Discrimination and Classification model from Multivariate Exponential Power Distribution
Abstract
References
item Agro, C. (1995): Maximum likelihood estimation for the exponential power function parameters.
item Aitchison, J. & Silvey, S.D. (1958): Maximum likelihood estimation of parameters subject to restraints. Ann. Math. Stat. , 29, 813-829.
item Andrews, D. F. (1972), Plots of high-dimensional data, Biometries, 28, 125-136.
item Cox, D.R. (1966), Some procedures associated with the logistic qualitative response curve, Research Ropers in Statistics: Festschrift for J. Neyman, (F.N.David, Ed.), Wiley, London, 55-71.
item Day, N.E. & Kerridge, D.F. (1967), A general maximum likelihood discriminant, Biometrics, 23, 313-323.
item Ganesalingam S $(1989)$. Classification and Mixture Approaches to Clustering via Maximum Likelihood. Applied Statistics, 38(3) 455-466
item Gomez, E., Gomez-Villegas, M.A., and Marin, J.M.$(1998)$ '' A Multivariate Generalization of the Power Exponential Family of Distributions,'' Communications in Statistics, Theory and Methods, 27,pp. 589-600.
item Kendall, M.G. $(1975)$ Multivariate Analysis. New York: Hafner Press.
item Olosunde, A.A. $(2013)$: On Exponential Power Distribution And Poultry Feeds Data: A Case Study. textit{Journal Iran Statistical Society}. $Vol. 12(2),pp. 253-270$.
item Lindsey, J.K. (1999). Multivariate Elliptically Contoured Distributions for Repeated
Measurements. Biometrics 55, 1277-1280.
item Johnson, R.A. and Wichern, D.W. $(2006)$. Applied Multivariate Statistical Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.
item Hands, D.J. and Henley, W.E. $(1997)$. Statistical Classification Methods in Consumer Credit Scoring: A Review. J.R. Statistist. Sos,. A volume 160, part 3, pp 523-541.
item Hands, D. J. $(1981)$. Discrimination and classification. Wiley; Chichester. volume 218 pp.76
Full Text: pdf