# Behavior of bivariate interpolation operators at points of discontinuity of the first kind 

Michele Campiti<br>Department of Mathematics, University of Salento<br>michele.campiti@unisalento.it<br>Giusy Mazzone<br>Department of Mathematics, University of Salento<br>giusy.mazzone@unisalento.it<br>Cristian Tacelli<br>Department of Mathematics, University of Salento cristian.tacelli@unisalento.it

Received: 18/09/2010; accepted: 11/02/2011 .
Abstract. We introduce an index of convergence for double sequences of real numbers. This index is used to describe the behaviour of some bivariate interpolation sequences at points of discontinuity of the first kind. We consider in particular the case of bivariate Lagrange and Shepard operators.

Keywords: Index of Convergence, Interpolation, Bivariate Lagrange Operators, Bivariate Shepard Operators
MSC 2000 classification: primary 41A05, secondary 40A30

## Dedicated to the memory of V.B. Moscatelli

## 1 An index of convergence for double sequences

In this paper we consider a general index of convergence for multiple sequences of real numbers. This index turns out to be useful in the description of non converging sequences and in some cases it can give complete information of the behavior of these sequences. This is the case for example of some phenomena in interpolation theory where we have at our disposal some results on the failure of the convergence at points of discontinuity of the function but a complete behavior has not yet obtained. In particular we shall concentrate ourselves on double sequences of real numbers and on the Lagrange and Shepard operators in the bivariate case, where we shall be able to furnish complete description on their behavior at points of discontinuity of the first kind of a function in terms of the index of convergence.

We start with the definition of the index of convergence for multi-indexed sequences of real numbers, which generalizes in a natural way that of index of convergence for a sequence of real numbers given in [2].

In general, if $K \subset \mathbb{N}^{m}, m \geq 1$, the lower density and, respectively, the upper density of $K$ can be defined by

$$
\delta_{-}(K):=\liminf _{n \rightarrow+\infty} \frac{\left|K \cap\{1, \ldots, n\}^{m}\right|}{n^{m}}, \quad \delta_{+}(K):=\limsup _{n \rightarrow+\infty} \frac{\left|K \cap\{1, \ldots, n\}^{m}\right|}{n^{m}}
$$

In the case where $\delta_{-}(K)=\delta_{+}(K)$ the density of $K$ is defined as follows

$$
\delta(K):=\delta_{-}(K)=\delta_{+}(K)
$$

The equalities $\delta_{-}(K)=1-\delta_{+}\left(K^{c}\right)$ and $\delta_{+}(K)=1-\delta_{-}\left(K^{c}\right)$ remain true and can be shown as in [2].

It follows the definition of index of convergence.
Definition 1. Let $\left(x_{n_{1}, \ldots, n_{m}}\right)_{n_{1}, \ldots, n_{m} \geq 1}$ be a multi-indexed sequence of real numbers. If $L \in \mathbb{R}$, the index of convergence of the sequence $\left(x_{n_{1}, \ldots, n_{m}}\right)_{n_{1}, \ldots, n_{m} \geq 1}$ to $L$ is defined by

$$
i\left(x_{n_{1}, \ldots, n_{m}} ; L\right):=1-\sup _{\varepsilon>0} \delta_{+}\left(\left\{\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m} \mid x_{n_{1}, \ldots, n_{m}} \notin\right] L-\varepsilon, L+\varepsilon[ \}\right)
$$

Moreover, we also set

$$
\begin{aligned}
& i\left(x_{n_{1}, \ldots, n_{m}} ;+\infty\right):=1-\sup _{M \in \mathbb{R}} \delta_{+}\left(\left\{\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m} \mid x_{n_{1}, \ldots, n_{m}} \notin\right] M,+\infty[ \}\right) \\
& i\left(x_{n_{1}, \ldots, n_{m}} ;-\infty\right):=1-\sup _{M \in \mathbb{R}} \delta_{+}\left(\left\{\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m} \mid x_{n_{1}, \ldots, n_{m}} \notin\right]-\infty, M[ \}\right)
\end{aligned}
$$

Finally, we can also define the index of convergence of $\left(x_{n_{1}, \ldots, n_{m}}\right)_{n_{1}, \ldots, n_{m} \geq 1}$ to a subset $A$ of $\mathbb{R}$ as follows

$$
i\left(x_{n_{1}, \ldots, n_{m}}, A\right):=1-\sup _{\varepsilon>0} \delta_{+}\left(\left\{\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m} \mid x_{n_{1}, \ldots, n_{m}} \notin A+B_{\varepsilon}\right\}\right)
$$

where $\left.B_{\varepsilon}:=\right]-\varepsilon, \varepsilon\left[{ }^{m}\right.$.
In the case $m=1$ we obtain exactly the index of convergence considered in [2]. Since all results can be easily extended from double sequences to multi-indexed sequences, for the sake of simplicity in the sequel we shall consider only the case $m=2$ of double sequences of real numbers.

Remark 1. If necessary, we shall use the following explicit expressions of the index of convergence of a double sequence $\left(x_{n, m}\right)_{n \geq 1}$

$$
\begin{aligned}
i\left(x_{n, m} ; L\right) & =1-\sup _{\varepsilon>0} \delta_{+}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \notin\right] L-\varepsilon, L+\varepsilon[ \}\right) \\
& =1+\inf _{\varepsilon>0}\left(-\delta_{+}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \notin\right] L-\varepsilon, L+\varepsilon[ \}\right)\right) \\
& =\inf _{\varepsilon>0}\left(1-\delta_{+}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \notin\right] L-\varepsilon, L+\varepsilon[ \}\right)\right) \\
& =\inf _{\varepsilon>0} \delta_{-}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in\right] L-\varepsilon, L+\varepsilon[ \}\right),
\end{aligned}
$$

and if $A \subset \mathbb{R}$

$$
i\left(x_{n, m}, A\right)=\inf _{\varepsilon>0} \delta_{-}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in A+B_{\varepsilon}\right\}\right)
$$

Example 1. As a simple example, we can take $x_{n, m}:=\cos n \pi / 2 \cos m \pi / 2$. It is easy to recognize that

$$
i\left(x_{n, m} ; 0\right)=\frac{3}{4}, \quad i\left(x_{n, m} ; 1\right)=\frac{1}{8}, \quad i\left(x_{n, m} ;-1\right)=\frac{1}{8} .
$$

In the next proposition we point out some relations between the index of convergence and the density of a suitable converging subsequences.

Proposition 1. Let $\left(x_{n, m}\right)_{n, m \geq 1}$ be a double sequence of real numbers and $\left.\left.\sigma \in\right] 0,1\right]$. Then $i\left(x_{n, m}, L\right) \geq \sigma$ if and only if there exists a subsequence $\left(x_{k(n, m)}\right)_{n, m \geq 1}$ converging to $L$ such that

$$
\delta_{-}(\{k(n, m) \mid n, m \in \mathbb{N}\}) \geq \sigma
$$

Proof. $\Rightarrow)$ For every $k \geq 1$, we consider the set $M_{1 / k}:=\left\{(n, m) \in \mathbb{N}^{2}| | x_{n, m}-L \mid<\right.$ $1 / k\}$. From Remark 1 , for every $k \in \mathbb{N}$ there exists $\tilde{\nu}_{k}$ such that

$$
\frac{\left|M_{1 / k} \cap\{1,2, \ldots, j\}^{2}\right|}{j^{2}} \geq \sigma-\frac{1}{k}
$$

whenever $j>\tilde{\nu}_{k}$. At this point we define recursively the sequence $\left(\nu_{k}\right)_{k \geq 1}$ by setting $\nu_{1}=\tilde{\nu}_{1}$ and $\nu_{k}=\max \left\{\tilde{\nu}_{k}, \nu_{k-1}+1\right\}$. We have

$$
\begin{equation*}
\frac{\left|M_{1 / k} \cap\{1,2, \ldots, j\}^{2}\right|}{j^{2}} \geq \sigma-\frac{1}{k} \text { for all } j>\nu_{k} . \tag{1}
\end{equation*}
$$

Consider the set of integers

$$
K=\bigcup_{k \geq 1}\left(M_{1 / k} \cap\left\{1,2, \ldots, \nu_{k+1}\right\}^{2}\right)
$$

and the subsequence $\left\{x_{n, m} \mid(n, m) \in K\right\}$.
For every $\varepsilon>0$, let $\ell \in \mathbb{N}$ such that $1 / \ell \leq \varepsilon$. Then for every $(n, m) \in K$ satisfying $n, m>\nu_{\ell}$ we have $(n, m) \in \bigcup_{k \geq \ell}\left(M_{1 / k} \cap\left\{1,2, \ldots, \nu_{k+1}\right\}^{2}\right)$ and hence $\left|x_{n, m}-L\right|<\frac{1}{\ell} \leq \varepsilon$. This shows that the subsequence $\left\{x_{n, m} \mid(n, m) \in K\right\}$ converges to $L$.

On the other hand, for every $j>\nu_{\ell}$, there exists $\tilde{\ell} \geq \ell$ such that $\nu_{\tilde{\ell}}<j \leq \nu_{\tilde{\ell}+1}$ and thanks to (1) we have

$$
\begin{aligned}
\frac{\left|K \cap\{1,2, \ldots, j\}^{2}\right|}{j^{2}} & \geq \frac{\left|M_{1 / \tilde{\ell}} \cap\left\{1,2, \ldots, \nu_{\tilde{\ell}+1}\right\}^{2} \cap\{1,2, \ldots, j\}^{2}\right|}{j^{2}} \\
& =\frac{\left|M_{1 / \tilde{\ell}} \cap\{1,2, \ldots, j\}^{2}\right|}{j^{2}} \geq \sigma-\frac{1}{\tilde{\ell}} \geq \sigma-\frac{1}{\ell} \geq \sigma-\varepsilon
\end{aligned}
$$

that is

$$
\liminf _{n \rightarrow \infty} \frac{\left|K \cap\{1,2, \ldots, j\}^{2}\right|}{j^{2}} \geq \sigma
$$

$\Leftrightarrow)$ We suppose that there exists a subsequence $\left(x_{k(n, m)}\right)_{n \geq 1}$ converging to $L$ such that $\delta_{-}(\{k(n, m) \mid n, m \in \mathbb{N}\}) \geq \sigma$. For every $\varepsilon>0$ there exists $\nu_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{k(n, m)}-L\right|<\varepsilon$ whenever $n, m \geq \nu_{\varepsilon}$. Hence

$$
\begin{aligned}
\delta_{-}\left(\left\{(n, m) \in \mathbb{N}^{2}| | x_{n, m}-L \mid<\varepsilon\right\}\right) & \geq \delta_{-}\left(\left\{(n, m) \in \mathbb{N}^{2}| | x_{k(n, m)}-L \mid<\varepsilon\right\}\right) \\
& =\delta_{-}\left(\left\{k(n, m) \mid n, m \geq \nu_{\varepsilon}\right\}\right) \\
& \left.=\delta_{-}(\{k(n, m)) \mid n, m \in \mathbb{N}\}\right) \geq \sigma
\end{aligned}
$$

and therefore, from Remark 1, we obtain $i\left(x_{n, m}, L\right) \geq \sigma$.

Proposition 2. Let $\left(x_{n, m}\right)_{n, m \geq 1}$ be a double sequence of real numbers and $\left(A_{j}\right)_{j \geq 1}$ a sequence of subsets of $\mathbb{R}$ such that $\overline{A_{k}} \cap \overline{A_{j}}=\emptyset$ for all $k \neq j$. Then

$$
0 \leq \sum_{k=1}^{+\infty} i\left(x_{n, m}, A_{k}\right) \leq 1
$$

In particular, if $\left(L_{k}\right)_{k \geq 1}$ is a sequence of distinct elements of $[-\infty, \infty]$ such that, for every $m \geq 1$

$$
i\left(x_{n, m} ; L_{k}\right)=\alpha_{k}
$$

for some $\alpha_{k} \geq 0$, then

$$
0 \leq \sum_{k=1}^{+\infty} \alpha_{k} \leq 1
$$

Proof. Let $N \geq 1$; since $\overline{A_{k}} \cap \overline{A_{j}}=\emptyset$ whenever $k \neq j$, we can choose $\varepsilon$ such that

$$
\left(A_{k}+B_{\varepsilon}\right) \cap\left(A_{j}+B_{\varepsilon}\right)=\emptyset
$$

for all $k, j=1, \ldots, N, k \neq j$.
Now consider the set

$$
M_{\varepsilon}^{(k)}:=\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in A_{k}+B_{\varepsilon}\right\}
$$

and observe that $M_{\varepsilon}^{(k)} \cap M_{\varepsilon}^{(j)}=\emptyset$ whenever $k, j=1, \ldots, N, k \neq j$. Then we can conclude that

$$
\begin{aligned}
0 \leq & \sum_{k=1}^{N} i\left(x_{n, m}, A_{k}\right) \leq \sum_{k=1}^{N} \delta_{-}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in A_{k}+B_{\varepsilon}\right\}\right) \\
& =\sum_{k=1}^{N} \liminf _{n \rightarrow \infty} \frac{\left|M_{\varepsilon}^{(k)} \cap\{1, \ldots, n\}^{2}\right|}{n^{2}} \leq \liminf _{n \rightarrow \infty}\left(\sum_{k=1}^{N} \frac{\left|M_{\varepsilon}^{(k)} \cap\{1, \ldots, n\}^{2}\right|}{n^{2}}\right) \\
& =\liminf _{n \rightarrow \infty} \frac{\left|\bigcup_{k=1}^{N} M_{\varepsilon}^{(k)} \cap\{1, \ldots, n\}^{2}\right|}{n^{2}}=\delta_{-}\left(\bigcup_{k=1}^{N} M_{\varepsilon}^{(k)}\right) \leq 1
\end{aligned}
$$

Remark 2. Observe that if in the preceding proposition we have $\sum_{k=1}^{+\infty} \alpha_{k}=1$, then every subsequence $\left(x_{k(n, m)}\right)_{n, m \geq 1}$ of $\left(x_{n, m}\right)_{n, m \geq 1}$ which converges to a limit $L$ different from each $L_{k}, k \geq 1$, necessarily satisfies $\delta_{-}(\{k(n, m) \mid n, m \in \mathbb{N}\})=0$ and therefore $i\left(x_{n, m} ; L\right)=0$.

Indeed, if a subsequence $\left(x_{k(n, m)}\right)_{n, m \geq 1}$ of $\left(x_{n, m}\right)_{n, m \geq 1}$ exists such that $\delta_{-}(\{k(n, m) \mid$ $n, m \in \mathbb{N}\})=\alpha>0$, then by Proposition 1 we get $i\left(x_{n, m}, L\right) \geq \alpha$ and therefore

$$
i\left(x_{n, m}, L\right)+\sum_{k=1}^{\infty} i\left(x_{n, m}, L_{k}\right) \geq \alpha+\sum_{k=1}^{\infty} \alpha_{k}>1
$$

which contradicts Proposition 2.
Proposition 3. Let $\left(x_{n, m}\right)_{n, m \geq 1}$ be a double sequence of real numbers and $\left(y_{n}\right)_{n \geq 1}$ a sequence of real numbers. If there exists a subsequence $(k(m))_{m \geq 1}$ such that $\lim _{m \rightarrow \infty} x_{n, k(m)}=$ $y_{n}$ uniformly with respect to $n$ and if $\delta\{k(m) \mid m \in \mathbb{N}\}=\alpha$ then

$$
i\left(x_{n, m} ; A\right) \geq \alpha i\left(y_{n} ; A\right)
$$

for every $A$ subset of $\mathbb{R}$.

Proof. Let us consider $K_{1}, K_{2} \subset \mathbb{N}$; since

$$
\begin{aligned}
\delta_{-} & \left(\left\{(i, j) \in \mathbb{N}^{2} \mid(i, j) \in K_{1} \times K_{2}\right\}\right)=\delta_{-}\left(\left\{(i, j) \in \mathbb{N}^{2} \mid i \in K_{1}, j \in K_{2}\right\}\right) \\
& =\liminf _{n \rightarrow \infty} \frac{\left|\left\{(i, j) \in \mathbb{N}^{2} \mid i \in K_{1}, j \in K_{2}\right\} \cap\{1, \ldots, n\}^{2}\right|}{n^{2}} \\
& =\liminf _{n \rightarrow \infty} \frac{\left|\left\{i \in \mathbb{N} \mid i \in K_{1}\right\} \cap\{1, \ldots, n\}\right|}{n} \frac{\left|\left\{j \in \mathbb{N} \mid j \in K_{2}\right\} \cap\{1, \ldots, n\}\right|}{n} \\
& \geq \liminf _{n \rightarrow \infty} \frac{\left|\left\{i \in \mathbb{N} \mid i \in K_{1}\right\} \cap\{1, \ldots, n\}\right|}{n} \liminf _{n \rightarrow \infty} \frac{\left|\left\{j \in \mathbb{N} \mid j \in K_{2}\right\} \cap\{1, \ldots, n\}\right|}{n} \\
& =\delta_{-}\left(\left\{i \in \mathbb{N} \mid i \in K_{1}\right\}\right) \delta_{-}\left(\left\{j \in \mathbb{N} \mid j \in K_{2}\right\}\right),
\end{aligned}
$$

we have

$$
\begin{equation*}
\delta_{-}\left(K_{1} \times K_{2}\right) \geq \delta_{-}\left(K_{1}\right) \delta_{-}\left(K_{2}\right) \tag{2}
\end{equation*}
$$

For every $\varepsilon>0$ there exists $\eta \in \mathbb{N}$ such that $\left|x_{n, k(m)}-y_{n}\right|<\varepsilon$ whenever $m \geq \eta$ and $n \in \mathbb{N}$. Then

$$
\left\{(n, k(m)) \in \mathbb{N}^{2} \mid m \geq \eta, y_{n} \in A+B_{\varepsilon}\right\} \subset\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in A+B_{2 \varepsilon}\right\}
$$

and consequently

```
\(\delta_{-}\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in A+B_{2 \varepsilon}\right\}\right) \geq \delta_{-}\left(\left\{(n, k(m)) \in \mathbb{N}^{2} \mid m \geq \eta, y_{n} \in A+B_{\varepsilon}\right\}\right)\)
    \(\geq \delta_{-}\left(\left\{n \in \mathbb{N} \mid y_{n} \in A+B_{\varepsilon}\right\}\right) \delta_{-}(\{k(m) \mid m \geq \eta\})\)
    \(=\alpha \delta_{-}\left(\left\{n \in \mathbb{N} \mid y_{n} \in A+B_{\varepsilon}\right\}\right) \geq \alpha i\left(y_{n} ; A\right)\).
```

Taking the infimum with respect to $\varepsilon$ we obtain the desired result.
Proposition 4. Let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ sequences of real numbers, let $f:[0,1] \rightarrow$ $[0,1]$ and $g:[0,1] \rightarrow[0,1]$ be injective differentiable functions with differentiable inverses. If $i\left(x_{n} ; A\right)=\left|f^{-1}(A)\right|$ and $i\left(y_{n} ; A\right)=\left|g^{-1}(A)\right|$ for every Peano-Jordan measurable set $A \subset[0,1]$, then

$$
i\left(x_{n} y_{m}, A\right)=\left|G^{-1}(A)\right|
$$

where $G(x, y)=g(x) f(y)$.
Proof. Firstly we prove that $i\left(x_{n} ; I\right)=\delta\left(\left\{n \in \mathbb{N} \mid x_{n} \in I\right\}\right)$ for every interval $I \subset \mathbb{R}$. Notice that for every interval $[a, b] \subset \mathbb{R}$ and for all $\varepsilon>0$

$$
\delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in\right] a-\varepsilon, b+\varepsilon[ \}\right) \geq \delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in[a, b]\right\}\right)
$$

and then, taking the infimum over $\varepsilon>0$,

$$
\begin{equation*}
i\left(x_{n} ;[a, b]\right) \geq \delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in[a, b]\right\}\right) \tag{3}
\end{equation*}
$$

On the other hand, for every $\delta>0$ we have that

$$
\begin{aligned}
& \left|f^{-1}([a+\delta, b-\delta])\right|=\inf _{\varepsilon>0} \delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in\right] a+\delta-\varepsilon, b-\delta+\varepsilon[ \}\right) \\
& \quad \leq \delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in[a, b]\right\}\right) .
\end{aligned}
$$

Since $f^{-1}$ is continuous, the function $\delta \mapsto\left|f^{-1}([a+\delta, b-\delta])\right|$ is continuous at 0 and taking the limit as $\delta \rightarrow 0$ we have

$$
i\left(x_{n} ;[a, b]\right)=\left|f^{-1}([a, b])\right| \leq \delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in[a, b]\right\}\right),
$$

which jointly with (3) yields

$$
i\left(x_{n} ; I\right)=\delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in I\right\}\right)
$$

for every interval $I$. Finally we have

$$
\begin{aligned}
& \delta_{+}\left(\left\{n \in \mathbb{N} \mid x_{n} \in I\right\}\right)=1-\delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in I^{c}\right\}\right)=1-\left|f^{-1}\left(I^{c}\right)\right| \\
& \quad=\left|f^{-1}(I)\right|=\delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in I\right\}\right),
\end{aligned}
$$

so

$$
i\left(x_{n} ; I\right)=\left|f^{-1}(I)\right|=\delta\left(\left\{n \in \mathbb{N} \mid x_{n} \in I\right\}\right) .
$$

Let $I, J$ be real intervals, we have

$$
\delta\left(\left\{(n, m) \in \mathbb{N} \mid\left(x_{n}, y_{m}\right) \in I \times J\right\}\right)=\delta\left(\left\{n \in \mathbb{N} \mid x_{n} \in I\right\}\right) \delta\left(\left\{m \in \mathbb{N} \mid y_{m} \in J\right\}\right),
$$

indeed

$$
\begin{aligned}
& \delta\left(\left\{(i, j) \in \mathbb{N}^{2} \mid\left(x_{i}, y_{j}\right) \in I \times J\right\}\right)=\delta\left(\left\{(i, j) \in \mathbb{N}^{2} \mid x_{i} \in I, y_{j} \in J\right\}\right) \\
&=\lim _{n \rightarrow \infty} \frac{\left|\left\{(i, j) \in \mathbb{N}^{2} \mid x_{i} \in I, y_{j} \in J\right\} \cap\{1, \ldots, n\}^{2}\right|}{n^{2}} \\
&=\lim _{n \rightarrow \infty} \frac{\left|\left\{i \in \mathbb{N} \mid x_{i} \in I\right\} \cap\{1, \ldots, n\}\right|}{n} \frac{\left|\left\{j \in \mathbb{N} \mid y_{j} \in J\right\} \cap\{1, \ldots, n\}\right|}{n} \\
&=\lim _{n \rightarrow \infty} \frac{\left|\left\{i \in \mathbb{N} \mid x_{i} \in I\right\} \cap\{1, \ldots, n\}\right|}{n} \lim _{n \rightarrow \infty} \frac{\left|\left\{j \in \mathbb{N} \mid y_{j} \in J\right\} \cap\{1, \ldots, n\}\right|}{n} \\
&=\delta\left(\left\{i \in \mathbb{N} \mid x_{i} \in I\right\}\right) \delta\left(\left\{j \in \mathbb{N} \mid y_{j} \in J\right\}\right) .
\end{aligned}
$$

Then we have

$$
\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in I \times J\right\}\right)=\left|f^{-1}(I)\right|\left|g^{-1}(J)\right|=\left|(f, g)^{-1}(I \times J)\right| ;
$$

moreover, thank to the linearity of the limit, if $Q$ is a pluri-interval of $\mathbb{R}^{2}$ we have

$$
\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in Q\right\}\right)=\left|(f, g)^{-1}(Q)\right| .
$$

Now let $\tilde{A}$ be a Peano-Jordan measurable subset of $[0,1]^{2}$ and fix $\varepsilon>0$. Since $F:=(f, g)^{-1}$ is a diffeomorphism from $[0,1]^{2}$ into $[0,1]^{2}$, the subset $F(\tilde{A})$ is measurable and therefore there exist pluri-intervals $Y_{1}, Y_{2}$ such that $Y_{1} \subset F(\tilde{A}) \subset Y_{2}$ and $\left|Y_{2}\right|-\left|Y_{1}\right| \leq \varepsilon$. Let $Q_{1}=F^{-1}\left(Y_{1}\right)$ and $Y_{2}=F^{-1}\left(Q_{2}\right)$; these set are pluri-intervals and $Q_{1} \subset \tilde{A} \subset Q_{2}$. We have

$$
\begin{aligned}
\delta & \left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in Q_{1}\right\}\right) \leq \delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in \tilde{A}\right\}\right) \\
& \leq \delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in Q_{2}\right\}\right),
\end{aligned}
$$

from which

$$
\left|Y_{1}\right|=\left|F\left(Q_{1}\right)\right| \leq \delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in \tilde{A}\right\}\right) \leq\left|F\left(Q_{2}\right)\right|=\left|Y_{2}\right| .
$$

On the other hand

$$
\left|Y_{1}\right| \leq|F(\tilde{A})| \leq\left|Y_{2}\right|
$$

and therefore

$$
\left|\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in \tilde{A}\right\}\right)-|F(\tilde{A})|\right| \leq\left|Y_{2}\right|-\left|Y_{1}\right| \leq \varepsilon
$$

and we get

$$
\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in \tilde{A}\right\}\right)=|F(\tilde{A})| .
$$

Finally we consider a Peano-Jordan measurable set $A \subset[0,1]$ and the function $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $P(x, y)=x y$. We have

$$
\begin{aligned}
\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n} y_{m} \in A\right\} & =\left\{(n, m) \in \mathbb{N}^{2} \mid P\left(x_{n}, y_{m}\right) \in A\right\} \\
& =\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in P^{-1}(A)\right\}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n} y_{m} \in A\right\}\right) & =\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid\left(x_{n}, y_{m}\right) \in P^{-1}(A)\right\}\right) \\
& =\left|(f, g)^{-1} P^{-1}(A)\right|=\left|(f \cdot g)^{-1}(A)\right|
\end{aligned}
$$

where $(f \cdot g)(x, y)=G(x, y)=f(x) g(y)$. Therefore for every Peano-Jordan measurable set $A \subset[0,1]$ we have

$$
\begin{align*}
i\left(x_{n} y_{m} ; A\right) & =\inf _{\varepsilon>0} \delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n} y_{m} \in A+B_{\varepsilon}\right\}\right)=\inf _{\varepsilon>0}\left|G^{-1}\left(A+B_{\varepsilon}\right)\right| \\
& \geq\left|G^{-1}(A)\right| \tag{4}
\end{align*}
$$

To prove the converse inequality, we argue by contradiction and suppose that $i\left(x_{n} y_{m} ; A\right)>$ $\left|G^{-1}(A)\right|$. So there exists $\delta>0$ such that $i\left(x_{n} y_{m} ; A\right)=\left|G^{-1}\left(A+B_{\delta}\right)\right|$. Notice that $\bar{A} \cap$ $\overline{\left(A+B_{\delta / 2}\right)^{c}}=\emptyset$ and, by Proposition 2, we get

$$
i\left(x_{n} y_{m} ; A\right)+i\left(x_{n} y_{m} ;\left(A+B_{\delta / 2}\right)^{c}\right) \leq 1
$$

Since $G^{-1}\left([0,1]^{2}\right) \subset[0,1]^{2}$, by (4) we have

$$
\left|G^{-1}\left(A+B_{\delta}\right)\right| \leq 1-\left|G^{-1}\left(\left(A+B_{\delta / 2}\right)^{c}\right)\right|=\left|G^{-1}\left(A+B_{\delta / 2}\right)\right|
$$

This leads to a contradiction since the map $\delta>0 \rightarrow\left|G^{-1}\left(A+B_{\delta}\right)\right|$ is monotone increasing. Then our claim is achieved.

Example 2. As a further example, let $\alpha, \gamma \in[0,1)$ be irrational, $\beta, \delta \in[0,1)$ and consider

$$
x_{n, m}:=(n \alpha+\beta-[n \alpha+\beta])(m \gamma+\delta-[m \gamma+\delta])
$$

where $[x]$ denotes the integer part of $x$.
We already know that (see [2, Example 1.4)-ii)])

$$
i(n \alpha+\beta-[n \alpha+\beta] ; A)=|A|
$$

for every Peano-Jordan measurable set $A \subset[0,1[$, where $|\cdot|$ denotes the Peano-Jordan measure.
Now, applying Proposition 4 with the identity function in place of $f$ and $g$, we get

$$
i\left(x_{n, m} ; A\right)=\delta\left(\left\{(n, m) \in \mathbb{N}^{2} \mid x_{n, m} \in A\right\}\right)=\left|G^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset[0,1[$, where $G(x, y)=x y$.

## 2 Bivariate Lagrange operators on discontinuous functions

We begin by considering the univariate Lagrange operators $\left(L_{n}\right)_{n \geq 1}$ at the Chebyshev nodes of second type, which are defined by

$$
L_{n} f(x)=\sum_{k=1}^{n} \ell_{n, k}(x) f\left(x_{n, k}\right),
$$

where $f$ is a suitable function from $[-1,1]$ to $\mathbb{R}$,

$$
x_{n, k}=\cos \theta_{n, k}, \quad \theta_{n, k}=\frac{k-1}{n-1} \pi \quad k=1, \ldots, n
$$

are the Chebyshev nodes of second type and

$$
\ell_{n, k}(x)=\prod_{i \neq k} \frac{x-x_{n, i}}{x_{n, k}-x_{n, i}}
$$

are the corresponding fundamental polynomials.
Setting $x=\cos \theta$, with $\theta \in[0, \pi]$, the polynomials $\ell_{n, k}$ can be rewritten as follows

$$
\ell_{n, k}(\cos \theta)=\frac{(-1)^{k}}{(n-1)\left(1+\delta_{k, 1}+\delta_{k, n}\right)} \frac{\sin ((n-1) \theta) \sin \theta}{\cos \theta-\cos \theta_{n, k}}
$$

where $\delta_{i, j}$ denotes the Kronecker symbol, that is

$$
\delta_{i, j}:= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Our first aim is to study the behavior of the sequence of Lagrange operators for a particular class of functions having a finite number of points of discontinuity of the first kind. This will simplify the subsequent discussion on the bivariate case.

We consider the function $h_{x_{0}, d}:[-1,1] \rightarrow \mathbb{R}$ defined by

$$
h_{x_{0}, d}(x):=\left\{\begin{array}{ll}
0, & x<x_{0}  \tag{5}\\
d, & x=x_{0} \\
1, & x>x_{0}
\end{array} \quad x \in[-1,1]\right.
$$

where $d$ is a fixed real number.
We also need to define the function $g:] 0,1[\mapsto \mathbb{R}$ by setting

$$
\begin{equation*}
\left.g(x):=\frac{\sin (\pi x)}{\pi} J(1, x), \quad \text { if } x \in\right] 0,1[ \tag{6}
\end{equation*}
$$

where $J(s, a)$ denotes the Lerch zeta function

$$
\left.\left.J(s, a):=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(n+a)^{s}}, \quad a \in\right] 0,1\right], \quad \Re[s]>0
$$

The following result describes the behavior of Lagrange operators at the point $x_{0}$ in terms of the index of convergence defined in [2] and corresponding to the case $m=1$ in Definition 1 .

Theorem 1. Let $\left.x_{0}=\cos \theta_{0} \in\right]-1,1\left[\right.$ and consider the functions $h:=h_{x_{0}, d}$ defined by (5). Then, the sequence of functions $\left(L_{n} h\right)_{n \geq 1}$ converges uniformly to $h$ on every compact subsets of $[-1,1] \backslash\left\{x_{0}\right\}$.

As regards the behaviour of the sequence $\left(L_{n} h\left(x_{0}\right)\right)_{n \geq 1}$ we have the following cases.
i) If $\frac{\theta_{0}}{\pi}=\frac{p}{q}$ with $p, q \in \mathbb{N}, q \neq 0$ and $G C D(p, q)=1$, then

$$
i\left(L_{n} h\left(x_{0}\right) ; d\right)=\frac{1}{q}, \quad i\left(L_{n} h\left(x_{0}\right) ; g\left(\frac{m}{q}\right)\right)=\frac{1}{q}, \quad m=1, \ldots, q-1
$$

ii) If $\frac{\theta_{0}}{\pi}$ is irrational and if $A \subset \mathbb{R}$ is a Peano-Jordan measurable set, then

$$
i\left(L_{n} h\left(x_{0}\right) ; A\right)=\left|g^{-1}(A)\right|
$$

where $|\cdot|$ denotes the Peano-Jordan measure.

Proof. Let $a=\cos \theta_{1} \in\left[-1, x_{0}[\right.$ and $x=\cos \theta \in[-1, a]$; for sufficiently large $n \geq 1$ there exists $k_{0}$ such that $0 \leq \theta_{n, k_{0}} \leq \theta_{0}<\theta_{n, k_{0}+1}<\theta_{1} \leq \theta \leq \pi$ and therefore

$$
0<\cos \theta_{0}-\cos \theta_{1} \leq \cos \theta_{n, k_{0}}-\cos \theta
$$

We have $L_{n} h(\cos \theta)=\sum_{k=1}^{k_{0}-1} \ell_{n, k}(\cos \theta)+d \ell_{n, k_{0}}(\cos \theta)$ if $\theta_{n, k_{0}}=\theta_{0}$, and $L_{n} h(\cos \theta)=$ $\sum_{k=1}^{k_{0}} \ell_{n, k}(\cos \theta)$ if $\theta_{n, k_{0}}<\theta_{0}$; hence

$$
\begin{aligned}
& L_{n} h(\cos \theta) \\
& \qquad=\sum_{k=1}^{k_{0}} \frac{(-1)^{k}}{(n-1)\left(1+\delta_{k, 1}\right)} \frac{\sin ((n-1) \theta) \sin \theta}{\cos \theta-\cos \theta_{n, k}}+(d-1) \chi_{\left\{\theta_{n, k_{0}}\right\}}\left(\theta_{0}\right) \ell_{n, k_{0}}(\cos \theta) \\
& = \\
& \frac{\sin ((n-1) \theta) \sin \theta}{2(n-1)(\cos \theta-1)}+\sum_{k=1}^{k_{0}} \frac{(-1)^{k-1}}{n-1} \frac{\sin ((n-1) \theta) \sin \theta}{\cos \theta_{n, k}-\cos \theta} \\
& \quad+(d-1) \chi_{\left\{\theta_{n, k_{0}}\right\}}\left(\theta_{0}\right) \ell_{n, k_{0}}(\cos \theta) .
\end{aligned}
$$

The function $t \rightarrow \frac{1}{\cos t-\cos \theta}$ is positive and monotone increasing on the interval [ $0, \theta[$; since $0<\theta_{n, k}<\theta_{n, k+1}<\theta$ for every $1 \leq k \leq k_{0}$, we have

$$
\begin{aligned}
\left|L_{n} h(x)\right|= & \left|L_{n}(h)(\cos \theta)\right| \\
\leq & \frac{1}{2(n-1)(1-\cos \theta)}+\left|\frac{\sin ((n-1) \theta) \sin \theta}{n-1} \frac{1}{\cos \theta_{n, k_{0}}-\cos \theta}\right| \\
& +|d-1|\left|\frac{\sin ((n-1) \theta) \sin \theta}{n-1} \frac{1}{\cos \theta_{n, k_{0}}-\cos \theta}\right| \\
\leq & \frac{1}{2(n-1)\left(1-\cos \theta_{1}\right)}+\frac{1+|d-1|}{n-1} \frac{1}{\cos \theta_{0}-\cos \theta_{1}}
\end{aligned}
$$

It follows that $\left(L_{n} h\right)_{n>1}$ converges uniformly to $h$ in $[-1, a]$.
Now let $\left.b=\cos \theta_{2} \in\right] x_{0}, 1[$ and $x=\cos \theta \in[b, 1]$. For sufficiently large $n \geq 1$ there exists $k_{0}$ such that $0 \leq \theta \leq \theta_{2}<\theta_{n, k_{0}} \leq \theta_{0}<\theta_{n, k_{0}+1} \leq 2 \pi$ and consequently

$$
0<\cos \theta_{2}-\cos \theta_{0} \leq \cos \theta-\cos \theta_{n, k_{0}+1}
$$

Then

$$
\begin{aligned}
\mid 1- & L_{n} h(x)\left|=\left|1-L_{n} h(\cos \theta)\right|=\left|\sum_{k=1}^{n} \ell_{n, k}(\cos \theta)-\sum_{k=1}^{k_{0}} \ell_{n, k}(\cos \theta) h\left(\cos \theta_{n, k}\right)\right|\right. \\
= & \left\lvert\, \frac{(-1)^{n+1}}{2(n-1)} \frac{\sin ((n-1) \theta) \sin \theta}{\cos \theta+1}\right. \\
& \left.+\sum_{k=k_{0}+1}^{n} \frac{(-1)^{k}}{n-1} \frac{\sin ((n-1) \theta) \sin \theta}{\cos \theta-\cos \theta_{n, k}}-(d-1) \chi_{\left\{\theta_{\left.n, k_{0}\right\}}\right\}}\left(\theta_{0}\right) \ell_{n, k_{0}}(\cos \theta) \right\rvert\, \\
\leq & \frac{1}{n-1}\left[\frac{1}{2(\cos \theta+1)}+\left|\frac{1}{\cos \theta-\cos \theta_{n, k_{0}+1}}\right|+|d-1|\left|\frac{1}{\cos \theta-\cos \theta_{n, k_{0}}}\right|\right] \\
\leq & \frac{1}{2(n-1)\left(\cos \theta_{2}+1\right)}+\frac{1+|d-1|}{n-1} \frac{1}{\cos \theta_{2}-\cos \theta_{0}}
\end{aligned}
$$

since the function $t \rightarrow \frac{1}{\cos \theta-\cos t}$ is positive and monotone decreasing in $\left.] \theta, \pi\right]$ and $\theta<\theta_{n, k-1}<$ $\theta_{n, k}<\pi$ for every $k_{0}+1 \leq k \leq n$. So $\left(L_{n} h\right)_{n \geq 1}$ converges uniformly to $h$ also in $[b, 1]$.

Now, we study the behavior of $\left(L_{n} h\left(x_{0}\right)\right)_{n \geq 1}$.
We identify $x_{0}=\cos \theta_{0}, \theta_{0} \in[0, \pi]$. For sufficiently large $n \geq 1$ there exists $k_{0}$ such that $\theta_{n, k_{0}} \leq \theta_{0}<\theta_{n, k_{0}+1}$. Let us denote $\sigma_{n}=\frac{n-1}{\pi}\left(\theta_{0}-\theta_{n, k_{0}}\right)$. From $\frac{k_{0}-1}{n-1} \pi \leq \theta_{0}<\frac{k_{0}}{n-1} \pi$ we have that $0 \leq \sigma_{n}<1$; then

$$
n-1=\frac{\pi}{\theta_{0}}\left(\sigma_{n}+k_{0}-1\right)
$$

and moreover

$$
k_{0}-1 \leq \frac{n-1}{\pi} \theta_{0}<k_{0}
$$

that is $k_{0}-1=\left[\frac{n-1}{\pi} \theta_{0}\right]$ and

$$
\begin{equation*}
\sigma_{n}=\frac{n-1}{\pi} \theta_{0}-\left[\frac{n-1}{\pi} \theta_{0}\right] \tag{7}
\end{equation*}
$$

If $x_{0}$ is a Chebyshev node, that is $\theta_{0}=\theta_{n, k_{0}}$ and $\sigma_{n}=0$, then

$$
\begin{equation*}
L_{n} h\left(\cos \theta_{0}\right)=d \tag{8}
\end{equation*}
$$

If $x_{0}$ is not a Chebyshev node we have $\theta_{n, k_{0}}<\theta_{0}, 0<\sigma_{n}<1$ and

$$
\begin{equation*}
L_{n} h\left(\cos \theta_{0}\right)=\sum_{k=1}^{k_{0}} \ell_{n, k}\left(\cos \theta_{0}\right) \tag{9}
\end{equation*}
$$

Let us consider the case where $x_{0}$ is not a Chebyshev node and observe that

$$
\begin{aligned}
\sin \left((n-1) \theta_{0}\right) & =(-1)^{k_{0}-1} \sin \left((n-1) \theta_{0}-\left(k_{0}-1\right) \pi\right) \\
& =(-1)^{k_{0}-1} \sin \left(\pi\left(\frac{n-1}{\pi} \theta_{0}-\left(k_{0}-1\right)\right)\right) \\
& =(-1)^{k_{0}-1} \sin \left(\pi \sigma_{n}\right)
\end{aligned}
$$

Then we can rewrite $L_{n} h\left(x_{0}\right)$ in the following way

$$
\begin{aligned}
L_{n} h\left(x_{0}\right)= & \sum_{k=1}^{k_{0}} \frac{(-1)^{-k}}{(n-1)\left(1+\delta_{k, 1}\right)} \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{\cos \theta_{0}-\cos \theta_{n, k}} \\
= & \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{2(n-1)\left(\cos \theta_{0}-1\right)}+\sum_{k=1}^{k_{0}} \frac{(-1)^{-k}}{(n-1)} \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{\cos \theta_{0}-\cos \theta_{n, k}} \\
= & \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{2(n-1)\left(\cos \theta_{0}-1\right)}+\frac{\sin \left(\pi \sigma_{n}\right)}{n-1} \sum_{m=0}^{k_{0}-1}(-1)^{m} \frac{\sin \theta_{0}}{\cos \theta_{n, k_{0}-m}-\cos \theta_{0}} \\
= & \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{2(n-1)\left(\cos \theta_{0}-1\right)}+\frac{\sin \left(\pi \sigma_{n}\right)}{\pi} \sum_{m=0}^{k_{0}-1} \frac{(-1)^{m}}{\sigma_{n}+m} \\
& +\frac{\sin \left(\pi \sigma_{n}\right)}{n-1} \sum_{m=0}^{k_{0}-1}(-1)^{m}\left[\frac{\sin \theta_{0}}{\cos \theta_{n, k_{0}-m}-\cos \theta_{0}}-\frac{n-1}{\pi\left(\sigma_{n}+m\right)}\right] \\
= & \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{2(n-1)\left(\cos \theta_{0}-1\right)}+\frac{\sin \left(\pi \sigma_{n}\right)}{\pi} \sum_{m=0}^{k_{0}-1} \frac{(-1)^{m}}{\sigma_{n}+m} \\
& +\frac{\sin \left(\pi \sigma_{n}\right)}{n-1} \sum_{m=0}^{k_{0}-1}(-1)^{m}\left[\frac{\sin \theta_{0}}{\cos \theta_{n, k_{0}-m}-\cos \theta_{0}}-\frac{1}{\theta_{0}-\theta_{n, k_{0}-m}}\right]
\end{aligned}
$$

where

$$
\theta_{0}-\theta_{n, k_{0}-m}=\theta_{0}-\frac{k_{0}-m-1}{n-1} \pi=\theta_{0}-\theta_{n, k_{0}}+\frac{m}{n-1} \pi=\frac{\pi}{n-1}\left(\sigma_{n}+m\right) .
$$

If we consider the function

$$
g_{\theta_{0}}(x):=\frac{\sin \theta_{0}}{\cos x-\cos \theta_{0}}-\frac{1}{\theta_{0}-x}, \quad x \in\left[0, \theta_{0}[,\right.
$$

we can write

$$
\begin{align*}
L_{n} h\left(x_{0}\right)= & \frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{2(n-1)\left(\cos \theta_{0}-1\right)}+\frac{\sin \left(\pi \sigma_{n}\right)}{\pi} \sum_{m=0}^{k_{0}-1} \frac{(-1)^{m}}{\sigma_{n}+m}  \tag{10}\\
& +\frac{\sin \left(\pi \sigma_{n}\right)}{n-1} \sum_{m=0}^{k_{0}-1}(-1)^{m} g_{\theta_{0}}\left(\theta_{n, k_{0}-m}\right) .
\end{align*}
$$

The function $g_{\theta_{0}}$ is monotone decreasing and bounded since $g_{\theta_{0}}(0)=\frac{\sin \theta_{0}}{1-\cos \theta_{0}}-\frac{1}{\theta_{0}}$ and

$$
\lim _{x \rightarrow \theta_{0}^{-}} g_{\theta_{0}}(x)=\frac{1}{2} \cot \left(\theta_{0}\right) .
$$

For all $n \geq 1$ and $\sigma \in\left[0,1\left[\right.\right.$, consider the function $f_{n}:[0,1[\rightarrow \mathbb{R}$ defined by setting

$$
f_{n}(\sigma):= \begin{cases}\frac{\sin \left((n-1) \theta_{0}\right) \sin \theta_{0}}{2(n-1)\left(\cos \theta_{0}-1\right)}+\frac{\sin (\pi \sigma)}{\pi} \sum_{m=0}^{k_{0}-1} \frac{(-1)^{m}}{\sigma+m} & \\ \quad+\frac{\sin (\pi \sigma)}{n-1} \sum_{m=0}^{k_{0}-1}(-1)^{m} g_{\theta_{0}}\left(\theta_{n, k_{0}-m}\right), & \text { if } \sigma \in] 0,1[ \\ d, & \text { if } \sigma=0\end{cases}
$$

taking into account (8), (9) and (10) we have $L_{n} h\left(\cos \theta_{0}\right)=f_{n}\left(\sigma_{n}\right)$.
For all $\sigma \in] 0,1[$

$$
\begin{aligned}
& \left|f_{n}(\sigma)-g(\sigma)\right| \\
& \quad \leq\left|\frac{\sin (\pi \sigma)}{\pi} \sum_{m=k_{0}}^{\infty} \frac{(-1)^{m}}{\sigma+m}\right|+\frac{1}{2(n-1)\left(1-\cos \theta_{0}\right)}+\frac{\sin (\pi \sigma)}{n-1}\left(\frac{1}{\theta_{0}}+\left|g_{\theta_{0}}\left(\theta_{n, k_{0}}\right)\right|\right) \\
& \quad \leq \frac{\sin (\pi \sigma)}{\pi}\left|\frac{(-1)^{k_{0}}}{\sigma+k_{0}}\right|+\frac{1}{2(n-1)\left(1-\cos \theta_{0}\right)}+\frac{\sin (\pi \sigma)}{n-1}\left(\frac{1}{\theta_{0}}+\left|g_{\theta_{0}}\left(\theta_{n, k_{0}}\right)\right|\right) \\
& \quad \leq \frac{1}{\pi k_{0}}+\frac{1}{n-1}\left(\frac{1}{\theta_{0}}+\left|g_{\theta_{0}}\left(\theta_{n, k_{0}}\right)\right|\right) ;
\end{aligned}
$$

the right-hand side is independent of $\sigma \in] 0,1[$ and it converges to 0 as $n \rightarrow \infty$ since

$$
\lim _{n \rightarrow \infty} g_{\theta_{0}}\left(\theta_{n, k_{0}}\right)=\lim _{x \rightarrow \theta_{0}^{-}} g_{\theta_{0}}(x)=\frac{1}{2} \cot \left(\theta_{0}\right)<\infty
$$

Then we can conclude that the sequence $\left(f_{n}\right)_{n \geq 1}$ converges uniformly on $[0,1[$ to the function $\tilde{g}:[0,1[\rightarrow \mathbb{R}$ defined as follows

$$
\tilde{g}(x):= \begin{cases}g(x), & \text { if } x \in] 0,1[, \\ d, & \text { if } x=0 .\end{cases}
$$

Now, we will construct $q$ subsequences $\left(L_{k_{m}(n)} h\left(x_{0}\right)\right)_{n \geq 1}, m=0, \ldots, q-1$, of $\left(L_{n} h\left(x_{0}\right)\right)_{n \geq 1}$ with density $\frac{1}{q}$ such that

$$
\lim _{n \rightarrow \infty} L_{k_{m}(n)} h\left(x_{0}\right)=\tilde{g}\left(\frac{m}{q}\right) \text { for all } m=0, \ldots, q-1
$$

Fix $m=0, \ldots, q-1$; since $G C D(p, q)=1$ we can set $k_{m}(n):=l+n q+1$, where $l \in\{0, \ldots, q-1\}$ is such that $l p \equiv m \bmod q$, that is there exists $s \in \mathbb{Z}$ such that $l p=s q+m$.

So, consider $\left(L_{k_{m}(n)} h\left(x_{0}\right)\right)_{n \geq 1}$ and observe that for all $m=0, \ldots, q-1$, we have $\delta\left(\left\{k_{m}(n) \mid\right.\right.$ $n \in \mathbb{N}\})=\frac{1}{q}$. It follows, for all $n \geq 1$

$$
\begin{aligned}
\sigma_{k_{m}(n)} & =\left(k_{m}(n)-1\right) \frac{p}{q}-\left[\left(k_{m}(n)-1\right) \frac{p}{q}\right] \\
& =(l+n q) \frac{p}{q}-\left[(l+n q) \frac{p}{q}\right]=\frac{s q+m+n q p}{q}-\left[\frac{s q+m+n q p}{q}\right] \\
& =s+n p+\frac{m}{q}-\left[s+n p+\frac{m}{q}\right]=\frac{m}{q}
\end{aligned}
$$

since $s, n p \in \mathbb{Z}$, while $0 \leq \frac{m}{q}<1$. Then

$$
\lim _{n \rightarrow \infty} L_{k_{m}(n)} h\left(x_{0}\right)=\lim _{n \rightarrow \infty} f_{n}\left(\sigma_{k_{m}(n)}\right)=\lim _{n \rightarrow \infty} f_{n}\left(\frac{m}{q}\right)=\tilde{g}\left(\frac{m}{q}\right) .
$$

Therefore, by [2, Proposition 1.6] we have that for all $m=0, \ldots, q-1$

$$
i\left(L_{n} h\left(x_{0}\right), \tilde{g}\left(\frac{m}{q}\right)\right) \geq \frac{1}{q} .
$$

Now, we have $q$ different statistical limits with index $\frac{1}{q}$, so by [2, Proposition 1.7] it necessarily follows

$$
i\left(L_{n} h\left(x_{0}\right) ; \tilde{g}\left(\frac{m}{q}\right)\right)=\frac{1}{q} .
$$

This completes the proof of part i).
The case where $\frac{\theta_{0}}{\pi}$ is irrational is similar to the analogous case considered in the proof of [2, Theorem 2.1 ii )]

At this point, we extend Theorem 1 to a larger classes of functions, namely on the space $\mathcal{C}+H$ where $\mathcal{C}$ denotes the space of all $f \in C([-1,1])$ such that $f$ is either monotone on $[-1,1]$ or $f$ satisfies the Dini-Lipschitz condition $\omega(f, \delta)=o\left(|\log \delta|^{-1}\right)$, and $H$ is the linear space generated by

$$
\left\{h_{x_{0}, d} \mid x_{0} \in\right]-1,1[, d \in \mathbb{R}\} .
$$

Observe that if $f \in \mathcal{C}+H$ there exists at most a finite number of points $x_{1}, \ldots, x_{N}$ of discontinuity with finite left and right limits $f\left(x_{i}-0\right)$ and $f\left(x_{i}+0\right), i=1, \ldots, N$.

Then we can state the following theorem.
Theorem 2. Let $f \in \mathcal{C}+H$ with a finite number $N$ of points of discontinuity of the first kind at $\left.x_{1}, \ldots, x_{N} \in\right]-1,1\left[\right.$. For every $i=1, \ldots, N$ consider $\left.\theta_{i} \in\right] 0, \pi\left[\right.$ such that $x_{i}=\cos \theta_{i}$, $d_{i}:=f\left(x_{i}\right)$ and define the function

$$
g_{i}(x):=f\left(x_{i}-0\right)+\left(f\left(x_{i}+0\right)-f\left(x_{i}-0\right)\right) g(x) .
$$

Then, the sequence $\left(L_{n} f\right)_{n \geq 1}$ converges uniformly to $f$ on every compact subset of $]-1,1\left[\backslash\left\{x_{1}, \ldots, x_{N}\right\}\right.$.

Moreover for all $i=1, \ldots, N$ the sequence $\left(L_{n} f\left(x_{i}\right)\right)_{n \geq 1}$ has the following behavior

Behavior of bivariate interpolation operators at points of discontinuity
i) if $\frac{\theta_{i}}{\pi}=\frac{p}{q}$ with $p, q \in \mathbb{N}, q \neq 0$ and $G C D(p, q)=1$, then

$$
i\left(L_{n} h\left(x_{i}\right) ; d_{i}\right)=\frac{1}{q}, \quad i\left(L_{n} h\left(x_{i}\right) ; g_{i}\left(\frac{m}{q}\right)\right)=\frac{1}{q}, \quad m=1, \ldots, q-1 .
$$

ii) if $\frac{\theta_{i}}{\pi}$ is irrational and if $A \subset \mathbb{R}$ is a Peano-Jordan measurable set, then

$$
i\left(L_{n} h\left(x_{i}\right) ; A\right)=\left|g_{i}^{-1}(A)\right|,
$$

where $|\cdot|$ denotes the Peano-Jordan measure.
Proof. We assume $x_{1}<\cdots<x_{N}$. We can write $f=F+\sum_{k=1}^{N} c_{k} h_{k}$, where $F \in \mathcal{C}$ and $h_{i}:=h_{x_{i}, \tilde{d}_{i}}$ for every $i=1, \ldots, N$.

Since $F$ is continuous we have

$$
f\left(x_{i}+0\right)-\sum_{k=1}^{i-1} c_{k}-c_{i}=F\left(x_{i}+0\right)=F\left(x_{i}-0\right)=f\left(x_{i}-0\right)-\sum_{k=1}^{i-1} c_{k},
$$

from which

$$
c_{i}=f\left(x_{i}+0\right)-f\left(x_{i}-0\right)
$$

and

$$
\begin{equation*}
F\left(x_{i}\right)=f\left(x_{i}-0\right)-\sum_{k=1}^{i-1} c_{k} . \tag{11}
\end{equation*}
$$

Moreover

$$
\begin{aligned}
d_{i}=f\left(x_{i}\right) & =F\left(x_{i}\right)+\sum_{k=1}^{i-1} c_{k} h_{k}\left(x_{i}\right)+c_{i} \tilde{d}_{i} \\
& =F\left(x_{i}\right)+\sum_{k=1}^{i-1} c_{k}+\left(f\left(x_{i}+0\right)-f\left(x_{i}-0\right)\right) \tilde{d}_{i} \\
& =f\left(x_{i}-0\right)+\left(f\left(x_{i}+0\right)-f\left(x_{i}-0\right)\right) \tilde{d}_{i} .
\end{aligned}
$$

and hence

$$
\tilde{d}_{i}=\frac{d_{i}-f\left(x_{i}-0\right)}{f\left(x_{i}+0\right)-f\left(x_{i}-0\right)} .
$$

The first part of our statement is a trivial consequence of the linearity of Lagrange interpolation operators. Indeed $F \in \mathcal{C}$ and therefore $L_{n} F \rightarrow F$ uniformly in compact subsets of ] - 1,1 [ (see e.g. [13, Theorem 3.2, p. 24] and [10] in the case in which $F$ is monotone, while we refer to [12, Theorem 14.4, p. 335] in the case $F$ satisfies the Dini-Lipschitz condition); moreover for every $k=1, \ldots, N$, by Theorem $1 L_{n} h_{k} \rightarrow h_{k}$ converges uniformly to $h_{k}$ on compact subsets of $[-1,1] \backslash\left\{x_{k}\right\}$. Then $L_{n} f=L_{n} F+\sum_{k=1}^{N} c_{k} L_{n} h_{k}$ converges uniformly to $f$ on compact subsets of $]-1,1\left[\backslash\left\{x_{1}, \ldots, x_{N}\right\}\right.$.

Now we establish property i). We fix a point $x_{i}$ of discontinuity and following the same line of the proof of Theorem 1 we construct the subsequences $\left(k_{m}(n)\right)_{n \geq 1}, m=0, \ldots, q-1$. Since

$$
L_{k_{m}(n)} f\left(x_{i}\right)=L_{k_{m}(n)} F\left(x_{i}\right)+\sum_{\substack{k=1 \\ k \neq i}}^{N} c_{k} L_{k_{m}(n)} h_{k}\left(x_{i}\right)+c_{i} L_{k_{m}(n)} h_{i}\left(x_{i}\right)
$$

and taking into account (11) and that $F \in \mathcal{C}$, from Theorem 1 the right-hand side converges to

$$
\begin{aligned}
F\left(x_{i}\right) & +\sum_{k=1}^{i-1} c_{k} h_{k}\left(x_{i}\right)+c_{i} g_{i}\left(\frac{m}{q}\right) \\
& =f\left(x_{i}-0\right)+\left(f\left(x_{i}+0\right)-f\left(x_{i}-0\right)\right) g_{i}\left(\frac{m}{q}\right) \\
& =g_{i}\left(\frac{m}{q}\right)
\end{aligned}
$$

for $m=0, \ldots, q-1$.
Finally, we prove property ii). For every $i=1, \ldots, N$ we have

$$
L_{n} f\left(x_{i}\right)=L_{n} F\left(x_{i}\right)+\sum_{\substack{k=1 \\ k \neq i}}^{N} c_{k} L_{n} h_{k}\left(x_{i}\right)+c_{i} L_{n} h_{i}\left(x_{i}\right)
$$

For the sake of simplicity let us denote

$$
y_{n}:=L_{n} f\left(x_{i}\right), \quad z_{n}:=L_{n} F\left(x_{i}\right)+\sum_{\substack{k=1 \\ k \neq i}}^{N} c_{k} L_{n} h_{k}\left(x_{i}\right), \quad x_{n}:=c_{i} L_{n} h_{i}\left(x_{i}\right)
$$

(thus $\left.y_{n}=z_{n}+x_{n}\right)$ and

$$
z:=F\left(x_{i}\right)+\sum_{k=1}^{i-1} c_{k} h_{k}\left(x_{i}\right)=f\left(x_{i}-0\right)
$$

(see (11)).
Since (11) and that $F \in \mathcal{C}$ we can apply [13, Theorem 3.2, p. 24] (or [12, Theorem 14.4, p. 335]) and from Theorem 1 we obtain $z_{n} \rightarrow z$ and moreover $i\left(c_{i}^{-1} x_{n} ; A\right)=\left|g^{-1}(A)\right|$ for every bounded Peano-Jordan measurable set $A \subset \mathbb{R}$. Hence $i\left(x_{n} ; A\right)=\left|g^{-1}\left(c_{i}^{-1} A\right)\right|$, that is

$$
\left|g^{-1}\left(c_{i}^{-1} A\right)\right|=\inf _{\varepsilon>0} \delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in A+B_{\varepsilon}\right\}\right)
$$

Fix $\varepsilon>0$; if $x_{n} \in A+B_{\varepsilon}$, from the equality $x_{n}=y_{n}-z_{n}$ we get

$$
y_{n} \in A+B_{\varepsilon}+z_{n}=A+B_{\varepsilon}+z+z_{n}-z
$$

Now, let $\nu \in \mathbb{N}$ such that $\left|z_{n}-z\right|<\varepsilon$ for all $n \geq \nu$, then for every $n \geq \nu$ we have $z_{n}-z \in B_{\varepsilon}$ and consequently $y_{n} \in A+B_{2 \varepsilon}+z$. Therefore

$$
\left\{n \geq \nu \mid x_{n} \in A+B_{\varepsilon}\right\} \subset\left\{n \geq \nu \mid y_{n} \in A+B_{2 \varepsilon}+z\right\}
$$

that is

$$
\begin{equation*}
\delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in A+B_{\varepsilon}\right\}\right) \leq \delta_{-}\left(\left\{n \in \mathbb{N} \mid y_{n} \in A+B_{2 \varepsilon}+z\right\}\right) \tag{12}
\end{equation*}
$$

On the other hand, if $y_{n} \in A+B_{2 \varepsilon}+z$, then $x_{n}=y_{n}-z_{n} \in A+B_{2 \varepsilon}+z-z_{n}$. In this case for every $n \geq \nu$, we have $z-z_{n} \in B_{\varepsilon}$ and therefore $x_{n} \in A+B_{3 \varepsilon}$; hence

$$
\begin{equation*}
\delta_{-}\left(\left\{n \in \mathbb{N} \mid x_{n} \in A+B_{3 \varepsilon}\right\}\right) \geq \delta_{-}\left\{n \in \mathbb{N} \mid y_{n} \in A+B_{2 \varepsilon}+z\right\} \tag{13}
\end{equation*}
$$

Taking the infimum over $\varepsilon>0$ in (12) and (13) we can conclude that $i\left(x_{n}, A\right) \leq i\left(y_{n}, A+\right.$ $z) \leq i\left(x_{n}, A\right)$ which yields

$$
i\left(y_{n}, A+z\right)=i\left(x_{n}, A\right)=\left|g^{-1}\left(c_{i}^{-1} A\right)\right| .
$$

We conclude that $i\left(y_{n}, A\right)=\left|g^{-1}\left(c_{i}^{-1}(A-z)\right)\right|=\left|g^{-1}\left(\frac{A-f\left(x_{i}-0\right)}{f\left(x_{i}+0\right)-f\left(x_{i}-0\right)}\right)\right|=\left|g_{i}^{-1}(A)\right|$ for every Peano-Jordan measurable set $A \subset \mathbb{R}$.

Now, we can consider the bivariate Lagrange interpolation polynomials $\left(L_{n, m}\right)_{n, m \geq 1}$ on the Chebyshev nodes of second kind plus the endpoints $\pm 1$ defined by

$$
\begin{equation*}
L_{n, m}(f)(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{m} \omega_{n, i}(x) \omega_{m, j}(j) f\left(x_{n, i}, y_{m, j}\right) \tag{14}
\end{equation*}
$$

where $f$ is a suitable function defined on $[-1,1]^{2}$ and

$$
x_{n, i}=\cos \frac{i-1}{n-1} \pi, \quad i=1, \ldots, n
$$

Moreover, setting $x=\cos \theta$,

$$
\omega_{n, i}(x)=\frac{(-1)^{i}}{\left(1+\delta_{i, 1}+\delta_{i, n}(n-1)\right.} \frac{\sin \theta \sin ((n-1) \theta)}{x-x_{n, i}} .
$$

Consider $\left.z_{0}=\left(x_{0}, y_{0}\right) \in\right]-1,1[\times]-1,1\left[\right.$ and define the following function $h_{z_{0}}:[0,1] \times[0,1] \rightarrow$ $\mathbb{R}$,

$$
h_{z_{0}}(x, y):= \begin{cases}1, & (x, y) \in\left[x_{0}, 1\right] \times\left[y_{0}, 1\right]  \tag{15}\\ 0, & (x, y) \in[-1,1] \times[-1,1] \backslash\left[x_{0}, 1\right] \times\left[y_{0}, 1\right] .\end{cases}
$$

In order to state the convergence properties of the sequence $\left(L_{n, m} h_{z_{0}}\right)_{n \geq 1}$, we consider the function $G:] 0,1[\times] 0,1[\rightarrow \mathbb{R}$ defined by

$$
G(x, y):=g(x) g(y),
$$

where $g:] 0,1[\rightarrow \mathbb{R}$ is the function defined in (6).
In the following result we describe the behavior of the bivariate Lagrange polynomials evaluated at the function $h_{z_{0}}$, using the index of convergence for double sequences of real numbers.

Theorem 3. Let $\left.z_{0}=\left(x_{0}, y_{0}\right)=\left(\cos \theta_{0}, \cos \gamma_{0}\right) \in\right]-1,1[\times]-1,1\left[\right.$ and $h:=h_{z_{0}}$ be defined by (15). Then the sequence $\left(L_{n, m} h\right)_{n \geq 1}$ converges uniformly to $h$ on every compact subset of $[-1,1] \times[-1,1] \backslash Q$, where $Q:=\left(\left[x_{0}, 1\right] \times\left\{y_{0}\right\}\right) \cup\left(\left\{x_{0}\right\} \times\left[y_{0}, 1\right]\right)$.

As regards the behaviour of the sequence $\left(L_{n, m} h(x, y)\right)_{n, m \geq 1}$ where $(x, y) \in Q$, we have:

1) if $x=x_{0}$ and $\left.\left.y \in\right] y_{0}, 1\right]$, we have to consider the following cases:
i) if $\frac{\theta_{0}}{\pi}=\frac{p_{1}}{q_{1}}$ with $p_{1}, q_{1} \in \mathbb{N}, q_{1} \neq 0, G C D\left(p_{1}, q_{1}\right)=1$, then

$$
i\left(L_{n, m} h\left(x_{0}, y\right) ; g\left(\frac{m_{1}}{q_{1}}\right)\right)=\frac{1}{q_{1}}, \quad m_{1}=0, \ldots, q_{1}-1
$$

ii) if $\frac{\theta_{0}}{\pi}$ is irrational, we have

$$
i\left(L_{n, m} h\left(x_{0}, y\right) ; A\right)=\left|g^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset \mathbb{R}$.
2) If $\left.x \in] x_{0}, 1\right]$ and $y=y_{0}$, we have to consider the following cases:
i) if $\frac{\gamma_{0}}{\pi}=\frac{p_{2}}{q_{2}}$ with $p_{2}, q_{2} \in \mathbb{N}, q_{2} \neq 0, G C D\left(p_{2}, q_{2}\right)=1$, then

$$
i\left(L_{n, m} h\left(x, y_{0}\right) ; g\left(\frac{m_{2}}{q_{2}}\right)\right)=\frac{1}{q_{2}}, \quad m_{2}=0, \ldots, q_{2}-1
$$

ii) if $\frac{\gamma_{0}}{\pi}$ is irrational, we have

$$
i\left(L_{n, m} h\left(x, y_{0}\right) ; A\right)=\left|g^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset \mathbb{R}$ if $s>1$.
3) If $x=x_{0}$ and $y=y_{0}$, we have to consider the following cases:
i) if $\frac{\theta_{0}}{\pi}=\frac{p_{1}}{q_{1}}$ and $\frac{\gamma_{0}}{\pi}=\frac{p_{2}}{q_{2}}$ with $p_{i}, q_{i} \in \mathbb{N}, q_{i} \neq 0, G C D\left(p_{i}, q_{i}\right)=1, i=1,2$, then

$$
i\left(L_{n, m} h\left(x_{0}, y_{0}\right) ; g\left(\frac{m_{1}}{q_{1}}\right) g\left(\frac{m_{2}}{q_{2}}\right)\right)=\frac{1}{q_{1} q_{2}}
$$

for $m_{1}=0, \ldots, q_{1}-1$ and $m_{2}=0, \ldots, q_{2}-1$;
ii) if $\frac{\theta_{0}}{\pi}=\frac{p_{1}}{q_{1}}$ with $p_{1}, q_{1} \in \mathbb{N}, q_{1} \neq 0, G C D\left(p_{1}, q_{1}\right)=1$ and $\frac{\gamma_{0}}{\pi}$ is irrational, then

$$
i\left(L_{n, m} h\left(x_{0}, y_{0}\right) ;\left[0, g\left(\frac{j}{q_{1}}\right)\right]\right) \geq \frac{1}{q_{1}}, \quad j=0, \ldots, q_{1}-1
$$

iii) if $\frac{\theta_{0}}{\pi}$ is irrational and $\frac{\gamma_{0}}{\pi}=\frac{p_{2}}{q_{2}}$ with $p_{2}, q_{2} \in \mathbb{N}, q_{2} \neq 0, G C D\left(p_{2}, q_{2}\right)=1$, then

$$
i\left(L_{n, m} h\left(x_{0}, y_{0}\right) ;\left[0, g\left(\frac{j}{q_{2}}\right)\right]\right) \geq \frac{1}{q_{2}}, \quad j=0, \ldots, q_{2}-1
$$

iv) if $\frac{\theta_{0}}{\pi}$ and $\frac{\gamma_{0}}{\pi}$ are both irrational, then

$$
i\left(L_{n, m} h\left(x_{0}, y_{0}\right) ; A\right)=\left|G^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset \mathbb{R}$.
Proof. We define the functions $h_{1}, h_{2}:[-1,1] \rightarrow \mathbb{R}$ as follows

$$
h_{1}(t):=\left\{\begin{array}{ll}
0 & \text { if } t<x_{0},  \tag{16}\\
1 & \text { if } t \geq x_{0},
\end{array} \quad h_{2}(t):= \begin{cases}0 & \text { if } t<y_{0} \\
1 & \text { if } t \geq y_{0}\end{cases}\right.
$$

then we can write

$$
h(x, y)=h_{1}(x) h_{2}(y)
$$

and consequently we have

$$
\begin{equation*}
L_{n, m} h(x, y)=L_{n} h_{1}(x) L_{m} h_{2}(y) \tag{17}
\end{equation*}
$$

Moreover, by Theorem 1, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n} h_{1}=h_{1} \text { uniformly on }[-1,1] \backslash\left\{x_{0}\right\} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} L_{m} h_{2}=h_{2} \text { uniformly on }[-1,1] \backslash\left\{y_{0}\right\} \tag{19}
\end{equation*}
$$

Let us consider a compact set $K \subset[-1,1] \times[-1,1] \backslash Q$; there exist $-1 \leq a_{1}<x_{0}<a_{2} \leq 1$ and $-1 \leq b_{1}<y_{0}<b_{2} \leq 1$ such that

$$
K \subset[-1,1] \times\left[-1, b_{1}\right] \cup\left[-1, a_{1}\right] \times[-1,1] \cup\left[a_{2}, 1\right] \times\left[b_{2}, 1\right] .
$$

First let us consider $(x, y) \in[-1,1] \times\left[-1, b_{1}\right]$ and write $x=\cos \theta$ and $y=\cos \gamma$; then

$$
\begin{equation*}
\left|L_{n, m} h(x, y)\right| \leq\left|L_{n} h_{1}(x)\right|\left|L_{m} h_{2}(y)\right| . \tag{20}
\end{equation*}
$$

For sufficiently large $n, m \geq 1$ there exist $k_{0}, \ell_{0} \geq 1$ such that

$$
x_{n, k_{0}+1}<x_{0} \leq x_{n, k_{0}}, \quad y_{m, \ell_{0}+1}<y_{0} \leq y_{m, \ell_{0}},
$$

then we can observe that

$$
\begin{align*}
\left|L_{n} h_{1}(x)\right| & \leq \frac{|\sin (n-1) \theta \sin \theta|}{n-1}\left|\sum_{k=1}^{k_{0}} \frac{(-1)^{k}}{\left(1+\delta_{k, 1}\right)\left(\cos \theta-\cos \theta_{n, k}\right)}\right| \\
& \leq \frac{|\sin (n-1) \theta \sin \theta|}{2(n-1)\left|\cos \theta-\cos \theta_{n, 1}\right|}+\frac{|\sin (n-1) \theta \sin \theta|}{(n-1)\left|\cos \theta-\cos \theta_{n, k_{0}}\right|} \\
& =\frac{\left|\omega_{n, 1}(x)\right|}{2}+\left|\omega_{n, k_{0}}(x)\right| \tag{21}
\end{align*}
$$

where, in the last inequality, we have used the fact that the following function

$$
t \in[0, \pi] \rightarrow \frac{1}{\cos \theta-\cos t}
$$

is monotone decreasing.
Let us observe that for $k=1, \ldots, k_{0}$ we have

$$
\begin{align*}
\left|\omega_{n, k}(x)\right| & =\left|\frac{\sin (n-1) \theta \sin \theta}{(n-1)\left(\cos \theta-\cos \theta_{n, k}\right)}\right|=\left|\frac{\sin \left((n-1)\left(\theta-\theta_{n, k}\right)+(k-1) \pi\right) \sin \theta}{2(n-1) \sin \left(\frac{\theta-\theta_{n, k}}{2}\right) \sin \left(\frac{\theta+\theta_{n, k}}{2}\right)}\right| \\
& =\left|\frac{\sin \left((n-1)\left(\theta-\theta_{n, k}\right)\right) \sin \theta}{2(n-1) \sin \left(\frac{\theta-\theta_{n, k}}{2}\right) \sin \left(\frac{\theta+\theta_{n, k}}{2}\right)}\right| \\
& =\frac{2 \sin \theta}{\theta+\theta_{n, k}} \frac{\left|\sin \left((n-1)\left(\theta-\theta_{n, k}\right)\right)\right|}{(n-1)\left|\theta-\theta_{n, k}\right|} \frac{\frac{\left|\theta-\theta_{n, k}\right|}{2}}{\left|\sin \left(\frac{\theta-\theta_{n, k}}{2}\right)\right|} \frac{\frac{\theta+\theta_{n, k}}{2}}{\left|\sin \left(\frac{\theta+\theta_{n, k}}{2}\right)\right|} \\
& \leq \frac{2 \sin \theta}{\theta} \frac{\mid \sin \left((n-1)\left(\theta-\theta_{n, k} \mid\right) \mid\right.}{(n-1)\left|\theta-\theta_{n, k}\right|} \frac{\frac{\left|\theta-\theta_{n, k}\right|}{2}}{\sin \left|\frac{\theta-\theta_{n, k}}{2}\right|} \frac{\frac{\theta+\theta_{n, k}}{2}}{\left.\sin \left(\frac{\theta+\theta_{n, k}}{2}\right) \right\rvert\,} \\
& \leq 2 C \tag{22}
\end{align*}
$$

where the existence of the constant $C \geq 1$ is a consequence of the boundedness of the functions $\sin \alpha / \alpha$ on $[0, n \pi]$ for all $n \geq 1$ and $\alpha / \sin \alpha$ on $[a, b] \subset\left[0, \pi\left[\right.\right.$; in particular, observe that $\frac{\sin \alpha}{\alpha} \leq 1$ while $\frac{\alpha}{\sin \alpha} \geq 1$ and $\left|\frac{\theta-\theta_{n, k}}{2}\right|,\left|\frac{\theta+\theta_{n, k}}{2}\right| \neq \pi$, since $0<\theta_{n, k}<\pi$ for all $k$; notice also that (22) does not depend on the particular choice of $k \geq 1$ and it holds for all $x \in[-1,1]$. Then (21) becomes

$$
\begin{equation*}
\left|L_{n} h_{1}(x)\right| \leq 3 C \tag{23}
\end{equation*}
$$

and this estimate is uniform with respect to $n \geq 1$ and $x \in[-1,1]$.

We can conclude that

$$
\left|L_{n, m} h(x, y)\right| \leq 3 C\left|L_{m} h_{2}(y)\right|
$$

where, by (19), the last term converges to 0 as $m \rightarrow \infty$. So we can conclude that

$$
\lim _{n, m \rightarrow \infty} L_{n, m} h=h \quad \text { uniformly in }[-1,1] \times\left[-1, b_{1}\right] .
$$

Arguing in a similar way, we can get the uniform convergence of $\left(L_{n, m} h\right)_{n, m \geq 1}$ to $h$ in $\left[-1, a_{1}\right] \times$ $[-1,1]$.

$$
\text { If }(x, y) \in\left[a_{2}, 1\right] \times\left[b_{2}, 1\right], \text { then }
$$

$$
\left|L_{n, m} h(x, y)-1\right|=\left|L_{n} h_{1}(x) L_{m} h_{2}(y)-1\right|
$$

which is uniformly convergent to 0 as $n, m \rightarrow \infty$. Therefore we can conclude that

$$
\lim _{n, m \rightarrow \infty} L_{n, m} h=h \quad \text { uniformly in }\left[a_{2}, 1\right] \times\left[b_{2}, 1\right] .
$$

We start with the proof of property 1 ). Let $\left.y \in] y_{0}, 1\right]$. From equation (17) we have

$$
L_{n, m} h\left(x_{0}, y\right)=L_{n} h_{1}\left(x_{0}\right) L_{m} h_{2}(y),
$$

and thank to (19) we have

$$
\lim _{m \rightarrow \infty} L_{n, m} h\left(x, y_{0}\right)=L_{n} h_{1}\left(x_{0}\right) .
$$

From (23) we have that $L_{n} h_{1}\left(x_{0}\right)$ is bounded, then the previous limit is uniform with respect $n \in \mathbb{N}$. Therefore we can apply Proposition 3 with $k(m)=m$ (and consequently $\alpha=1$ ) and Theorem 3 with $h$ replaced by $h_{1}$, and conclude the proof of 1 ).

The proof of property 2 ) is at all similar to that of property 1 ) interchanging the role of $x$ and $y$.

Now we prove 3). From (17) we have

$$
L_{n, m} h\left(x_{0}, y_{0}\right)=L_{n} h_{1}\left(x_{0}\right) L_{m} h_{2}\left(y_{0}\right) .
$$

Arguing as in Theorem 3 and taking into account that the value $d$ is set to 1 and $g(0)=1$, we can consider $\left(L_{r_{i}(n)} h_{1}\left(x_{0}\right)\right)_{n \geq 1}, i=0, \ldots, q_{1}-1$ and $\left(L_{s_{j}(m)} h_{2}\left(y_{0}\right)\right)_{m \geq 1}, j=0, \ldots, q_{2}-1$, subsequences respectively of $\left(L_{n} \bar{h}_{1}\left(x_{0}\right)\right)_{n \geq 1}$ and $\left(L_{m} h_{2}\left(y_{0}\right)\right)_{m \geq 1}$ with density respectively $1 / q_{1}$ and $1 / q_{2}$ such that

$$
\lim _{n \rightarrow \infty} L_{r_{i}(n)} h_{1}\left(x_{0}\right)=g\left(\frac{i}{q_{1}}\right), \quad i=0, \ldots, q_{1}-1
$$

and

$$
\lim _{n \rightarrow \infty} L_{s_{j}(m)} h_{1}\left(x_{0}\right)=g\left(\frac{j}{q_{2}}\right), \quad j=0, \ldots, q_{2}-1 .
$$

Therefore we can consider $q_{1} q_{2}$ subsequences of $\left(L_{n, m} h\left(x_{0}, y_{0}\right)\right)_{n, m \geq 1}$, let us say $\left(L_{r_{i}(n), s_{j}(m)}\right.$ $\left.h\left(x_{0}, y_{0}\right)\right)_{n, m \geq 1}$ with $i=0, \ldots, q_{1}-1$ and $j=0, \ldots, q_{2}-1$ such that $\delta\left(\left\{\left(r_{i}(n), s_{j}(m)\right) \mid n, m \in\right.\right.$ $\mathbb{N}\})=\frac{1}{q 1 q_{2}}$ and

$$
\lim _{n, m \rightarrow \infty} L_{r_{i}(n), s_{j}(m)} h\left(x_{0}, y_{0}\right)=G\left(\frac{i}{q_{1}}, \frac{j}{q_{2}}\right)
$$

where $i=0, \ldots, q_{1}-1, j=0, \ldots, q_{2}-1$. From Propositions 1 and 2 we have the result.
Now, let us prove 3) case ii). Suppose that $\frac{\theta_{0}}{\pi}=\frac{p_{1}}{q_{1}}, p_{1}, q_{1} \in \mathbb{N}, q_{1} \neq 0, G C D\left(p_{1}, q_{1}\right)=1$ and $\frac{\gamma_{0}}{\pi}$ is irrational, from (17) we have

$$
L_{n, m} h\left(x_{0}, y_{0}\right)=L_{n} h_{1}\left(x_{0}\right) L_{m} h_{2}\left(y_{0}\right) .
$$

We can consider $\left(L_{r_{i}(n)} h_{1}\left(x_{0}\right)\right)_{n \geq 1}, i=0, \ldots, q_{1}-1$ subsequences of $\left(L_{n} h_{1}\left(x_{0}\right)\right)_{n \geq 1}$ with density $1 / q_{1}$ such that

$$
\lim _{n \rightarrow \infty} L_{r_{j}(n), m} h\left(x_{0}, y_{0}\right)=g\left(\frac{i}{q_{1}}\right) L_{m} h_{2}\left(y_{0}\right), \quad i=0, \ldots, q_{1}-1 .
$$

Applying Proposition 3 we have

$$
\begin{equation*}
i\left(L_{n, m} h\left(x_{0}, y_{0}\right) ; A\right) \geq \frac{1}{q_{1}} i\left(d_{2} L_{m} h_{2}\left(y_{0}\right) ; A\right)=\frac{\left|\left(d_{2} g\right)^{-1}(A)\right|}{q_{1}} . \tag{24}
\end{equation*}
$$

and

$$
\begin{gather*}
i\left(L_{n, m} h\left(x_{0}, y_{0}\right) ; A\right) \geq \frac{1}{q_{1}} i\left(g\left(\frac{i}{q_{1}}\right) L_{m} h_{2}\left(y_{0}\right) ; A\right) \\
=\frac{\left|G_{i}^{-1}(A)\right|}{q_{1}}, \quad i=1, \ldots, q_{1}-1 . \tag{25}
\end{gather*}
$$

where $G_{i}(t)=G\left(\frac{i}{q_{1}}, t\right)=g\left(\frac{i}{q_{1}}\right) g(t)$. Since the sum of indices can't exceed 1 in inequalities (24) and (25) we have equalities.

The proof of 3) case iii) is at all similar to the previous one interchanging the role of $x$ and $y$.

Let us conclude the proof of our theorem, considering the case in which both $\frac{\theta_{0}}{\pi}$ and $\frac{\gamma_{0}}{\pi}$ are irrational. In this case, we have $i\left(L_{n} h_{1}\left(x_{0}\right) ; A\right)=\left|g^{-1}(A)\right|$ and $i\left(L_{m} h_{2}\left(y_{0}\right) ; A\right)=\left|g^{-1}(A)\right|$ for every $A$ Peano-Jordan measurable set, apply Theorem 4 to the sequences $\left(L_{n} h_{1}(x)\right)_{n \geq 1}$ and to $\left(L_{m} h_{2}\left(y_{0}\right)\right)_{m \geq 1}$ and taking into account that $L_{n, m} h\left(x_{0}, y_{0}\right)=L_{n} h_{1}\left(x_{0}\right) L_{m} h_{2}\left(y_{0}\right)$ the claim easily follows.

## 3 Bivariate Shepard operators on discontinuous functions

Among all different kinds of bivariate Shepard operators (see e.g. [9]), for the sake of simplicity we concentrate our attention to the bivariate Shepard operators obtained as tensor product of univariate Shepard operators

$$
\begin{equation*}
S_{n, m, s} f(x, y):=\sum_{i=0}^{n} \sum_{j=0}^{m} \frac{\left|x-x_{i}\right|^{-s}}{\sum_{k=0}^{n}\left|x-x_{k}\right|^{-s}} \frac{\left|y-y_{j}\right|^{-s}}{\sum_{k=0}^{m}\left|y-y_{k}\right|^{-s}} f\left(x_{i}, y_{j}\right), \tag{26}
\end{equation*}
$$

where $f$ is a suitable function defined in $[0,1] \times[0,1], s \geq 1, n, m \geq 1$ and $\left(\left(x_{i}, y_{j}\right)\right)_{i, j}$ is the matrix $(n+1) \times(m+1)$ of equispaced nodes in $[0,1] \times[0,1]$, that is

$$
x_{i}:=\frac{i}{n}, i=0, \ldots, n, \quad y_{j}:=\frac{j}{m}, j=0, \ldots, m
$$

The aim of this section is the study of their behavior on a particular class of bivariate functions having suitable discontinuities defined as follows.

Consider $z_{0}=\left(x_{0}, y_{0}\right) \in[0,1] \times[0,1]$ and define the following function $h_{z_{0}, d}:[0,1] \times$ $[0,1] \rightarrow \mathbb{R}$,

$$
h_{z_{0}, d}(x, y):= \begin{cases}1, & (x, y) \in\left[0, x_{0}\right] \times\left[0, y_{0}\right]  \tag{27}\\ 0, & \text { otherwise }\end{cases}
$$

In order to state the convergence properties of the sequence $\left(S_{n, m, s} h_{z_{0}, d}\right)_{n \geq 1}$, for every $s>1$ we consider the function $g_{s}:[0,1[\rightarrow \mathbb{R}$ defined as follows

$$
g_{s}(t):= \begin{cases}\frac{\zeta(s, t)}{\zeta(s, t)+\zeta(s, 1-t)}, & t \in] 0,1[ \\ 1, & t=0\end{cases}
$$

where $\zeta$ denotes the Hurwitz zeta function:

$$
\begin{equation*}
\zeta(s, a):=\sum_{n=0}^{+\infty} \frac{1}{(n+a)^{s}} \tag{28}
\end{equation*}
$$

for all $s, a \in \mathbb{C}$ such that $\Re[s]>1$ and $\Re[a]>0$. The previous series is absolutely convergent and its sum can be extended to a meromorphic function defined for all $s \neq 1$.

We consider also $G_{s}:[0,1[\times[0,1[\rightarrow \mathbb{R}$ defined as follow

$$
G_{s}(x, y):=g_{s}(x) g_{s}(y)
$$

We have the following result.
Theorem 4. Let $z_{0}=\left(x_{0}, y_{0}\right) \in[0,1] \times[0,1]$ and $h:=h_{z_{0}, d}$ be defined by (27). Then for every $s \geq 1$ the sequence $\left(S_{n, m, s} h\right)_{n \geq 1}$ converges uniformly to $h$ on every compact subset of $[0,1] \times[0,1] \backslash Q$, where $Q:=\left(\left[0, x_{0}\right] \times\left\{y_{0}\right\}\right) \cup\left(\left\{x_{0}\right\} \times\left[0, y_{0}\right]\right)$.

As regards the behavior of the sequence $\left(S_{n, m, s} h(x, y)\right)_{n, m \geq 1}$ where $(x, y) \in Q$, we have:

1) if $x \in\left[0, x_{0}\left[\right.\right.$ and $y=y_{0}$, we have to consider the following cases:
i) if $y_{0}=\frac{p_{2}}{q_{2}}$ with $p_{2}, q_{2} \in \mathbb{N}, q_{2} \neq 0, G C D\left(p_{2}, q_{2}\right)=1$, then

$$
i\left(S_{n, m, s} h\left(x, y_{0}\right) ; g_{s}\left(\frac{m_{2}}{q_{2}}\right)\right)=\frac{1}{q_{2}} \quad m_{2}=0, \ldots, q_{2}-1
$$

if $s>1$; while

$$
i\left(S_{n, m, s} h\left(x, y_{0}\right) ; 1\right)=\frac{1}{q_{2}}, \quad i\left(S_{n, m, s} h\left(x, y_{0}\right) ; \frac{1}{2}\right)=1-\frac{1}{q_{2}}
$$

$$
\text { if } s=1 \text {; }
$$

ii) if $y_{0}$ is irrational, we have

$$
i\left(S_{n, m, s} h\left(x, y_{0}\right) ; A\right)=\left|g_{s}^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset \mathbb{R}$ if $s>1$; while

$$
i\left(S_{n, m, s} h\left(x, y_{0}\right) ; \frac{1}{2}\right)=1
$$

$$
\text { if } s=1 \text {. }
$$

2) If $x=x_{0}$ and $y \in\left[0, y_{0}[\right.$, we have to consider the following cases:
i) if $x_{0}=\frac{p_{1}}{q_{1}}$ with $p_{1}, q_{1} \in \mathbb{N}, q_{1} \neq 0, G C D\left(p_{1}, q_{1}\right)=1$, then

$$
i\left(S_{n, m, s} h\left(x_{0}, y\right) ; g_{s}\left(\frac{m_{1}}{q_{1}}\right)\right)=\frac{1}{q_{1}} \quad m_{1}=0, \ldots, q_{1}-1
$$

if $s>1$; while

$$
i\left(S_{n, m, s} h\left(x_{0}, y\right) ; 1\right)=\frac{1}{q_{1}}, \quad i\left(S_{n, m, s} h\left(x_{0}, y\right) ; \frac{1}{2}\right)=1-\frac{1}{q_{1}}
$$

if $s=1$;
ii) if $x_{0}$ is irrational, we have

$$
i\left(S_{n, m, s} h\left(x_{0}, y\right) ; A\right)=\left|g_{s}^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset \mathbb{R}$ if $s>1$; while

$$
i\left(S_{n, m, s} h\left(x_{0}, y\right) ; \frac{1}{2}\right)=1
$$

if $s=1$.
3) If $x=x_{0}$ and $y=y_{0}$, we have to consider the following cases:
i) if $x_{0}=\frac{p_{1}}{q_{1}}$ and $y_{0}=\frac{p_{2}}{q_{2}}$ with $p_{i}, q_{i} \in \mathbb{N}, q_{i} \neq 0, G C D\left(p_{i}, q_{i}\right)=1, i=1,2$, then

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; G_{s}\left(\frac{m_{1}}{q_{1}}, \frac{m_{2}}{q_{2}}\right)\right)=\frac{1}{q_{1} q_{2}},
$$

where $m_{1}=0, \ldots, q_{1}-1, m_{2}=0, \ldots q_{2}-1$, if $s>1$. While, if $s=1$,

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{2}\right)=\frac{1}{q_{1} q_{2}}, \quad i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{4}\right)=1-\frac{1}{q_{1} q_{2}} ;
$$

ii) if $x_{0}=\frac{p_{1}}{q_{1}}$ with $p_{1}, q_{1} \in \mathbb{N}, q_{1} \neq 0, G C D\left(p_{1}, q_{1}\right)=1$ and $y_{0}$ is irrational, then

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ;\left[0, g\left(\frac{j}{q_{1}}\right)\right]\right) \geq \frac{1}{q_{1}}, \quad j=0, \ldots, q_{2}-1
$$

while

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{2}\right)=\frac{1}{q_{1}}, \quad i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{4}\right)=1-\frac{1}{q_{1}}
$$

if $s=1$;
iii) if $x_{0}$ is irrational and $y_{0}=\frac{p_{2}}{q_{2}}$ with $p_{2}, q_{2} \in \mathbb{N}, q_{2} \neq 0, G C D\left(p_{2}, q_{2}\right)=1$, then

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ;\left[0, g\left(\frac{j}{q_{2}}\right)\right]\right) \geq \frac{1}{q_{2}}, \quad j=0, \ldots, q_{2}-1 ;
$$

while

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{2}\right)=\frac{1}{q_{2}}, \quad i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{4}\right)=1-\frac{1}{q_{2}}
$$

if $s=1$;
iv) if $x_{0}$ and $y_{0}$ are both irrational, then

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; A\right)=\left|G_{s}^{-1}(A)\right|
$$

for every Peano-Jordan measurable set $A \subset \mathbb{R}$ if $s>1$, while

$$
i\left(S_{n, m, s} h\left(x_{0}, y_{0}\right) ; \frac{1}{4}\right)=1
$$

if $s=1$.

Proof. We define the functions $h_{1}, h_{2}:[0,1] \rightarrow \mathbb{R}$ as follows

$$
h_{1}(t):=\left\{\begin{array}{ll}
1 & \text { if } t<x_{0},  \tag{29}\\
0 & \text { if } t \geq x_{0},
\end{array} \quad h_{2}(t):= \begin{cases}1 & \text { if } t<y_{0}, \\
0 & \text { if } t \geq y_{0},\end{cases}\right.
$$

then we can write

$$
h(x, y)=h_{1}(x) h_{2}(y),
$$

and consequently we have

$$
\begin{equation*}
S_{n, m} h(x, y)=S_{n} h_{1}(x) S_{m} h_{2}(y), \tag{30}
\end{equation*}
$$

moreover using [2, Theorem 3.1], it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n} h_{1}=h_{1} \text { uniformly on }[0,1] \backslash\left\{x_{0}\right\} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} S_{m} h_{2}=h_{2} \text { uniformly on }[0,1] \backslash\left\{y_{0}\right\} . \tag{32}
\end{equation*}
$$

Let us consider a compact set $K \subset[0,1] \times[0,1] \backslash Q$; there exist $0 \leq a_{1}<x_{0}<a_{2} \leq 1$ and $0 \leq b_{1}<y_{0}<b_{2} \leq 1$ such that

$$
K \subset\left[0, a_{1}\right] \times\left[0, b_{1}\right] \cup\left[a_{2}, 1\right] \times[0,1] \cup\left[0, a_{2}\right] \times\left[b_{2}, 1\right] .
$$

Firstly, let us consider $(x, y) \in\left[0, a_{1}\right] \times\left[0, b_{1}\right]$; then

$$
\left|S_{n, m} h(x, y)-h(x, y)\right|=\left|S_{n, m} h(x, y)-1\right|
$$

which is uniformly convergent to 0 as $n, m \rightarrow \infty$ by (31) and (32). Therefore we can conclude that

$$
\lim _{n, m \rightarrow \infty} S_{n, m} h=h \quad \text { uniformly in }\left[0, a_{1}\right] \times\left[0, b_{1}\right] .
$$

Let us consider now $(x, y) \in\left[a_{2}, 1\right] \times[0,1]$; for sufficiently large $n, m \geq 1$ there exist $k_{0}, \ell_{0} \geq 1$ such that

$$
\frac{k_{0}}{n} \leq x_{0}<\frac{k_{0}+1}{n}, \quad \frac{\ell_{0}}{m} \leq y_{0}<\frac{\ell_{0}+1}{m}
$$

Notice that

$$
\begin{equation*}
\left|S_{m} h_{2}(y)\right|=\frac{\sum_{j=0}^{\ell_{0}}\left|y-\frac{j}{m}\right|^{-s}}{\sum_{j=0}^{m}\left|y-\frac{j}{m}\right|^{-s}} \leq \frac{\sum_{j=0}^{\ell_{0}}\left|y-\frac{j}{m}\right|^{-s}}{\sum_{j=0}^{\ell_{0}}\left|y-\frac{j}{m}\right|^{-s}+\sum_{j=\ell_{0}+1}^{m}\left|y-\frac{j}{m}\right|^{-s}} \leq 1 \tag{33}
\end{equation*}
$$

and this estimate is independent of $y \in[0,1]$ and $n \geq 1$. Then

$$
\left|S_{n, m} h(x, y)\right| \leq\left|S_{n} h_{1}(x)\right|
$$

where, by (31), the last term converges uniformly to 0 as $n \rightarrow \infty$. So we can conclude that

$$
\lim _{n, m \rightarrow \infty} S_{n, m} h=h \quad \text { uniformly in }\left[a_{2}, 1\right] \times[0,1] .
$$

Arguing similarly, exchanging the role between $x$ and $y$, we get also that

$$
\lim _{n, m \rightarrow \infty} S_{n, m} h=h \quad \text { uniformly in }\left[0, a_{2}\right] \times\left[b_{2}, 1\right] .
$$

The proof of the claims 1)-3) is at all similar to the one of Theorem 3, we have only to use the decomposition (30) and [2, Theorem 3.1] in place of Theorem 1.

In particular, in the case 3)-i), if $s=1$, using [2, Theorem 3.1], we can consider two subsequences $\left(S_{k_{1}(n), 1} h_{1}\left(x_{0}\right)\right)_{n \geq 1}$ and $\left(S_{k_{2}(n), 1} h_{1}\left(x_{0}\right)\right)_{n \geq 1}$ of $\left(S_{n, 1} h_{1}\left(x_{0}\right)\right)_{n \geq 1}$, converging respectively to 1 and $\frac{1}{2}$, with density respectively $\frac{1}{q_{1}}$ and $1-\frac{1}{q_{1}}$. Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S_{k_{1}(n), m, 1} h\left(x_{0}, y_{0}\right)=S_{m} h_{2}\left(y_{0}\right), \\
& \lim _{n \rightarrow \infty} S_{k_{2}(n), m, 1} h\left(x_{0}, y_{0}\right)=\frac{1}{2} S_{m} h_{2}\left(y_{0}\right)
\end{aligned}
$$

and the previous limits are uniform with respect to $m \geq 1$ by (33). So we can apply Proposition 3 and we get

$$
i\left(S_{n, m, 1} h\left(x_{0}, y_{0}\right) ; \frac{1}{2}\right) \geq \frac{1}{q_{1}} i\left(S_{m, 1} h_{2}\left(y_{0}\right) ; \frac{1}{2}\right)=\frac{1}{q_{1}}
$$

and

$$
i\left(S_{n, m, 1} h\left(x_{0}, y_{0}\right) ; \frac{1}{4}\right) \geq\left(1-\frac{1}{q_{1}}\right) i\left(\frac{1}{2} S_{m, 1} h_{2}\left(y_{0}\right) ; \frac{1}{4}\right)=1-\frac{1}{q_{1}} .
$$

Finally, the previous inequalities become equalities by Proposition 2.
Arguing similarly the others cases of our claim can be proved.

## References

[1] R. Bojanic, B. Della Vecchia, and G. Mastroianni: On the approximation of bounded functions with discontinuities of the first kind by generalized Shepard operators, Acta Math. Hungarica, 85 (1-2) (1999), 29-57.
[2] M. Campiti,G. Mazzone and C. Tacelli: Interpolation of discontinuous functions, Preprint, 2010, available at http://arxiv.org, arXiv:1009.2954v2.
[3] J. S. Connor: The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47-63.
[4] B. Della Vecchia and G. Mastroianni: On functions approximation by Shepard-type operators - a survey, in Approximation Theory, Wavelets and Applications (Maratea, 1994), 335-346. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 454, Kluwer Acad. Publ., Dordrecht, 1995.
[5] O. Duman, and C. Orhan: Statistical approximation by positive linear operators, Studia Math., 161 (2) (2004), 187-197.
[6] J. A. Fridy: On statistical convergence, Analysis, 5 (1985), 301-313.
[7] J. A. Fridy: Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
[8] J. A. Fridy and C. Orhan: Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125 (1997), 3625-3631.
[9] S. G. GaL: Global smoothness and shape preserving interpolation by classical operators, Birkäuser (2005).
[10] G. Mastroianni and G. Milovanović: Interpolation processes - Basic theory and applications, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 2008.
[11] D. Shepard: A two-dimensional interpolation function for irregularly spaced points, Proceedings 1968 Assoc. Comput. Machinery National Conference, 517-524.
[12] G. SzegÖ: Orthogonal Polynomials, Colloquium Publ., vol. XXIII, Amer. Math. Soc., Providence, RI, 1959; Russian translation: Fizmatlit, Moscow, 1962.
[13] P. Vertesi: Lagrange interpolation for continuous functions of bounded variation, Acta Math. Acad. Scient. Hung., 35 (1-2) (1980), 23-31.
[14] K. S. Williams and Z. Nan-Yue: Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc., 119 (1) (1993), 35-49.
[15] E. T. Whittaker and G. N. Watson: A course of modern analysis, 4th ed. Cambridge Univ. Press, Cambridge and New York, (1963).

