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1 An index of convergence for double sequences

In this paper we consider a general index of convergence for multiple sequences of real
numbers. This index turns out to be useful in the description of non converging sequences and
in some cases it can give complete information of the behavior of these sequences. This is the
case for example of some phenomena in interpolation theory where we have at our disposal
some results on the failure of the convergence at points of discontinuity of the function but
a complete behavior has not yet obtained. In particular we shall concentrate ourselves on
double sequences of real numbers and on the Lagrange and Shepard operators in the bivariate
case, where we shall be able to furnish complete description on their behavior at points of
discontinuity of the first kind of a function in terms of the index of convergence.
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44 M. Campiti, G. Mazzone, C. Tacelli

We start with the definition of the index of convergence for multi-indexed sequences of
real numbers, which generalizes in a natural way that of index of convergence for a sequence
of real numbers given in [2].

In general, if K ⊂ Nm, m ≥ 1, the lower density and, respectively, the upper density of K
can be defined by

δ−(K) := lim inf
n→+∞

|K ∩ { 1, . . . , n }
m
|

nm
, δ+(K) := lim sup

n→+∞

|K ∩ { 1, . . . , n }
m
|

nm
.

In the case where δ−(K) = δ+(K) the density of K is defined as follows

δ(K) := δ−(K) = δ+(K).

The equalities δ−(K) = 1 − δ+(K
c) and δ+(K) = 1 − δ−(K

c) remain true and can be
shown as in [2].

It follows the definition of index of convergence.

Definition 1. Let (xn1,...,nm)n1,...,nm≥1 be a multi-indexed sequence of real numbers. If
L ∈ R, the index of convergence of the sequence (xn1,...,nm)n1,...,nm≥1 to L is defined by

i (xn1,...,nm ;L) := 1− sup
ε>0

δ+({ (n1, . . . , nm) ∈ Nm
| xn1,...,nm /∈]L− ε, L+ ε[ }).

Moreover, we also set

i (xn1,...,nm ; +∞) := 1− sup
M∈R

δ+ ({ (n1, . . . , nm) ∈ Nm
| xn1,...,nm /∈]M,+∞[ }) ,

i (xn1,...,nm ;−∞) := 1− sup
M∈R

δ+ ({ (n1, . . . , nm) ∈ Nm
| xn1,...,nm /∈]−∞,M [ }) .

Finally, we can also define the index of convergence of (xn1,...,nm)n1,...,nm≥1 to a subset A of
R as follows

i(xn1,...,nm , A) := 1− sup
ε>0

δ+({ (n1, . . . , nm) ∈ Nm
| xn1,...,nm /∈ A+Bε }),

where Bε :=]− ε, ε[m.

In the case m = 1 we obtain exactly the index of convergence considered in [2]. Since all
results can be easily extended from double sequences to multi-indexed sequences, for the sake
of simplicity in the sequel we shall consider only the case m = 2 of double sequences of real
numbers.

Remark 1. If necessary, we shall use the following explicit expressions of the index of
convergence of a double sequence (xn,m)n≥1

i(xn,m;L) = 1− sup
ε>0

δ+
�
{ (n,m) ∈ N2

| xn,m /∈]L− ε, L+ ε[ }
�

= 1 + inf
ε>0

�
−δ+

�
{ (n,m) ∈ N2

| xn,m /∈]L− ε, L+ ε[ }
��

= inf
ε>0

�
1− δ+

�
{ (n,m) ∈ N2

| xn,m /∈]L− ε, L+ ε[ }
��

= inf
ε>0

δ−
�
{ (n,m) ∈ N2

| xn,m ∈]L− ε, L+ ε[ }
�
,

and if A ⊂ R
i(xn,m, A) = inf

ε>0
δ−({ (n,m) ∈ N2

| xn,m ∈ A+Bε }).
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Example 1. As a simple example, we can take xn,m := cosnπ/2 cosmπ/2. It is easy to
recognize that

i(xn,m; 0) =
3
4
, i(xn,m; 1) =

1
8
, i(xn,m;−1) =

1
8
.

In the next proposition we point out some relations between the index of convergence and
the density of a suitable converging subsequences.

Proposition 1. Let (xn,m)n,m≥1 be a double sequence of real numbers and σ ∈]0, 1]. Then
i(xn,m, L) ≥ σ if and only if there exists a subsequence

�
xk(n,m)

�
n,m≥1

converging to L such

that
δ− ({ k(n,m) | n,m ∈ N }) ≥ σ.

Proof. ⇒) For every k ≥ 1, we consider the set M1/k := { (n,m) ∈ N2
| |xn,m − L| <

1/k }. From Remark 1, for every k ∈ N there exists ν̃k such that
��M1/k ∩ { 1, 2, . . . , j }2

��
j2

≥ σ −
1
k

whenever j > ν̃k. At this point we define recursively the sequence (νk)k≥1 by setting ν1 = ν̃1
and νk = max{ ν̃k, νk−1 + 1 }. We have

��M1/k ∩ { 1, 2, . . . , j }2
��

j2
≥ σ −

1
k

for all j > νk. (1)

Consider the set of integers

K =
�

k≥1

�
M1/k ∩ { 1, 2, . . . , νk+1 }

2�

and the subsequence {xn,m | (n,m) ∈ K }.
For every ε > 0, let � ∈ N such that 1/� ≤ ε. Then for every (n,m) ∈ K satisfying

n,m > ν� we have (n,m) ∈
�

k≥�

�
M1/k ∩ { 1, 2, . . . , νk+1 }

2
�
and hence |xn,m − L| < 1

�
≤ ε.

This shows that the subsequence {xn,m | (n,m) ∈ K } converges to L.
On the other hand, for every j > ν�, there exists �̃ ≥ � such that ν

�̃
< j ≤ ν

�̃+1 and thanks
to (1) we have

|K ∩ { 1, 2, . . . , j }2|
j2

≥

���M1/�̃ ∩ { 1, 2, . . . , ν
�̃+1 }

2
∩ { 1, 2, . . . , j }2

���
j2

=

���M1/�̃ ∩ { 1, 2, . . . , j }2
���

j2
≥ σ −

1

�̃
≥ σ −

1
�
≥ σ − ε

that is

lim inf
n→∞

|K ∩ { 1, 2, . . . , j }2|
j2

≥ σ.

⇐) We suppose that there exists a subsequence (xk(n,m))n≥1 converging to L such that
δ− ({ k(n,m) | n,m ∈ N }) ≥ σ. For every ε > 0 there exists νε ∈ N such that |xk(n,m)−L| < ε
whenever n,m ≥ νε. Hence

δ−({ (n,m) ∈ N2
| |xn,m − L| < ε }) ≥ δ−({ (n,m) ∈ N2

| |xk(n,m) − L| < ε })

= δ−({ k(n,m) | n,m ≥ νε })

= δ−({ k(n,m)) | n,m ∈ N }) ≥ σ

and therefore, from Remark 1, we obtain i(xn,m, L) ≥ σ. QED
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Proposition 2. Let (xn,m)n,m≥1 be a double sequence of real numbers and (Aj)j≥1 a
sequence of subsets of R such that Ak ∩Aj = ∅ for all k �= j. Then

0 ≤

+∞�

k=1

i(xn,m, Ak) ≤ 1.

In particular, if (Lk)k≥1 is a sequence of distinct elements of [−∞,∞] such that, for every
m ≥ 1

i(xn,m;Lk) = αk,

for some αk ≥ 0, then

0 ≤

+∞�

k=1

αk ≤ 1.

Proof. Let N ≥ 1; since Ak ∩Aj = ∅ whenever k �= j, we can choose ε such that

(Ak +Bε) ∩ (Aj +Bε) = ∅

for all k, j = 1, . . . , N , k �= j.
Now consider the set

M (k)
ε := { (n,m) ∈ N2

| xn,m ∈ Ak +Bε }

and observe that M (k)
ε ∩M (j)

ε = ∅ whenever k, j = 1, . . . , N , k �= j. Then we can conclude that

0 ≤

N�

k=1

i(xn,m, Ak) ≤
N�

k=1

δ−({ (n,m) ∈ N2
| xn,m ∈ Ak +Bε })

=
N�

k=1

lim inf
n→∞

|M (k)
ε ∩ { 1, . . . , n }

2
|

n2
≤ lim inf

n→∞

�
N�

k=1

|M (k)
ε ∩ { 1, . . . , n }

2
|

n2

�

= lim inf
n→∞

���
�

N

k=1 M
(k)
ε ∩ { 1, . . . , n }

2
���

n2
= δ−

�
N�

k=1

M (k)
ε

�
≤ 1

QED

Remark 2. Observe that if in the preceding proposition we have
�+∞

k=1 αk = 1, then every
subsequence

�
xk(n,m)

�
n,m≥1

of (xn,m)n,m≥1 which converges to a limit L different from each

Lk, k ≥ 1, necessarily satisfies δ−({ k(n,m) | n,m ∈ N }) = 0 and therefore i(xn,m;L) = 0.
Indeed, if a subsequence

�
xk(n,m)

�
n,m≥1

of (xn,m)n,m≥1 exists such that δ−({ k(n,m) |

n,m ∈ N }) = α > 0, then by Proposition 1 we get i(xn,m, L) ≥ α and therefore

i(xn,m, L) +
∞�

k=1

i(xn,m, Lk) ≥ α+
∞�

k=1

αk > 1

which contradicts Proposition 2.

Proposition 3. Let (xn,m)
n,m≥1 be a double sequence of real numbers and (yn)n≥1 a

sequence of real numbers. If there exists a subsequence (k(m))m≥1 such that limm→∞ xn,k(m) =
yn uniformly with respect to n and if δ { k(m) | m ∈ N } = α then

i(xn,m;A) ≥ α i(yn;A)

for every A subset of R.
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Proof. Let us consider K1,K2 ⊂ N; since

δ−({ (i, j) ∈ N2
| (i, j) ∈ K1 ×K2 }) = δ−({ (i, j) ∈ N2

| i ∈ K1, j ∈ K2 })

= lim inf
n→∞

|{ (i, j) ∈ N2
|i ∈ K1, j ∈ K2 } ∩ { 1, . . . , n }

2
|

n2

= lim inf
n→∞

|{ i ∈ N | i ∈ K1 } ∩ { 1, . . . , n }|

n
|{ j ∈ N | j ∈ K2 } ∩ { 1, . . . , n }|

n

≥ lim inf
n→∞

|{ i ∈ N | i ∈ K1 } ∩ { 1, . . . , n }|

n
lim inf
n→∞

|{ j ∈ N | j ∈ K2 } ∩ { 1, . . . , n }|

n

= δ−({ i ∈ N | i ∈ K1 })δ−({ j ∈ N | j ∈ K2 }),

we have
δ−(K1 ×K2) ≥ δ−(K1)δ−(K2). (2)

For every ε > 0 there exists η ∈ N such that |xn,k(m) − yn| < ε whenever m ≥ η and n ∈ N.
Then

{ (n, k(m)) ∈ N2
| m ≥ η, yn ∈ A+Bε } ⊂ { (n,m) ∈ N2

| xn,m ∈ A+B2ε }

and consequently

δ−
�
{ (n,m) ∈ N2

| xn,m ∈ A+B2ε }
�
≥ δ−

�
{ (n, k(m)) ∈ N2

| m ≥ η, yn ∈ A+Bε }
�

≥ δ−({n ∈ N | yn ∈ A+Bε })δ−({ k(m) | m ≥ η })

= αδ−({n ∈ N | yn ∈ A+Bε }) ≥ αi(yn;A).

Taking the infimum with respect to ε we obtain the desired result. QED

Proposition 4. Let (xn)n≥1 and (yn)n≥1 sequences of real numbers, let f : [0, 1] →

[0, 1] and g : [0, 1] → [0, 1] be injective differentiable functions with differentiable inverses. If
i(xn;A) = |f−1(A)| and i(yn;A) = |g−1(A)| for every Peano-Jordan measurable set A ⊂ [0, 1],
then

i(xnym, A) = |G−1(A)|,

where G(x, y) = g(x)f(y).

Proof. Firstly we prove that i(xn; I) = δ({n ∈ N | xn ∈ I }) for every interval I ⊂ R.
Notice that for every interval [a, b] ⊂ R and for all ε > 0

δ−({n ∈ N|xn ∈]a− ε, b+ ε[ }) ≥ δ−({n ∈ N|xn ∈ [a, b] })

and then, taking the infimum over ε > 0,

i(xn; [a, b]) ≥ δ−({n ∈ N|xn ∈ [a, b] }). (3)

On the other hand, for every δ > 0 we have that

|f−1([a+ δ, b− δ])| = inf
ε>0

δ−({n ∈ N | xn ∈]a+ δ − ε, b− δ + ε[ })

≤ δ−({n ∈ N | xn ∈ [a, b] }).

Since f−1 is continuous, the function δ �→ |f−1([a + δ, b − δ])| is continuous at 0 and taking
the limit as δ → 0 we have

i(xn; [a, b]) = |f−1([a, b])| ≤ δ−({n ∈ N|xn ∈ [a, b] }),

which jointly with (3) yields

i(xn; I) = δ−({n ∈ N | xn ∈ I })



48 M. Campiti, G. Mazzone, C. Tacelli

for every interval I. Finally we have

δ+({n ∈ N | xn ∈ I }) = 1− δ−({n ∈ N | xn ∈ Ic }) = 1− |f−1(Ic)|

= |f−1(I)| = δ−({n ∈ N | xn ∈ I }),

so
i(xn; I) = |f−1(I)| = δ({n ∈ N | xn ∈ I }).

Let I, J be real intervals, we have

δ({ (n,m) ∈ N | (xn, ym) ∈ I × J }) = δ({n ∈ N | xn ∈ I })δ({m ∈ N | ym ∈ J }),

indeed

δ({ (i, j) ∈ N2
| (xi, yj) ∈ I × J }) = δ({ (i, j) ∈ N2

| xi ∈ I, yj ∈ J })

= lim
n→∞

|{ (i, j) ∈ N2
|xi ∈ I, yj ∈ J } ∩ { 1, . . . , n }

2
|

n2

= lim
n→∞

|{ i ∈ N | xi ∈ I } ∩ { 1, . . . , n }|

n
|{ j ∈ N | yj ∈ J } ∩ { 1, . . . , n }|

n

= lim
n→∞

|{ i ∈ N | xi ∈ I } ∩ { 1, . . . , n }|

n
lim

n→∞

|{ j ∈ N | yj ∈ J } ∩ { 1, . . . , n }|

n

= δ({ i ∈ N | xi ∈ I })δ({ j ∈ N | yj ∈ J }).

Then we have

δ
�
{ (n,m) ∈ N2

| (xn, ym) ∈ I × J }
�
= |f−1(I)||g−1(J)| = |(f, g)−1(I × J)|;

moreover, thank to the linearity of the limit, if Q is a pluri-interval of R2 we have

δ
�
{ (n,m) ∈ N2

| (xn, ym) ∈ Q }
�
=| (f, g)−1(Q) | .

Now let Ã be a Peano-Jordan measurable subset of [0, 1]2 and fix ε > 0. Since F := (f, g)−1

is a diffeomorphism from [0, 1]2 into [0, 1]2, the subset F (Ã) is measurable and therefore there
exist pluri-intervals Y1, Y2 such that Y1 ⊂ F (Ã) ⊂ Y2 and |Y2| − |Y1| ≤ ε. Let Q1 = F−1(Y1)
and Y2 = F−1(Q2); these set are pluri-intervals and Q1 ⊂ Ã ⊂ Q2. We have

δ
�
{ (n,m) ∈ N2

| (xn, ym) ∈ Q1 }
�
≤ δ

�
{ (n,m) ∈ N2

| (xn, ym) ∈ Ã }

�

≤ δ
�
{ (n,m) ∈ N2

| (xn, ym) ∈ Q2 }
�
,

from which

|Y1| = |F (Q1)| ≤ δ
�
{ (n,m) ∈ N2

| (xn, ym) ∈ Ã }

�
≤ |F (Q2)| = |Y2|.

On the other hand
|Y1| ≤ |F (Ã)| ≤ |Y2|

and therefore
���δ

�
{(n,m) ∈ N2

| (xn, ym) ∈ Ã}

�
− | F (Ã) |

��� ≤| Y2 | − | Y1 |≤ ε

and we get

δ
�
{ (n,m) ∈ N2

| (xn, ym) ∈ Ã }

�
= |F (Ã)|.
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Finally we consider a Peano-Jordan measurable set A ⊂ [0, 1] and the function P : R2
→ R,

P (x, y) = xy. We have

{ (n,m) ∈ N2
| xnym ∈ A } = { (n,m) ∈ N2

| P (xn, ym) ∈ A }

= { (n,m) ∈ N2
| (xn, ym) ∈ P−1(A) }

and hence

δ({ (n,m) ∈ N2
| xnym ∈ A }) = δ

�
{ (n,m) ∈ N2

| (xn, ym) ∈ P−1(A) }
�

= |(f, g)−1P−1(A)| = |(f · g)−1(A)|

where (f · g)(x, y) = G(x, y) = f(x)g(y). Therefore for every Peano-Jordan measurable set
A ⊂ [0, 1] we have

i(xnym;A) = inf
ε>0

δ({ (n,m) ∈ N2
|xnym ∈ A+Bε }) = inf

ε>0
|G−1(A+Bε)|

≥ |G−1(A)|. (4)

To prove the converse inequality, we argue by contradiction and suppose that i(xnym;A) >
|G−1(A)|. So there exists δ > 0 such that i(xnym;A) = |G−1(A + Bδ)|. Notice that A ∩

(A+Bδ/2)c = ∅ and, by Proposition 2, we get

i(xnym;A) + i(xnym; (A+Bδ/2)
c) ≤ 1.

Since G−1([0, 1]2) ⊂ [0, 1]2, by (4) we have

|G−1(A+Bδ)| ≤ 1− |G−1((A+Bδ/2)
c)| = |G−1(A+Bδ/2)|.

This leads to a contradiction since the map δ > 0 → |G−1(A + Bδ)| is monotone increasing.
Then our claim is achieved. QED

Example 2. As a further example, let α, γ ∈ [0, 1) be irrational, β, δ ∈ [0, 1) and consider

xn,m := (nα+ β − [nα+ β])(mγ + δ − [mγ + δ])

where [x] denotes the integer part of x.
We already know that (see [2, Example 1.4)-ii)])

i (nα+ β − [nα+ β];A) = |A|

for every Peano-Jordan measurable set A ⊂ [0, 1[, where |·| denotes the Peano-Jordan measure.
Now, applying Proposition 4 with the identity function in place of f and g, we get

i(xn,m;A) = δ
��

(n,m) ∈ N2
| xn,m ∈ A

��
= |G−1(A)|

for every Peano-Jordan measurable set A ⊂ [0, 1[, where G(x, y) = x y.

2 Bivariate Lagrange operators on discontinuous
functions

We begin by considering the univariate Lagrange operators (Ln)n≥1 at the Chebyshev
nodes of second type, which are defined by

Lnf(x) =
n�

k=1

�n,k(x)f(xn,k),
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where f is a suitable function from [−1, 1] to R,

xn,k = cos θn,k, θn,k =
k − 1
n− 1

π k = 1, . . . , n,

are the Chebyshev nodes of second type and

�n,k(x) =
�

i �=k

x− xn,i

xn,k − xn,i

are the corresponding fundamental polynomials.
Setting x = cos θ, with θ ∈ [0,π], the polynomials �n,k can be rewritten as follows

�n,k(cos θ) =
(−1)k

(n− 1)(1 + δk,1 + δk,n)
sin((n− 1)θ) sin θ
cos θ − cos θn,k

,

where δi,j denotes the Kronecker symbol, that is

δi,j :=

�
0 if i �= j,

1 if i = j.

Our first aim is to study the behavior of the sequence of Lagrange operators for a particular
class of functions having a finite number of points of discontinuity of the first kind. This will
simplify the subsequent discussion on the bivariate case.

We consider the function hx0,d : [−1, 1] → R defined by

hx0,d(x) :=






0, x < x0,
d, x = x0,
1, x > x0,

x ∈ [−1, 1], (5)

where d is a fixed real number.
We also need to define the function g :]0, 1[ �→ R by setting

g(x) :=
sin (πx)

π
J(1, x), if x ∈]0, 1[, (6)

where J(s, a) denotes the Lerch zeta function

J(s, a) :=
+∞�

n=0

(−1)n

(n+ a)s
, a ∈]0, 1], �[s] > 0.

The following result describes the behavior of Lagrange operators at the point x0 in terms
of the index of convergence defined in [2] and corresponding to the case m = 1 in Definition 1.

Theorem 1. Let x0 = cos θ0 ∈] − 1, 1[ and consider the functions h := hx0,d defined
by (5). Then, the sequence of functions (Lnh)n≥1 converges uniformly to h on every compact
subsets of [−1, 1] \ {x0 }.

As regards the behaviour of the sequence (Lnh(x0))n≥1 we have the following cases.

i) If θ0
π

= p

q
with p, q ∈ N, q �= 0 and GCD(p, q) = 1, then

i (Lnh(x0); d) =
1
q
, i

�
Lnh(x0); g

�
m
q

��
=

1
q
, m = 1, . . . , q − 1.

ii) If θ0
π

is irrational and if A ⊂ R is a Peano-Jordan measurable set, then

i (Lnh(x0);A) = |g−1(A)|,

where | · | denotes the Peano-Jordan measure.
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Proof. Let a = cos θ1 ∈ [−1, x0[ and x = cos θ ∈ [−1, a]; for sufficiently large n ≥ 1 there
exists k0 such that 0 ≤ θn,k0 ≤ θ0 < θn,k0+1 < θ1 ≤ θ ≤ π and therefore

0 < cos θ0 − cos θ1 ≤ cos θn,k0 − cos θ.

We have Lnh(cos θ) =
�

k0−1
k=1 �n,k(cos θ) + d�n,k0(cos θ) if θn,k0 = θ0, and Lnh(cos θ) =�

k0
k=1 �n,k(cos θ) if θn,k0 < θ0; hence

Lnh(cos θ)

=
k0�

k=1

(−1)k

(n− 1)(1 + δk,1)
sin((n− 1)θ) sin θ
cos θ − cos θn,k

+ (d− 1)χ
{θn,k0}

(θ0)�n,k0(cos θ)

=
sin((n− 1)θ) sin θ
2(n− 1)(cos θ − 1)

+
k0�

k=1

(−1)k−1

n− 1
sin((n− 1)θ) sin θ
cos θn,k − cos θ

+ (d− 1)χ
{θn,k0}

(θ0)�n,k0(cos θ).

The function t → 1
cos t−cos θ is positive and monotone increasing on the interval [0, θ[; since

0 < θn,k < θn,k+1 < θ for every 1 ≤ k ≤ k0, we have

|Lnh(x)| = |Ln(h)(cos θ)|

≤
1

2(n− 1)(1− cos θ)
+

����
sin((n− 1)θ) sin θ

n− 1
1

cos θn,k0 − cos θ

����

+ |d− 1|

����
sin((n− 1)θ) sin θ

n− 1
1

cos θn,k0 − cos θ

����

≤
1

2(n− 1)(1− cos θ1)
+

1 + |d− 1|
n− 1

1
cos θ0 − cos θ1

.

It follows that (Lnh)n≥1 converges uniformly to h in [−1, a].
Now let b = cos θ2 ∈]x0, 1[ and x = cos θ ∈ [b, 1]. For sufficiently large n ≥ 1 there exists

k0 such that 0 ≤ θ ≤ θ2 < θn,k0 ≤ θ0 < θn,k0+1 ≤ 2π and consequently

0 < cos θ2 − cos θ0 ≤ cos θ − cos θn,k0+1.

Then

|1−Lnh(x)| = |1− Lnh(cos θ)| =

�����

n�

k=1

�n,k(cos θ)−
k0�

k=1

�n,k(cos θ)h(cos θn,k)

�����

=

����
(−1)n+1

2(n− 1)
sin((n− 1)θ) sin θ

cos θ + 1

+
n�

k=k0+1

(−1)k

n− 1
sin((n− 1)θ) sin θ
cos θ − cos θn,k

− (d− 1)χ
{θn,k0}

(θ0)�n,k0(cos θ)

������

≤
1

n− 1

�
1

2(cos θ + 1)
+

����
1

cos θ − cos θn,k0+1

����+ |d− 1|

����
1

cos θ − cos θn,k0

����

�

≤
1

2(n− 1)(cos θ2 + 1)
+

1 + |d− 1|
n− 1

1
cos θ2 − cos θ0

,

since the function t → 1
cos θ−cos t is positive and monotone decreasing in ]θ,π] and θ < θn,k−1 <

θn,k < π for every k0 + 1 ≤ k ≤ n. So (Lnh)n≥1 converges uniformly to h also in [b, 1].
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Now, we study the behavior of (Lnh(x0))n≥1.
We identify x0 = cos θ0, θ0 ∈ [0,π]. For sufficiently large n ≥ 1 there exists k0 such that

θn,k0 ≤ θ0 < θn,k0+1. Let us denote σn =
n− 1
π

(θ0 − θn,k0). From
k0−1
n−1 π ≤ θ0 < k0

n−1π we

have that 0 ≤ σn < 1; then

n− 1 =
π
θ0

(σn + k0 − 1)

and moreover

k0 − 1 ≤
n− 1
π

θ0 < k0,

that is k0 − 1 =
�
n−1
π

θ0
�
and

σn =
n− 1
π

θ0 −

�
n− 1
π

θ0

�
. (7)

If x0 is a Chebyshev node, that is θ0 = θn,k0 and σn = 0, then

Lnh(cos θ0) = d. (8)

If x0 is not a Chebyshev node we have θn,k0 < θ0, 0 < σn < 1 and

Lnh(cos θ0) =
k0�

k=1

�n,k(cos θ0). (9)

Let us consider the case where x0 is not a Chebyshev node and observe that

sin((n− 1)θ0) = (−1)k0−1 sin((n− 1)θ0 − (k0 − 1)π)

= (−1)k0−1 sin

�
π

�
n− 1
π

θ0 − (k0 − 1)

��

= (−1)k0−1 sin(πσn).

Then we can rewrite Lnh(x0) in the following way

Lnh(x0) =
k0�

k=1

(−1)−k

(n− 1)(1 + δk,1)
sin((n− 1)θ0) sin θ0
cos θ0 − cos θn,k

=
sin((n− 1)θ0) sin θ0
2(n− 1)(cos θ0 − 1)

+
k0�

k=1

(−1)−k

(n− 1)
sin((n− 1)θ0) sin θ0
cos θ0 − cos θn,k

=
sin((n− 1)θ0) sin θ0
2(n− 1)(cos θ0 − 1)

+
sin(πσn)
n− 1

k0−1�

m=0

(−1)m
sin θ0

cos θn,k0−m − cos θ0

=
sin((n− 1)θ0) sin θ0
2(n− 1)(cos θ0 − 1)

+
sin(πσn)

π

k0−1�

m=0

(−1)m

σn +m

+
sin(πσn)
n− 1

k0−1�

m=0

(−1)m
�

sin θ0
cos θn,k0−m − cos θ0

−
n− 1

π(σn +m)

�

=
sin((n− 1)θ0) sin θ0
2(n− 1)(cos θ0 − 1)

+
sin(πσn)

π

k0−1�

m=0

(−1)m

σn +m

+
sin(πσn)
n− 1

k0−1�

m=0

(−1)m
�

sin θ0
cos θn,k0−m − cos θ0

−
1

θ0 − θn,k0−m

�
,
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where

θ0 − θn,k0−m = θ0 −
k0 −m− 1

n− 1
π = θ0 − θn,k0 +

m
n− 1

π =
π

n− 1
(σn +m).

If we consider the function

gθ0(x) :=
sin θ0

cosx− cos θ0
−

1
θ0 − x

, x ∈ [0, θ0[,

we can write

Lnh(x0) =
sin((n− 1)θ0) sin θ0
2(n− 1)(cos θ0 − 1)

+
sin(πσn)

π

k0−1�

m=0

(−1)m

σn +m
(10)

+
sin(πσn)
n− 1

k0−1�

m=0

(−1)mgθ0(θn,k0−m).

The function gθ0 is monotone decreasing and bounded since gθ0(0) =
sin θ0

1−cos θ0
−

1
θ0

and

lim
x→θ

−
0

gθ0(x) =
1
2
cot(θ0).

For all n ≥ 1 and σ ∈ [0, 1[, consider the function fn : [0, 1[→ R defined by setting

fn(σ) :=






sin((n− 1)θ0) sin θ0
2(n− 1)(cos θ0 − 1)

+
sin(πσ)

π

k0−1�

m=0

(−1)m

σ +m

+
sin(πσ)
n− 1

k0−1�

m=0

(−1)mgθ0(θn,k0−m), if σ ∈]0, 1[,

d, if σ = 0;

taking into account (8), (9) and (10) we have Lnh(cos θ0) = fn(σn).
For all σ ∈]0, 1[

|fn(σ)− g(σ)|

≤

������
sin(πσ)

π

∞�

m=k0

(−1)m

σ +m

������
+

1
2(n− 1)(1− cos θ0)

+
sin(πσ)
n− 1

�
1
θ0

+ |gθ0(θn,k0)|

�

≤
sin(πσ)

π

����
(−1)k0

σ + k0

����+
1

2(n− 1)(1− cos θ0)
+

sin(πσ)
n− 1

�
1
θ0

+ |gθ0(θn,k0)|

�

≤
1

πk0
+

1
n− 1

�
1
θ0

+ |gθ0(θn,k0)|

�
;

the right-hand side is independent of σ ∈]0, 1[ and it converges to 0 as n → ∞ since

lim
n→∞

gθ0(θn,k0) = lim
x→θ

−
0

gθ0(x) =
1
2
cot(θ0) < ∞.

Then we can conclude that the sequence (fn)n≥1 converges uniformly on [0, 1[ to the function
g̃ : [0, 1[→ R defined as follows

g̃(x) :=

�
g(x), if x ∈]0, 1[,
d, if x = 0.



54 M. Campiti, G. Mazzone, C. Tacelli

Now, we will construct q subsequences
�
Lkm(n)h(x0)

�
n≥1

,m = 0, . . . , q−1, of (Lnh(x0))n≥1

with density 1
q
such that

lim
n→∞

Lkm(n)h(x0) = g̃

�
m
q

�
for all m = 0, . . . , q − 1.

Fix m = 0, . . . , q − 1; since GCD(p, q) = 1 we can set km(n) := l + nq + 1, where
l ∈ { 0, . . . , q−1 } is such that lp ≡ m mod q, that is there exists s ∈ Z such that lp = sq+m.

So, consider
�
Lkm(n)h(x0)

�
n≥1

and observe that for allm = 0, . . . , q−1, we have δ({ km(n) |

n ∈ N }) = 1
q
. It follows, for all n ≥ 1

σkm(n) = (km(n)− 1)
p
q
−

�
(km(n)− 1)

p
q

�

= (l + nq)
p
q
−

�
(l + nq)

p
q

�
=

sq +m+ nqp
q

−

�
sq +m+ nqp

q

�

= s+ np+
m
q

−

�
s+ np+

m
q

�
=

m
q

since s, np ∈ Z, while 0 ≤
m

q
< 1. Then

lim
n→∞

Lkm(n)h(x0) = lim
n→∞

fn
�
σkm(n)

�
= lim

n→∞
fn

�
m
q

�
= g̃

�
m
q

�
.

Therefore, by [2, Proposition 1.6] we have that for all m = 0, . . . , q − 1

i

�
Lnh(x0), g̃

�
m
q

��
≥

1
q
.

Now, we have q different statistical limits with index 1
q
, so by [2, Proposition 1.7] it necessarily

follows

i

�
Lnh(x0); g̃

�
m
q

��
=

1
q
.

This completes the proof of part i).
The case where θ0

π
is irrational is similar to the analogous case considered in the proof

of [2, Theorem 2.1 ii)] QED

At this point, we extend Theorem 1 to a larger classes of functions, namely on the space
C+H where C denotes the space of all f ∈ C([−1, 1]) such that f is either monotone on [−1, 1]
or f satisfies the Dini-Lipschitz condition ω(f, δ) = o(| log δ|−1), and H is the linear space
generated by

{hx0,d | x0 ∈]− 1, 1[, d ∈ R }.

Observe that if f ∈ C + H there exists at most a finite number of points x1, . . . , xN of
discontinuity with finite left and right limits f(xi − 0) and f(xi + 0), i = 1, . . . , N .

Then we can state the following theorem.

Theorem 2. Let f ∈ C +H with a finite number N of points of discontinuity of the first
kind at x1, . . . , xN ∈] − 1, 1[. For every i = 1, . . . , N consider θi ∈]0,π[ such that xi = cos θi,
di := f(xi) and define the function

gi(x) := f(xi − 0) + (f(xi + 0)− f(xi − 0))g(x).

Then, the sequence (Lnf)n≥1 converges uniformly to f on every compact subset of
]− 1, 1[\{x1, . . . , xN }.

Moreover for all i = 1, . . . , N the sequence (Lnf(xi))n≥1 has the following behavior
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i) if θi
π

= p

q
with p, q ∈ N, q �= 0 and GCD(p, q) = 1, then

i (Lnh(xi); di) =
1
q
, i

�
Lnh(xi); gi

�
m
q

��
=

1
q
, m = 1, . . . , q − 1.

ii) if θi
π

is irrational and if A ⊂ R is a Peano-Jordan measurable set, then

i (Lnh(xi);A) = |g−1
i (A)|,

where | · | denotes the Peano-Jordan measure.

Proof. We assume x1 < · · · < xN . We can write f = F +
�

N

k=1 ckhk, where F ∈ C and
hi := h

xi,d̃i
for every i = 1, . . . , N .

Since F is continuous we have

f(xi + 0)−
i−1�

k=1

ck − ci = F (xi + 0) = F (xi − 0) = f(xi − 0)−
i−1�

k=1

ck,

from which
ci = f(xi + 0)− f(xi − 0)

and

F (xi) = f(xi − 0)−
i−1�

k=1

ck. (11)

Moreover

di = f(xi) = F (xi) +
i−1�

k=1

ckhk(xi) + cid̃i

= F (xi) +
i−1�

k=1

ck + (f(xi + 0)− f(xi − 0)) d̃i

= f(xi − 0) + (f(xi + 0)− f(xi − 0)) d̃i.

and hence

d̃i =
di − f(xi − 0)

f(xi + 0)− f(xi − 0)
.

The first part of our statement is a trivial consequence of the linearity of Lagrange inter-
polation operators. Indeed F ∈ C and therefore LnF → F uniformly in compact subsets of
] − 1, 1[ (see e.g. [13, Theorem 3.2, p. 24] and [10] in the case in which F is monotone, while
we refer to [12, Theorem 14.4, p. 335] in the case F satisfies the Dini-Lipschitz condition);
moreover for every k = 1, . . . , N , by Theorem 1 Lnhk → hk converges uniformly to hk on
compact subsets of [−1, 1] \ {xk }. Then Lnf = LnF +

�
N

k=1 ckLnhk converges uniformly to
f on compact subsets of ]− 1, 1[\{x1, . . . , xN }.

Now we establish property i). We fix a point xi of discontinuity and following the same
line of the proof of Theorem 1 we construct the subsequences (km(n))n≥1, m = 0, . . . , q − 1.
Since

Lkm(n)f(xi) = Lkm(n)F (xi) +
N�

k=1
k �=i

ckLkm(n)hk(xi) + ciLkm(n)hi(xi)
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and taking into account (11) and that F ∈ C, from Theorem 1 the right-hand side converges
to

F (xi) +
i−1�

k=1

ckhk(xi) + cigi

�
m
q

�

= f(xi − 0) + (f(xi + 0)− f(xi − 0)) gi

�
m
q

�

= gi

�
m
q

�

for m = 0, . . . , q − 1.
Finally, we prove property ii). For every i = 1, . . . , N we have

Lnf(xi) = LnF (xi) +
N�

k=1
k �=i

ckLnhk(xi) + ciLnhi(xi).

For the sake of simplicity let us denote

yn := Lnf(xi), zn := LnF (xi) +
N�

k=1
k �=i

ckLnhk(xi), xn := ciLnhi(xi)

(thus yn = zn + xn) and

z := F (xi) +
i−1�

k=1

ckhk(xi) = f(xi − 0)

(see (11)).
Since (11) and that F ∈ C we can apply [13, Theorem 3.2, p. 24] (or [12, Theorem 14.4, p.

335]) and from Theorem 1 we obtain zn → z and moreover i(c−1
i

xn;A) = |g−1(A)| for every
bounded Peano-Jordan measurable set A ⊂ R. Hence i(xn;A) = |g−1(c−1

i
A)|, that is

|g−1(c−1
i A)| = inf

ε>0
δ−({n ∈ N | xn ∈ A+Bε }).

Fix ε > 0; if xn ∈ A+Bε, from the equality xn = yn − zn we get

yn ∈ A+Bε + zn = A+Bε + z + zn − z.

Now, let ν ∈ N such that |zn − z| < ε for all n ≥ ν, then for every n ≥ ν we have zn − z ∈ Bε

and consequently yn ∈ A+B2ε + z. Therefore

{n ≥ ν | xn ∈ A+Bε } ⊂ {n ≥ ν | yn ∈ A+B2ε + z },

that is

δ−({n ∈ N | xn ∈ A+Bε }) ≤ δ−({n ∈ N | yn ∈ A+B2ε + z }). (12)

On the other hand, if yn ∈ A + B2ε + z, then xn = yn − zn ∈ A + B2ε + z − zn. In this
case for every n ≥ ν, we have z − zn ∈ Bε and therefore xn ∈ A+B3ε; hence

δ−({n ∈ N | xn ∈ A+B3ε }) ≥ δ−{n ∈ N | yn ∈ A+B2ε + z }. (13)
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Taking the infimum over ε > 0 in (12) and (13) we can conclude that i(xn, A) ≤ i(yn, A+
z) ≤ i(xn, A) which yields

i(yn, A+ z) = i(xn, A) = |g−1(c−1
i A)|.

We conclude that i(yn, A) = |g−1(c−1
i

(A−z))| =
���g−1

�
A−f(xi−0)

f(xi+0)−f(xi−0)

���� = |g−1
i

(A)| for every

Peano-Jordan measurable set A ⊂ R. QED

Now, we can consider the bivariate Lagrange interpolation polynomials (Ln,m)n,m≥1 on
the Chebyshev nodes of second kind plus the endpoints ±1 defined by

Ln,m(f)(x, y) =
n�

i=1

m�

j=1

ωn,i(x)ωm,j(j)f(xn,i, ym,j) (14)

where f is a suitable function defined on [−1, 1]2 and

xn,i = cos
i− 1
n− 1

π, i = 1, . . . , n.

Moreover, setting x = cos θ,

ωn,i(x) =
(−1)i

(1 + δi,1 + δi,n(n− 1)
sin θ sin((n− 1)θ)

x− xn,i

.

Consider z0 = (x0, y0) ∈]−1, 1[×]−1, 1[ and define the following function hz0 : [0, 1]× [0, 1] →
R,

hz0(x, y) :=

�
1, (x, y) ∈ [x0, 1]× [y0, 1],
0, (x, y) ∈ [−1, 1]× [−1, 1] \ [x0, 1]× [y0, 1].

(15)

In order to state the convergence properties of the sequence (Ln,mhz0)n≥1, we consider the
function G : ]0, 1[×]0, 1[→ R defined by

G(x, y) := g(x)g(y),

where g :]0, 1[→ R is the function defined in (6).
In the following result we describe the behavior of the bivariate Lagrange polynomials

evaluated at the function hz0 , using the index of convergence for double sequences of real
numbers.

Theorem 3. Let z0 = (x0, y0) = (cos θ0, cos γ0) ∈]−1, 1[×]−1, 1[ and h := hz0 be defined
by (15). Then the sequence (Ln,mh)n≥1 converges uniformly to h on every compact subset of
[−1, 1]× [−1, 1] \Q, where Q := ([x0, 1]× { y0 }) ∪ ({x0 }× [y0, 1]).

As regards the behaviour of the sequence (Ln,mh(x, y))n,m≥1 where (x, y) ∈ Q, we have:

1) if x = x0 and y ∈]y0, 1], we have to consider the following cases:

i) if θ0
π

= p1
q1

with p1, q1 ∈ N, q1 �= 0, GCD(p1, q1) = 1, then

i

�
Ln,mh(x0, y); g

�
m1

q1

��
=

1
q1

, m1 = 0, . . . , q1 − 1;

ii) if θ0
π

is irrational, we have

i (Ln,mh(x0, y);A) = |g−1(A)|

for every Peano-Jordan measurable set A ⊂ R.
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2) If x ∈]x0, 1] and y = y0, we have to consider the following cases:

i) if γ0
π

= p2
q2

with p2, q2 ∈ N, q2 �= 0, GCD(p2, q2) = 1, then

i

�
Ln,mh(x, y0); g

�
m2

q2

��
=

1
q2

, m2 = 0, . . . , q2 − 1;

ii) if γ0
π

is irrational, we have

i (Ln,mh(x, y0);A) = |g−1(A)|

for every Peano-Jordan measurable set A ⊂ R if s > 1.

3) If x = x0 and y = y0, we have to consider the following cases:

i) if θ0
π

= p1
q1

and γ0
π

= p2
q2

with pi, qi ∈ N, qi �= 0, GCD(pi, qi) = 1, i = 1, 2, then

i

�
Ln,mh(x0, y0); g

�
m1

q1

�
g

�
m2

q2

��
=

1
q1q2

for m1 = 0, . . . , q1 − 1 and m2 = 0, . . . , q2 − 1;

ii) if θ0
π

= p1
q1

with p1, q1 ∈ N, q1 �= 0, GCD(p1, q1) = 1 and γ0
π

is irrational, then

i

�
Ln,mh(x0, y0);

�
0, g

�
j
q1

���
≥

1
q1

, j = 0, . . . , q1 − 1;

iii) if θ0
π

is irrational and γ0
π

= p2
q2

with p2, q2 ∈ N, q2 �= 0, GCD(p2, q2) = 1, then

i

�
Ln,mh(x0, y0);

�
0, g

�
j
q2

���
≥

1
q2

, j = 0, . . . , q2 − 1;

iv) if θ0
π

and γ0
π

are both irrational, then

i (Ln,mh(x0, y0);A) = |G−1(A)|

for every Peano-Jordan measurable set A ⊂ R.

Proof. We define the functions h1, h2 : [−1, 1] → R as follows

h1(t) :=

�
0 if t < x0,
1 if t ≥ x0,

h2(t) :=

�
0 if t < y0,
1 if t ≥ y0,

(16)

then we can write
h(x, y) = h1(x)h2(y),

and consequently we have

Ln,mh(x, y) = Lnh1(x)Lmh2(y). (17)

Moreover, by Theorem 1, it follows that

lim
n→∞

Lnh1 = h1 uniformly on [−1, 1] \ {x0 } (18)

and
lim

m→∞
Lmh2 = h2 uniformly on [−1, 1] \ { y0 }. (19)
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Let us consider a compact set K ⊂ [−1, 1]× [−1, 1]\Q; there exist −1 ≤ a1 < x0 < a2 ≤ 1
and −1 ≤ b1 < y0 < b2 ≤ 1 such that

K ⊂ [−1, 1]× [−1, b1] ∪ [−1, a1]× [−1, 1] ∪ [a2, 1]× [b2, 1].

First let us consider (x, y) ∈ [−1, 1]× [−1, b1] and write x = cos θ and y = cos γ; then

|Ln,mh(x, y)| ≤ |Lnh1(x)||Lmh2(y)|. (20)

For sufficiently large n,m ≥ 1 there exist k0, �0 ≥ 1 such that

xn,k0+1 < x0 ≤ xn,k0 , ym,�0+1 < y0 ≤ ym,�0 ,

then we can observe that

|Lnh1(x)| ≤
| sin(n− 1)θ sin θ|

n− 1

�����

k0�

k=1

(−1)k

(1 + δk,1)(cos θ − cos θn,k)

�����

≤
| sin(n− 1)θ sin θ|

2(n− 1)| cos θ − cos θn,1|
+

| sin(n− 1)θ sin θ|
(n− 1)| cos θ − cos θn,k0 |

=
|ωn,1(x)|

2
+ |ωn,k0(x)| (21)

where, in the last inequality, we have used the fact that the following function

t ∈ [0,π] →
1

cos θ − cos t

is monotone decreasing.
Let us observe that for k = 1, . . . , k0 we have

|ωn,k(x)| =

����
sin(n− 1)θ sin θ

(n− 1)(cos θ − cos θn,k)

���� =

������
sin ((n− 1)(θ − θn,k) + (k − 1)π) sin θ

2(n− 1) sin
�

θ−θn,k

2

�
sin

�
θ+θn,k

2

�

������

=

������
sin ((n− 1)(θ − θn,k)) sin θ

2(n− 1) sin
�

θ−θn,k

2

�
sin

�
θ+θn,k

2

�

������

=
2 sin θ
θ + θn,k

| sin ((n− 1)(θ − θn,k)) |
(n− 1)|θ − θn,k|

|θ−θn,k|
2���sin

�
θ−θn,k

2

����

θ+θn,k

2���sin
�

θ+θn,k

2

����

≤
2 sin θ

θ
| sin ((n− 1)(θ − θn,k|) |

(n− 1)|θ − θn,k|

|θ−θn,k|
2

sin
��� θ−θn,k

2

���

θ+θn,k

2���sin
�

θ+θn,k

2

����

≤ 2C (22)

where the existence of the constant C ≥ 1 is a consequence of the boundedness of the functions
sinα/α on [0, nπ] for all n ≥ 1 and α/ sinα on [a, b] ⊂ [0,π[; in particular, observe that sinα

α
≤ 1

while α

sinα
≥ 1 and

��� θ−θn,k

2

��� ,
��� θ+θn,k

2

��� �= π, since 0 < θn,k < π for all k; notice also that (22)

does not depend on the particular choice of k ≥ 1 and it holds for all x ∈ [−1, 1]. Then (21)
becomes

|Lnh1(x)| ≤ 3C (23)

and this estimate is uniform with respect to n ≥ 1 and x ∈ [−1, 1].
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We can conclude that
|Ln,mh(x, y)| ≤ 3C|Lmh2(y)|

where, by (19), the last term converges to 0 as m → ∞. So we can conclude that

lim
n,m→∞

Ln,mh = h uniformly in [−1, 1]× [−1, b1].

Arguing in a similar way, we can get the uniform convergence of (Ln,mh)n,m≥1 to h in [−1, a1]×
[−1, 1].

If (x, y) ∈ [a2, 1]× [b2, 1], then

|Ln,mh(x, y)− 1| = |Lnh1(x)Lmh2(y)− 1|

which is uniformly convergent to 0 as n,m → ∞. Therefore we can conclude that

lim
n,m→∞

Ln,mh = h uniformly in [a2, 1]× [b2, 1].

We start with the proof of property 1). Let y ∈]y0, 1]. From equation (17) we have

Ln,mh(x0, y) = Lnh1(x0)Lmh2(y),

and thank to (19) we have
lim

m→∞
Ln,mh(x, y0) = Lnh1(x0).

From (23) we have that Lnh1(x0) is bounded, then the previous limit is uniform with respect
n ∈ N. Therefore we can apply Proposition 3 with k(m) = m (and consequently α = 1) and
Theorem 3 with h replaced by h1, and conclude the proof of 1).

The proof of property 2) is at all similar to that of property 1) interchanging the role of
x and y.

Now we prove 3). From (17) we have

Ln,mh(x0, y0) = Lnh1(x0)Lmh2(y0).

Arguing as in Theorem 3 and taking into account that the value d is set to 1 and g(0) = 1,
we can consider

�
Lri(n)h1(x0)

�
n≥1

, i = 0, . . . , q1 − 1 and
�
Lsj(m)h2(y0)

�
m≥1

, j = 0, . . . , q2 − 1,

subsequences respectively of (Lnh1(x0))n≥1 and (Lmh2(y0))m≥1 with density respectively 1/q1
and 1/q2 such that

lim
n→∞

Lri(n)h1(x0) = g

�
i
q1

�
, i = 0, . . . , q1 − 1,

and

lim
n→∞

Lsj(m)h1(x0) = g

�
j
q2

�
, j = 0, . . . , q2 − 1.

Therefore we can consider q1q2 subsequences of (Ln,mh(x0, y0))n,m≥1, let us say
�
Lri(n),sj(m)

h(x0, y0))n,m≥1 with i = 0, . . . , q1 − 1 and j = 0, . . . , q2 − 1 such that δ({ (ri(n), sj(m))|n,m ∈

N }) = 1
q1q2

and

lim
n,m→∞

Lri(n),sj(m)h(x0, y0) = G

�
i
q1

,
j
q2

�

where i = 0, . . . , q1 − 1, j = 0, . . . , q2 − 1. From Propositions 1 and 2 we have the result.
Now, let us prove 3) case ii). Suppose that θ0

π
= p1

q1
, p1, q1 ∈ N, q1 �= 0, GCD(p1, q1) = 1

and γ0
π

is irrational, from (17) we have

Ln,mh(x0, y0) = Lnh1(x0)Lmh2(y0).
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We can consider
�
Lri(n)h1(x0)

�
n≥1

, i = 0, . . . , q1 − 1 subsequences of (Lnh1(x0))n≥1 with

density 1/q1 such that

lim
n→∞

Lrj(n),mh(x0, y0) = g

�
i
q1

�
Lmh2(y0), i = 0, . . . , q1 − 1.

Applying Proposition 3 we have

i (Ln,mh(x0, y0);A) ≥
1
q1

i (d2Lmh2(y0);A) =
|(d2g)

−1(A)|
q1

. (24)

and

i (Ln,mh(x0, y0);A) ≥
1
q1

i

�
g

�
i
q1

�
Lmh2(y0);A

�

=
|G−1

i
(A)|

q1
, i = 1, . . . , q1 − 1. (25)

where Gi(t) = G
�

i

q1
, t
�
= g

�
i

q1

�
g(t). Since the sum of indices can’t exceed 1 in inequalities

(24) and (25) we have equalities.
The proof of 3) case iii) is at all similar to the previous one interchanging the role of x

and y.
Let us conclude the proof of our theorem, considering the case in which both θ0

π
and γ0

π

are irrational. In this case, we have i(Lnh1(x0);A) = |g−1(A)| and i(Lmh2(y0);A) = |g−1(A)|
for every A Peano-Jordan measurable set, apply Theorem 4 to the sequences (Lnh1(x))n≥1

and to (Lmh2(y0))m≥1 and taking into account that Ln,mh(x0, y0) = Lnh1(x0)Lmh2(y0) the
claim easily follows. QED

3 Bivariate Shepard operators on discontinuous func-
tions

Among all different kinds of bivariate Shepard operators (see e.g. [9]), for the sake of
simplicity we concentrate our attention to the bivariate Shepard operators obtained as tensor
product of univariate Shepard operators

Sn,m,sf(x, y) :=
n�

i=0

m�

j=0

|x− xi|
−s

�
n

k=0 |x− xk|
−s

|y − yj |
−s

�
m

k=0 |y − yk|−s
f(xi, yj), (26)

where f is a suitable function defined in [0, 1]× [0, 1], s ≥ 1, n, m ≥ 1 and ((xi, yj))i,j is the
matrix (n+ 1)× (m+ 1) of equispaced nodes in [0, 1]× [0, 1], that is

xi :=
i
n
, i = 0, . . . , n, yj :=

j
m

, j = 0, . . . ,m.

The aim of this section is the study of their behavior on a particular class of bivariate
functions having suitable discontinuities defined as follows.

Consider z0 = (x0, y0) ∈ [0, 1] × [0, 1] and define the following function hz0,d : [0, 1] ×
[0, 1] → R,

hz0,d(x, y) :=

�
1, (x, y) ∈ [0, x0]× [0, y0],
0, otherwise,

(27)
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In order to state the convergence properties of the sequence (Sn,m,shz0,d)n≥1, for every s > 1
we consider the function gs : [0, 1[→ R defined as follows

gs(t) :=






ζ(s, t)
ζ(s, t) + ζ(s, 1− t)

, t ∈]0, 1[,

1, t = 0,

where ζ denotes the Hurwitz zeta function:

ζ(s, a) :=
+∞�

n=0

1
(n+ a)s

(28)

for all s, a ∈ C such that �[s] > 1 and �[a] > 0. The previous series is absolutely convergent
and its sum can be extended to a meromorphic function defined for all s �= 1.

We consider also Gs : [0, 1[×[0, 1[→ R defined as follow

Gs(x, y) := gs(x)gs(y).

We have the following result.

Theorem 4. Let z0 = (x0, y0) ∈ [0, 1]× [0, 1] and h := hz0,d be defined by (27). Then for
every s ≥ 1 the sequence (Sn,m,sh)n≥1 converges uniformly to h on every compact subset of
[0, 1]× [0, 1] \Q, where Q := ([0, x0]× { y0 }) ∪ ({x0 }× [0, y0]) .

As regards the behavior of the sequence (Sn,m,sh(x, y))n,m≥1 where (x, y) ∈ Q, we have:

1) if x ∈ [0, x0[ and y = y0, we have to consider the following cases:

i) if y0 = p2
q2

with p2, q2 ∈ N, q2 �= 0, GCD(p2, q2) = 1, then

i

�
Sn,m,sh(x, y0); gs

�
m2

q2

��
=

1
q2

m2 = 0, . . . , q2 − 1

if s > 1; while

i (Sn,m,sh(x, y0); 1) =
1
q2

, i

�
Sn,m,sh(x, y0);

1
2

�
= 1−

1
q2

if s = 1;

ii) if y0 is irrational, we have

i (Sn,m,sh(x, y0);A) = |g−1
s (A)|

for every Peano-Jordan measurable set A ⊂ R if s > 1; while

i

�
Sn,m,sh(x, y0);

1
2

�
= 1

if s = 1.

2) If x = x0 and y ∈ [0, y0[, we have to consider the following cases:

i) if x0 = p1
q1

with p1, q1 ∈ N, q1 �= 0, GCD(p1, q1) = 1, then

i

�
Sn,m,sh(x0, y); gs

�
m1

q1

��
=

1
q1

m1 = 0, . . . , q1 − 1,

if s > 1; while

i (Sn,m,sh(x0, y); 1) =
1
q1

, i

�
Sn,m,sh(x0, y);

1
2

�
= 1−

1
q1

if s = 1;
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ii) if x0 is irrational, we have

i (Sn,m,sh(x0, y);A) = |g−1
s (A)|

for every Peano-Jordan measurable set A ⊂ R if s > 1; while

i

�
Sn,m,sh(x0, y);

1
2

�
= 1

if s = 1.

3) If x = x0 and y = y0, we have to consider the following cases:

i) if x0 = p1
q1

and y0 = p2
q2

with pi, qi ∈ N, qi �= 0, GCD(pi, qi) = 1, i = 1, 2, then

i

�
Sn,m,sh(x0, y0);Gs

�
m1

q1
,
m2

q2

��
=

1
q1q2

,

where m1 = 0, . . . , q1 − 1, m2 = 0, . . . q2 − 1, if s > 1. While, if s = 1,

i

�
Sn,m,sh(x0, y0);

1
2

�
=

1
q1q2

, i

�
Sn,m,sh(x0, y0);

1
4

�
= 1−

1
q1q2

;

ii) if x0 = p1
q1

with p1, q1 ∈ N, q1 �= 0, GCD(p1, q1) = 1 and y0 is irrational, then

i

�
Sn,m,sh(x0, y0);

�
0, g

�
j
q1

���
≥

1
q1

, j = 0, . . . , q2 − 1

while

i

�
Sn,m,sh(x0, y0);

1
2

�
=

1
q1

, i

�
Sn,m,sh(x0, y0);

1
4

�
= 1−

1
q1

if s = 1;

iii) if x0 is irrational and y0 = p2
q2

with p2, q2 ∈ N, q2 �= 0, GCD(p2, q2) = 1, then

i

�
Sn,m,sh(x0, y0);

�
0, g

�
j
q2

���
≥

1
q2

, j = 0, . . . , q2 − 1;

while

i

�
Sn,m,sh(x0, y0);

1
2

�
=

1
q2

, i

�
Sn,m,sh(x0, y0);

1
4

�
= 1−

1
q2

if s = 1;

iv) if x0 and y0 are both irrational, then

i (Sn,m,sh(x0, y0);A) = |G−1
s (A)|

for every Peano-Jordan measurable set A ⊂ R if s > 1, while

i

�
Sn,m,sh(x0, y0);

1
4

�
= 1

if s = 1.
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Proof. We define the functions h1, h2 : [0, 1] → R as follows

h1(t) :=

�
1 if t < x0,
0 if t ≥ x0,

h2(t) :=

�
1 if t < y0,
0 if t ≥ y0,

(29)

then we can write
h(x, y) = h1(x)h2(y),

and consequently we have

Sn,mh(x, y) = Snh1(x)Smh2(y), (30)

moreover using [2, Theorem 3.1], it follows that

lim
n→∞

Snh1 = h1 uniformly on [0, 1] \ {x0 } (31)

and
lim

m→∞
Smh2 = h2 uniformly on [0, 1] \ { y0 }. (32)

Let us consider a compact set K ⊂ [0, 1]× [0, 1] \Q; there exist 0 ≤ a1 < x0 < a2 ≤ 1 and
0 ≤ b1 < y0 < b2 ≤ 1 such that

K ⊂ [0, a1]× [0, b1] ∪ [a2, 1]× [0, 1] ∪ [0, a2]× [b2, 1].

Firstly, let us consider (x, y) ∈ [0, a1]× [0, b1]; then

|Sn,mh(x, y)− h(x, y)| = |Sn,mh(x, y)− 1|

which is uniformly convergent to 0 as n,m → ∞ by (31) and (32). Therefore we can conclude
that

lim
n,m→∞

Sn,mh = h uniformly in [0, a1]× [0, b1].

Let us consider now (x, y) ∈ [a2, 1] × [0, 1]; for sufficiently large n,m ≥ 1 there exist
k0, �0 ≥ 1 such that

k0
n

≤ x0 <
k0 + 1

n
,

�0
m

≤ y0 <
�0 + 1
m

.

Notice that

|Smh2(y)| =

�
�0
j=0 |y −

j

m
|
−s

�
m

j=0 |y −
j

m
|−s

≤

�
�0
j=0 |y −

j

m
|
−s

�
�0
j=0 |y −

j

m
|−s +

�
m

j=�0+1 |y −
j

m
|−s

≤ 1 (33)

and this estimate is independent of y ∈ [0, 1] and n ≥ 1. Then

|Sn,mh(x, y)| ≤ |Snh1(x)|

where, by (31), the last term converges uniformly to 0 as n → ∞. So we can conclude that

lim
n,m→∞

Sn,mh = h uniformly in [a2, 1]× [0, 1].

Arguing similarly, exchanging the role between x and y, we get also that

lim
n,m→∞

Sn,mh = h uniformly in [0, a2]× [b2, 1].

The proof of the claims 1)-3) is at all similar to the one of Theorem 3, we have only to
use the decomposition (30) and [2, Theorem 3.1] in place of Theorem 1.



Behavior of bivariate interpolation operators at points of discontinuity 65

In particular, in the case 3)–i), if s = 1, using [2, Theorem 3.1], we can consider two
subsequences (Sk1(n),1h1(x0))n≥1 and (Sk2(n),1h1(x0))n≥1 of (Sn,1h1(x0))n≥1, converging re-
spectively to 1 and 1

2 , with density respectively 1
q1

and 1− 1
q1
. Then

lim
n→∞

Sk1(n),m,1h(x0, y0) = Smh2(y0),

lim
n→∞

Sk2(n),m,1h(x0, y0) =
1
2
Smh2(y0)

and the previous limits are uniform with respect to m ≥ 1 by (33). So we can apply Proposition
3 and we get

i

�
Sn,m,1h(x0, y0);

1
2

�
≥

1
q1

i

�
Sm,1h2(y0);

1
2

�
=

1
q1

and

i

�
Sn,m,1h(x0, y0);

1
4

�
≥

�
1−

1
q1

�
i

�
1
2
Sm,1h2(y0);

1
4

�
= 1−

1
q1

.

Finally, the previous inequalities become equalities by Proposition 2.
Arguing similarly the others cases of our claim can be proved. QED
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