p)° = Cf = 1,
where C’Z-5 stands for the combination of 5 objects taken .

(1 (P, q

(2) ds(p, )—4d (p,q) =
(p,q
(

\_/\_/\_/\_/
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Xs()' ={(p1+1L,pi1 +1,pi = 1,piy1 +1,p5+1)i € [1,5]z} and §X5(p)' =
C?, i.e., X5(p)! consists of the elements which have the coordinates with only
one element pi —1(1 <4 < 5) and the others are p; + 1(i # j).

X5(p)* = {(Pi-1+1,pi—1,pj— 1, pjt1+1,pjr2+1)}, where i # j € [1,5]z and
1X5(p)? = C3, i.e., X5(p)? consists of the elements which have the coordinates
with only two elements, p;—1,p;—1,1 < 4,5 <5, and the others py+1(k # 4, j).

Xs5(p)® = {(pi — Lpix1 + 1L,pj — Lk — L,peq1 + 1)}, where i # j # k €
[1, 5]z with £X5(p)3 = C3, i.e., X5(p)® consists of the elements which have the
coordinates with only three elements, p; — 1,p; — 1,pr — 1,1 < 4,7,k < 5, and
the others are p; + 1,1 <1 <51 #i,5,k

Xs(p)* ={(p1+L,p2 = 1,p3+ 1, pa+1,ps = 1), (pr — L,p2a + 1,p3 — 1,ps —
Lps—1),---,(p1 —1,p2 — 1,p3 — 1,pa — 1,p5 + 1)} with §X5(p)* = C3.

Finally,

X5(p)® = {(p1 — 1,p2 — Lps — 1,ps — 1, p5 — 1)} with £X5(p)° = 3.

Then X5(p)" and X5(p)’ are disjoint for i # j € {0,1,2,3,4,5}.

Thus we get §X5(p) = Z?:o C?.

Consequently, #{q € Z°|ds(p,q) < 4,d.(p,q) = 1}

= §(Naaa(p) — Xs5(p)) =242 — (C5 + CY + C3 + - + C3) = 210.

(3)' Nizo(p) = {q € Z°|d5(p,q) < 3,du(p.q) =1}

= Naio(p) — Xu(p) from (3) above, where X4(p) = {q € Z’|ds5(p,q) =

d«(p, )1}

Actually, X4(p) = {(pi—2£1, pic1£1, pi, pit1£1, pire£1)} (0 € {1,2,3,4,5})

= UL o X4(p)® via the following notations:

Xa(p)® = {(pj—1 + 1,pj + L,pj1 + Lpi,pi1 + D)]i # j € [1,5]z} with
1X4(p)° = Cy.

Xu(p)' ={(pj-1+1,pj — L,pic1 + L, pi, pis1 + 1)]i # j € [1,5]z}, i.e., Xa(p)'!
consists of the elements which have the coordinates with only one p; — 1,1 <
j(# i) < 5, and the others are pp + 1,1 < k < 5,1 # j # k, except p; with
£ X4(p)! = Cf.

Finally,

Xa(p)* = {(pi—2 — L,pi-1 — L,pi, pis1 — Lpiva — 1)} with £X4(p)* = Cf.

Then X4(p)* and X4(p)’ are disjoint for i # j € {0,1,2,3,4}.

Therefore §X4(p) = CY(Ci + Cf + C§ + C§ + C}).

Thus we get the following:

t{q € Z°|d5(p, q) < 3,dx(p,q) = 1} = §(Na1o(p) — Xa(p))

=210 — C}(Cj + Cf + C3 + C§ + CF) = 130. Similarly,

(4)" Nso(p) = Nizo(p) — X3(p) = {q € Z°|d5(p, q) < 2,ds(p,q) = 1} from (4)
above,

where X3(p) = {q € Z°|d5(p, q) = 3,d.(p,q) = 1}
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= {(pi=1 £ 1,p5, pit1 £ 1,pj,pj11 £ 1)} = U}_o X3(p)".

By the same method above, we get

1X5(p) = C3(C3 + C} + C3 + C3) = 50.

(5) N1o(p) = {q € Z°|ds5(p,q) < 1} from (5) above such that $N1o(p) = 10.

At last, 5 kinds of k-adjacency relations in Z® are obtained from the above
formulas (1)’ ~ (5)":

We now say that p and ¢ are called k-adjacent if ¢ € Ny(p) in Z°, where
k € {242,210, 130, 50, 10}.

Similarly, by the same method above, we get 4 kinds of k- adjacency relations
in Z* are followed. Namely, for two 4-xels p = (p1, p2, p3, p4),q = (1, G2, q3,q1) €
74, the following equations are considered,

(6) da(p,q) = 4 d«(p,q) =1 = then p shares a point with g,

(7) d4(p,q) = 3,d.(p,q) = 1 = then p shares an edge with g,

(8) d (p, )—2d( q) = 1 = then p shares a face with g,

(9) dy(p,q) =1 d*(p, q) = 1 = then p shares a cube with q.

From (6) ~ (9) above, the following equations are taken by the same method
as 7.

We now say that p and ¢ are called k-adjacent if ¢ € Ny(p) in Z*, where
k € {80, 64,32,8}.

Consequently, we get the following:

1 Proposition. There are 4 kinds of k-adjacency relations in Z*, k € {80,
64,32,8} and 5 kinds of k-adjacency relations in Z°, k € {242,210, 130,50, 10}.

Thus in Z4, the digital pictures (Z*, k, k, X) are considered for the following
cases: (k, k) € {(80,8), (8,80), (64,8), (8,64), (32,8), (8,32)}.

Furthermore, in Z°, the digital pictures (Z°, k, k, X) are obtained for the fol-
lowing cases as follows: (k, k) € {(242,10), (10, 242), (210, 10), (10, 210), (130, 10),
(10, 130), (50, 10), (10, 50)}.

For a digital image X (C Z™), two points x(#)y(€ X) are called k-connected
[1, 6] if there is a k-path f : [0,m]z — X where the image is a sequence
(xo,x1,...,Tm) from the set of points {f(0) = zo = =, f(1) = z1,..., f(m) =
Zm = y} such that z; and z;;1 are k-adjacent, i € {0,1,...,m—1},m > 1[1, 10].

And a simple closed k-curve is considered as a sequence (xg,Z1,...,Zy) of
the k-path where z; and z; are k-adjacent if and only if j = i 4+ 1(modm) or
i = j— 1(modm)[1, 3].

2 Digital (kg, k1)-homotopy

On the basis of the digital continuity and the digital (kg, k1)-continuity [1,
10], the convenient digital (ko, k1 )-continuity in terms of the digital k-connected-
ness was introduced in [2]. But for the study of pointed digital homotopy
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theory, we need some reformations. Furthermore, the former digital (ko,k;)-
continuity with the standard k;-adjacency relations will be generalized to the
digital (ko, k1)-continuity with the n types of kj-adjacency relations in Z",
i€{0,1},n € {4,5}.

Now we define a digital (ko, k1)-continuity as a generalization of the digital
(ko, k1)-continuity of [2]; such an approach is essential in studying the pointed
digital (ko, k1)-homotopy theory [2].

2 Definition. For two digital pictures (Z", ko, ko, X) and (Z™, k1, k1,Y),
we say that amap f: X — Y is digitally (ko, k1)-continuous at the point x € X
if for every ko-connected subset O, (x) containing x, f(Oy,(z)) is k1-connected,
where k; € {242,210,130, 50,10} in Z°, k; € {80, 64, 32,8} in Z*, k; € {26,18,6}
in Z3, k; € {8,4} in Z* and so on.

If f is digitally (ko, k1)-continuous at any point x € X then f is called a
digitally (ko, k1)-continuous map.

From now on, all spaces are considered under the following k;-adjacency
relations,

k; € {242,210,130,50,10} in Z°, k; € {80,64,32,8} in Z*, k; € {26,18,6}
in Z3, k; € {8,4} in Z* and so on.

For two digital pictures (Z", ko, ko, (X, A)) and (Z™, ky, k1, (Y, B)), we say
that a map f: (X, A) — (Y, B) is digitally (ko, k1)-continuous if f: X — Y is
digitally (ko, k1)-continuous and f(A) C B, respectively.

In [1, 2], the digital homotopy was introduced. Now we define the generalized
digital (ko, k1)-homotopy.

For digital pictures (Z™, kg, ko, X) and (Z™,ky,k1,Y), let f,g: X — Y be
digitally (ko, k1)-continuous functions. And suppose that there are a positive
integer m and a function, F' : X x [0,m|z — Y such that

o forallxz € X, F(x,0) = f(z) and F(xz,m) = g(x),

e forall z € X, the induced map Fy, : [0, m|z — Y defined by F,(t) = F(z,t)
for all ¢ € [0, m]z is digitally (2, k1)-continuous, and

e for all t € [0, m]z, the induced map F; which is defined by Fy(z) = F(z,t) :
X — Y is digitally (ko, k1)-continuous for all z € X.

If, further, F(xo,t) = yp for some (zg,y0) € X x Y and all ¢t € [0,m]z, we
say F' is a pointed (ko, k1)-homotopy.

If X = [0,mx]z and for all ¢t € [0,m]z we have F(0,t) = F(0,0) and
F(mx,t) = F(mx,0), we say F holds the endpoints fixed.

We say an image X is k-contractible [2] if the identity map 1x is (k,k)-
homotopic in X to a constant map with image consisting of some zg € X. If
such a homotopy is a pointed homotopy, we say (X, z¢) is pointed k-contractible.
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We say that f and g are digitally pointed homotopic and then we use a
notation f ~g.(x, k1)-n 9-

Especially, for the case of the digital pointed (k, k)-homotopy, we call it a dig-
ital pointed k-homotopy and use the notation: f ~g.x., g instead of f ~g. x).n 9-

For the digital image X with a k-adjacency and its subimage A, we call
(X, A) a digital image pair with a k-adjacency. Furthermore, if A is a singleton
set {p} then (X, p) is called a pointed digital image.

For a digital image (X, A) with a k-adjacency, we say that X is k-deformable
into A if there is a digital pointed k-homotopy D : X x [0, m]z — X such that
D(z,0) = z and D(z,m) C A, x € X. The above digital pointed k-homotopy
is called a digital k-deformation. The current pointed k-homotopy means that
D(zg,t) = xo for xp € A and all ¢t € [0, m]z.

Actually, the digital fundamental group was developed for the digital image
in dimension at most three image in Z3 [6] and was derived from an approach to
algebraic topology under the standard k-adjacency in Z", where k € {3" —1(n >
2),2n(n >1),18(n = 3)} [5].

Now we make a reformation in terms of the generalized pointed digital ho-
motopy without any restriction to the dimension and the k-adjacency of the
image. The k-type digital fundamental group is induced via the generalized
pointed k-homotopy. Namely, we study the image in Z"™ with the n-kinds of the
k-adjacency in Z", k € {242,210,130,50,10} in Z5, k € {80,64,32,8} in Z*,
k € {26,18,6} in Z3, k € {8,4} in Z? and k € {3" — 1(n > 2),2n(n > 1)} in
7" n > 6.

Since the preservation of the base point is essential in studying the pointed
digital (ko, k1)-homotopy theory, the digital (kg, k1)-continuity is very meaning-
ful.

Thus the k-type digital fundamental group is a generalization of the digital
fundamental group of [2, 5, 6] relative to the adjacency and the dimension of
the image.

Concretely, for a pointed digital image (X,p), a k-loop f based at p is a
k-path in X with f(0) = p = f(m). And we put FF(X,p) = {f|f is a k-loop
based at p}.

For maps fag(e Flk(X7p))? Le., f : [07m1]Z - (Xap) with f(()) =pP= f(ml)
and g : [0,m2]z — (X, p) with g(0) = p = g(ms2), we get a map f g :[0,m1 +
malz — (X, p) as follows [5]:

f*g:[0,m +malz — (X,p) is defined by f * g(t)f(¢),(0 <t < m;) and
gt —mq),(m1 <t <mj+my). Then fxg € Flk(X,p).

We denote the digital k-homotopy class of f by [f]. Obviously, the homotopy
class [f * g] depends on the homotopy classes [f] and [g].

Furthermore, for any fi, f2, 91,92 € FF(X,p) such that f1 € [f2], 91 € [g2]
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we get the map f1* g1 € [f2* g2], i.e., [f1 % g1] = [f2 * g2].

Consequently, we put 7F(X,p) = {[f]|f € FF(X,p)}. And we take an oper-
ation - on 7¥ (X, p) as follows: [f] - [g] = [f * g]-

The group structure on 7§ (X, p) is checked by the same method as in [1]
with respect to the digital (2, k)-continuity.

For our emphasizing on the k-connectivity of the digital image X, we use
the superscript k like 7% (X, p).

Consequently, we get a group w5 (X, p) with the above operation -, which is
called the k-type digital fundamental group of a pointed digital image (X, p).

Actually, if p and ¢ belong to the same k-connected component of X, then
(X, p) is isomorphic to 7§ (X, q) [1].

For digital pictures (Z™, ko, ko, X), (Z™, k1,k1,Y) and a digitally (ko, k1)-
continuous based map h : (X,p) — (Y,q), the map h induces a digital funda-
mental group (kg, k1)-homomorphism as follows.

Define ﬂgko’kl)(h) = hy : T(X,p) — 7(Y, q) by the equation h.([f1]) =
[h o f1], where [f1] € 7 (X, p), which is well defined. Particularly, if ko = ki,
we use the following notation, 7 (h)[1].

For digital pictures (Z", ko, ko, X), (Z™ k1, k1, Y) and (Z"2, kg, ko, Z) , let
f:+ X — Y be digitally (ko, k1)-continuous based map and ¢g : Y — Z be digi-

tally (k1, ky)-continuous function. Then obviously =" (g0 f) = ##2)(g) o

W%ko’kl)(f)[l]. In particular, if ko = k1 = ko, m°(g o f) = 71°(g) o 71 (f). Actu-
ally, if a pointed image (X, p) is k-connected, for any point ¢ € X there is an
isomorphism ¢ : W’f(X,p) = F]f(Xa q)[1].

3 Theorem. For a digital image picture (Z", k, k, (X, A)), if (X,p) is k-
deformable into (A,p) then n¥(X,p) = 75 (A, p).

PRrROOF. First, from the digital k-deformation D : X x [0,m]z — X such
that D(X x {m}) C A, let r: (X,p) — (A, p) be defined as follows: (ior)(z) =
D(z,m), v € X and i : (A,p) — (X,p) is the inclusion map. Then D makes
1(xp) be digitally pointed k-homotopic to i o r. And further, D(zo,t) = zo
for some xg € A. Thus r is a right digital k-homotopy inverse of i. Namely,
ior ~qpp 1(xp)- Therefore mh(ior) = af(i)onf(r) = Lok (x py- Thus 7 (r) is a
monomorphism.

Second, for any [g] € 7¥(A,p), there are a k-path f € FF(X,p) and a set
of k-paths {g1,92, -, 9.} C FF(X,p), such that f ~grn 91,9 ~dkn gir1 for
i€ {1,2,--,c— 1} and g, ~grn g- Thus 75 (r)([f]) = [g]. Therefore ¥ (r) is
an epimorphism.

4 Corollary. [1] If X is pointed k-contractible then (X, p) is trivial.
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3 Digital (ko, k1)-homeomorphism

For our classification of digital images, we need special relations among
digital images with k;-adjacencies i € {0,1}. One of them is the digital (ko, k1)-
homeomorphism as follows:

5 Definition. [1, 3, 4] For digital pictures (Z", kg, ko, X) and (Z™, k1, k1,
Y),amap h: X — Y is called a digital (ko, k1)-homeomorphism if 4 is digitally
(o, k1)-continuous and bijective and further h=! : Y — X is digitally (ki1,ko)-
continuous. Then we write it by X ~g. (4o r,).n Y- If ko = k1, we say that h is a
digital homeomorphism [1].

The minimal simple closed curves in Z? with three types which are not
digital homeomorphic to each other are M SCs, M SCy and M SC,(C Z?)[3, 4].

Let M SCy be the set which is digitally 8-homeomorphic to the image [4],

{(1"17 yl)u (331 - 17 Y1 +1)> (:L‘l —2,3/1), (J;l _2)3/1 - 1)7 (Il - 17y1 _2)7 («Thyl - 1)}

Let M SCy be the set which is digitally 4-homeomorphic to the image,

{(x1, 1), (@1, y1 + 1), (x1 — Ly1 + 1), (x1 — 2,51 + 1),
(w1 —2,91), (r1 — 2,51 — 1), (21 — L,y1 — 1), (z1, 91 — 1)},

ie., MSCy =q.4.n Ns(p3),ps € Z* [3, 4].
Let M SC{ be the set which is digitally 8-homeomorphic to the image,

{(xlayl)a (wl — Ly + 1)7 ($1 - 27y1)7 (.’171 -1y — 1)}

1, 3].

We can classify digital images from the following induced digital fundamental
group (ko, k1)- isomorphism.

6 Theorem. Let (Z™, ko, ko, (X, 20)) and (Z™ , k1, k1, (Y, v0)) be digital pic-
tures, where k; € {242,210,130,50,10} in Z°, k; € {80,64,32,8} in Z*, k; €
{26,18,6} in Z3,k; € {8,4} in Z* and k; € {3" —1,2n} in Z",n > 6, i € {0,1}.
If h : (X,20) — (Y,y0) is a digital (ko, k1)-homeomorphism then the induced
map hy : T(X, p) — 7 (Y, q) defined by h.([f]) = [ho f], [f] € 7™ (X,p) is a
digital fundamental group isomorphism.

PROOF. First, h, is well-defined. If f' € [f] € 7i°(X,p), let F : (X,p) x
[0,m]z — (X,p) be a digital kgp-homotopy between f and f’. Then ho F is a
digital ki-homotopy between the ki-loops ho f and ho f'. Thus ho f' € [ho f].

Second, the induced map h, is a homomorphism.

For any maps f,g € Flk0 (X,p), the digitally (2, kg)-continuous maps f :
[O7ml}Z - (Xap) and g : [O7m2]Z - (Xap)v the map hO(f*g) : [Ovml +m2]Z -
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(Y, q) is defined as follows:

ho (f*g):[0,m1+malz — (Y,q)

_ JR(f(@), (0<t<m),
helfxat) = {h<g<t—m1>>, (ma <t < 1 +ma)

Thus o (f.g) = (ho f) % (hog) and hu([f]- [g]) = hu((f *g]) = [ho (f *
gl(ho f)x(hog)=T[hof]-[hogl=nh[f])-hlg])-

The induced map h, depends not only on the digitally (ko, k1)-continuous
map h: (X,p) — (Y, q) but also on the choice of the base points p and g.

Second, h, is surjective: for any [g] € ﬂlfl(Y, q), we get g : [0,m]z — (Y, q)
is a digitally (2, k1)-continuous map such that g(0) = ¢ = g(m). Because h is
a digital (ko, k1)-homeomorphism, there is a digitally (2, ko)-continuous map:
fi : [0,m]z — (X,p) such that f1(0) = p = fi(m) and ho f; = g. Thus
h(lf2)) = [ho fi] = [g].

Third, hy is injective: if hi([f1]) = [ho fi] = c;qy € (Y, q), we only prove
that f1 ~gke-n cgpy- Since ho fi =g, .5 cqqy, there is a digitally (2, ko)-continuous
map fi : [0,m]z — (X, p) such that f1(0) = p= fi(m) and f1 ~gken cfp)-

Fourth, &, is a homomorphism. For any [f1], [f2] € 7 (X, p), he([f1] - [f2]) =
hilfixfo] = [ho([fixf2])] = [(ho fixho f2)] = [(ho fi]-[ho folhu[ f1]-hu[ fo].

A black point in a digital picture P = (Z" k,k, X) is called a border point
if it is k-adjacent to one or more white points. The border of X in the above
digital picture P is the set of all border points and it is denoted by Bd(X).

7 Example. The group 7{(MSCy, ) ~ 7% (Bd(Ba(p,2))).

PROOF. Since Bd(Baz(p,2)) is (8,4)-homeomorphic to M SC4, the proof is
completed.

8 Example. For the image W1 = Ba(p1,2) — {p1, (1 + 1,41)} U Ns(ps3),
where p1 = (z1,41), p2 = (21 + 2,51) and p3 = (z1 + 3,31), 7} (W1, p2) =
7S (M SCsg). Assume that Ng(ps) = {q0 = (1 +4,91), 1 = (x1+4,y1+1),q2 =
(z1+3y1+1),¢3=(@1+2,y1+1), e = (21 +2,51),¢5 = (x1+2,y1 — 1), ¢6 =
(x14+ 3,11 —1),q6 = (x1 + 4,51 — 1)}

PROOF. (Step 1): Without loss of generality, assume that M SCg is a subset
of Ba(p1,2) — {p1, (z1 + L,y1)}. We get easily Ba(p1,2) — {p1,(z1 + 1,y1)} is
8-deformable into Wa (=48, MSCs), where Wy = {(z1 + 2,y1), (z1 + 1,41 +
D, (x5 +1), (21 — Liya), (1,51 — 1), (21 + L,yn — 1)}

(Step 2): We prove that Ng(ps) is pointed 8-contractible into {p2}. Namely,
there is a digital 8-homotopy H : Ns(ps) x [0, 3]z — Ng(p3) as follows:

First, H(q;,0) = ¢;, for any ¢; € Ng(p3).

Second, H(q2i+1, 1) = @9, H(QQZ‘, 1) = q9;,1 € [0, 3]2,
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Third, H(g;,2) = qu,t € {2,3,4,5} and H(g;,2) = ¢6,j € {0,1,6,7}.

Finally H(g;,3) = q4, i € [0, 7]z.

Therefore 7§ (W1, ps) =& 7§ (MSCs) from (Step 1) and (Step 2). QED

9 Corollary. If there are ko, k1 such that 7rlf° (X,p) is not isomorphic to
W’fl(Y, q) then X andY are not digitally (ko, k1)-homeomorphic to each other.

Proor. A digital (ko, k1)-continuous map h : (X,p) — (Y,q) induces a
digital fundamental group homomorphism h, : 7r'f°(X ,p) — 7r'f1 (Y, q) defined by
h.([f]) = [ho f]. It is easy to see that h, and h, ! are bijective homomorphisms.
Thus a digital (ko, k1)-homeomorphism A : (X,p) — (Y,¢q) induces a digital
fundamental group isomorphism. By the contraposition of the above statement
we get the proof.
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