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Abstract. We introduce an algebraic integer related to the irreducible complex characters
of finite groups and use it to obtain a generalization of a theorem of Burnside.
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1 Introduction

Let G be a finite group, C a conjugacy class of G and χ an irreducible
(complex) character of G . Let |C| denote the length of C . It is well known [see,

e. g., [3] , Corollary 3.5, and Theorem 3.6] that both χ(C) and |C|
χ(1) χ(C) belong

to the set I of the (complex) algebraic integers (over Z).

For a, b ∈ Z, let (a, b) denote the greatest common divisor of a and b .

In this note we observe (in Section 2) that (|C|,χ(1))
χ(1) χ(C) and (|C|,χ(1))

χ(1) |χ(C)|
are algebraic integers, and use this fact (in Section 3) to prove a generalization
(Corollary 5) of

1 Theorem. [Burnside] Let G be a finite group, C a conjugacy class of G
and χ an irreducible character of G of degree coprime to the length of C. Then
either χ(C) = 0 or |χ(C)| = χ(1).

Throughout this paper, “group” will mean “finite group” and “character”
will mean “complex character”; moreover, an “integer” will be an element of Z.

We also recall that I is a Dedekind ring and that I ∩Q = Z [ [4], Theorem
5.3]: thus, a rational algebraic integer is, tout court, an integer.

Last, we observe that z ∈ I if and only if z ∈ I (z being the complex
conjugate of z); therefore, if z ∈ I then |z| (= √z · z) ∈ I. Hence, in addition

to χ(C) and |C|
χ(1) χ(C), also |χ(C)| and |C|

χ(1) |χ(C)| belong to I .
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2 Some algebraic integers related to group theory

2 Proposition. The following hold:

(a) Let z ∈ I, and k, m ∈ Z, m �= 0. Then k
m z ∈ I if and only if (k,m)

m z ∈
I.

(b) Let G be a group, χ an irreducible character of G and C a conjugacy class
of G. The complex numbers

( |C| ,χ(1))
χ(1)

χ(C) and
( |C| ,χ(1))

χ(1)
|χ(C)|

belong to I.
Proof. If w ∈ I then also hw ∈ I for any h ∈ Z . So, to prove (a) we only

have to show that if k
m z ∈ I then (k,m)

m z ∈ I. Writing

(k,m) = rk + sm for suitable r, s ∈ Z

we obtain that (k, m) z
m

(
being equal to (rk + sm) z

m = r k
m z + sz

)
is a

Z-linear combination of algebraic integers, hence is itself an algebraic integer.
Now (b) is obvious, because |C|

χ(1) χ(C) and |C|
χ(1) |χ(C)| are algebraic inte-

gers. QED

In the following, we shall refer to the algebraic integer (|C|,χ(1))
χ(1) χ(C) as the

standard algebraic integer of the pair (χ , C) . Note that the “classical” algebraic

integers χ(C) and |C|
χ(1) χ(C) are integer multiples of it.

3 The Forbidden Annulus Theorem

We now obtain a generalization of Burnside’s Theorem 1 by exploiting the
standard algebraic integer of the pair (χ , C).

Let u be an algebraic integer and let

xr + ar−1x
r−1 + · · ·+ a1x+ a0

be the minimal (monic) polynomial of u over Q. By Gauss’ lemma its coef-
ficients are rational integers; we call |a0| the pseudo-norm of u.

3 Theorem. [Forbidden Annulus Theorem] Let d be a positive integer, z a
sum of d complex roots of unity and q a positive rational such that

q
z

d
is an algebraic integer.
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Let r be the algebraic degree of q z
d over Q, and t its pseudo-norm. Then

the real number |z| does not belong to the open interval(
0,

dt

qr

)
.

Proof. We may assume that z �= 0. We have to show that |z| ≥ dt/qr.
Let λ1 := q z

d and let p(x) := xr+· · ·+a0 be the minimal (monic) polynomial
of λ1 over Q (so that t = |a0|).

If r = 1, then p(x) = x + a0 (a0 �= 0) so that 0 = p(λ1) = λ1 + a0 i. e.
|z| = dt

q ; hence we may suppose that r > 1.

Let us assume by contradiction that |z| < dt
qr ; from the definition of λ1 we

obtain that

|λ1| < t

qr−1
. (1)

Let λ1, λ2, . . . , λr be the algebraic conjugates of λ1. Since λ1, λ2, . . . , λr are
exactly the roots of the polynomial p(x),

t = |λ1| · |λ2| · · · · · |λr| .
By hypothesis,

z = ε1 + ε2 + · · ·+ εd for some roots of unity εi.

Then

z = εm1 + εm2 + · · ·+ εmd for certain mi ∈ N

where ε is a suitable root of unity. Thus we can rewrite λ1 as

λ1 := q
z

d
=

q

d
(εm1 + εm2 + · · ·+ εmd)

and its algebraic conjugates as

λi =
q

d

(
εs

(i)
1 + εs

(i)
2 + · · ·+ εs

(i)
d

)
i := 2, 3, . . . , r

for certain s
(i)
1 , s

(i)
2 , . . . , s

(i)
d ∈ N [see, e.g., [4], Proposition 5.2].

Thus for i := 2, 3, . . . , r we have

|λi| = q

d
·
∣∣∣εs(i)1 + εs

(i)
2 + · · ·+ εs

(i)
d

∣∣∣ ≤
≤ q

d
·
(∣∣∣εs(i)1

∣∣∣+ ∣∣∣εs(i)2

∣∣∣+ · · ·+ ∣∣∣εs(i)d

∣∣∣) =
q

d
d = q. (2)
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From (1) and (2) we finally obtain

t = |λ1| · |λ2| · · · · · |λr| < t

qr−1
· qr−1 = t

a contradiction. QED

In the above theorem, any appropriate choice of the positive rational q pro-
vides a “forbidden annulus” (and the smaller q is, the larger the annulus we
get).

Let Re(z) and Im(z) denote the real and imaginary part of the complex
number z. Since 2Re(z) and 2 Im(z) are in I whenever z ∈ I, analogous bounds
on Re(z) and Im(z) can be obtained by mimicking the above proof.

We now specialize to groups.

4 Theorem. Let G be a group, χ an irreducible character of G and C a
conjugacy class of G. Take q ∈ Q+ such that

q
χ(C)
χ(1)

is an algebraic integer

and let r be its algebraic degree over Q, and t its pseudo-norm. Then the
real number |χ(C)| does not belong to the open interval(

0,
χ(1)t

qr

)
.

Proof. Let d := χ(1). Let k be the order of any g ∈ C; then [see e. g. [4],
pag. 59]

χ(C) = ε1 + ε2 + · · ·+ εd for certain k-th roots of 1.

Now apply Theorem 3 (with z := χ(C)) to obtain the result. QED

Finally we observe that the standard algebraic integer of the pair (χ, C)
gives (|C| , χ(1)) as a possible value of q in Theorem 4, and we obtain

5 Corollary. Let G be a group, χ an irreducible character of G, C a con-
jugacy class of G, r the algebraic degree of χ(C) over Q and t the pseudo-norm

of (|C| , χ(1)) χ(C)
χ(1) . Then the real number |χ(C)| does not belong to the open

interval (
0,

χ(1)t

((|C| , χ(1)))r

)
.
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4 Final remarks

(1) When (|C| , χ(1) = 1), Corollary 5 yields Burnside’s Theorem 1.

(2) It is intuitive that, for a given positive integer k, the modulus of a sum
of k−th roots of unity (if non-zero) cannot be arbitrarily small (think of
them as unit vectors in the complex plane). The problem of how small this
sum can be has been already addressed by several authors [see e. g. [2]
and [5]], but no general result seems to have emerged which can be useful
in our context.

(3) It is natural to ask whether there exist any other forbidden annuli that
could be described in similar terms. For example, how close can χ(C) get
to χ(1)? Special cases of this problem are discussed, e.g., in [1].

(4) As the group A5 shows, the integer r in the statement of Corollary 5 cannot
be replaced, in general, by a smaller integer. However, since |χ(C)| ∈ I,
if it is not integer it is irrational: hence, in such a case, |χ(C)| is strictly

greater than
χ(1)t

((|C| , χ(1)))r
.
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