Spatio-Temporal Movements in Team Sports: A Visualization approach using Motion Charts
Abstract
References
Arbia, G., Espa, G. and Quah, D. (2008), `A class of spatial econometric methods in the empirical analysis of clusters of firms in the space', Empirical Economics 34(1), 81-103.
Bolt, M. (2015), `Visualizing water quality sampling-events in florida', ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(4), 73.
Bradley, P., O'Donoghue, P., Wooster, B. and Tordo, P. (2007), `The reliability of prozone matchviewer: a video-based technical performance analysis system', International Journal of Performance Analysis in Sport 7(3), 117{129.
Brillinger, D. R. (2007), `A potential function approach to the
ow of play in soccer', Journal of Quantitative Analysis in Sports 3(1).
Brillinger, D. R. (2008), `Modelling spatial trajectories', pp. 463-475.
Brillinger, D. R., Preisler, H. K., Ager, A. A. and Kie, J. G. (2004),`An exploratory data analysis (eda) of the paths of moving animals', Journal of statistical planning and inference 122(1), 43-63.
Calenge, C., Dray, S. and Royer-Carenzi, M. (2009), `The concept of animals' trajectories from a data analysis perspective', Ecological informatics 4(1), 34-41.
Calenge, C. et al. (2007), `Exploring habitat selection by wildlife with adehabitat', Journal of Statistical Software 22(6), 2-19.
Carpita, M., Sandri, M., Simonetto, A. and Zuccolotto, P. (2013), `Football mining with r', Data Mining Applications with R .
Carpita, M., Sandri, M., Simonetto, A. and Zuccolotto, P. (2015), `Discovering the drivers of football match outcomes with data mining', Quality Technology & Quantitative Management 12(4), 561-577.
Cervone, D., DAmour, A., Bornn, L. and Goldsberry, K. (2016), `A multiresolution stochastic process model for predicting basketball possession outcomes', Journal of the American Statistical Association (just-accepted), 1-45.
Couceiro, M. S., Clemente, F. M., Martins, F. M. and Machado, J. A. T. (2014), `Dynamical stability and predictability of football players: the study of one match', Entropy 16(2), 645-674.
Fonseca, S., Milho, J., Travassos, B. and Araujo, D. (2012), `Spatial dynamics of team sports exposed by voronoi diagrams', Human movement science 31(6), 1652-1659.
Fortune, S. (1987), `A sweepline algorithm for voronoi diagrams', Algorithmica 2(14), 153-174.
Gesmann, M., de Castillo, D. and Gesmann, M. M. (2013), `Package googlevis', Interface between R and the Google Chart Tools .
Heinz, S. (2014), `Practical application of motion charts in insurance', Available at SSRN 2459263 .
Hilpert, M. (2011), `Dynamic visualizations of language change: Motion charts on the basis of bivariate and multivariate data from diachronic corpora', International Journal of Corpus Linguistics 16(4), 435-461.
Kim, K., Grundmann, M., Shamir, A., Matthews, I., Hodgins, J. and Essa, I. (2010), Motion elds to predict play evolution in dynamic sport scenes, in `Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on', IEEE, pp. 840-847.
Moura, F. A., Martins, L. E. B., Anido, R. D. O., De Barros, R. M. L. and Cunha, S. A. (2012), `Quantitative analysis of brazilian football players' organisation on the pitch', Sports Biomechanics 11(1), 85-96.
Passos, P., Davids, K., Araujo, D., Paz, N., Minguens, J. and Mendes, J. (2011), `Networks as a novel tool for studying team ball sports as complex social systems', Journal
of Science and Medicine in Sport 14(2), 170-176.
Perin, C., Vuillemot, R. and Fekete, J.-D. (2013), `Soccerstories: A kick-o for visual soccer analysis', IEEE transactions on visualization and computer graphics 19(12), 2506-2515.
Saka, C. and Jimichi, M. (2015), `Inequality evidence from accounting data visualisation', Available at SSRN 2549400 .
Santori, G. (2014), Application of interactive motion charts for displaying liver transplantation data in public websites, in `Transplantation proceedings', Vol. 46, Elsevier, pp. 2283-2286.
Santos, J. L., Govaerts, S., Verbert, K. and Duval, E. (2012), Goal-oriented visualizations of activity tracking: a case study with engineering students, in `Proceedings of the 2nd
international conference on learning analytics and knowledge', ACM, pp. 143-152.
Schwager, M., Anderson, D. M., Butler, Z. and Rus, D. (2007),
`Robust classication of animal tracking data', Computers and Electronics in Agriculture 56(1), 46-59.
Taki, T., Hasegawa, J.-i. and Fukumura, T. (1996), Development of motion analysis system for quantitative evaluation of teamwork in soccer games, in `Image Processing, 1996. Proceedings., International Conference on', Vol. 3, IEEE, pp. 815-818.
Travassos, B., Araujo, D., Duarte, R. and McGarry, T. (2012), `Spatiotemporal coordination behaviors in futsal (indoor football) are guided by informational game constraints', Human Movement Science 31(4), 932-945.
Wasserman, S. and Faust, K. (1994), Social network analysis: Methods and applications, Vol. 8, Cambridge university press.
Wei, X., Lucey, P., Vidas, S., Morgan, S. and Sridharan, S. (2014), Forecasting events using an augmented hidden conditional random field, in `Asian Conference on Computer
Vision', Springer, pp. 569-582.
Yue, Y., Lucey, P., Carr, P., Bialkowski, A. and Matthews, I. (2014), Learning fine grained spatial models for dynamic sports play prediction, in `2014 IEEE International
Conference on Data Mining', IEEE, pp. 670-679.
Full Text: pdf