Penalized Poisson Regression Model using adaptive modified Elastic Net Penalty


Abstract


Variable selection in count data using penalized Poisson regression is one of the challenges in applying Poisson regression model when the explanatory variables are correlated. To tackle both estimate the coefficients and perform variable selection simultaneously, elastic net penalty was successfully applied in Poisson regression. However, elastic net has two major limitations. First it does not encouraging grouping effects when there is no high correlation. Second, it is not consistent in variable selection. To address these issues, a modification of the elastic net (AEN) and its adaptive modified elastic net (AAEM), are proposed to take into account the small and medium correlation between explanatory variables and to provide the consistency of the variable selection simultaneously. Our simulation and real data results show that AEN and AAEN have advantage with small, medium, and extremely correlated variables in terms of both prediction and variable selection consistency comparing with other existing penalized methods.


DOI Code: 10.1285/i20705948v8n2p236

Keywords: high dimensional; penalization; Poisson regression; LASSO; elastic net.

References


Algamal, Z. Y. (2012). Diagnostic in poisson regression models. Electronic Journal of Applied Statistical Analysis, 5(2), 178-186.

Algamal, Z. Y., & Lee, M. H. (2015). Adjusted Adaptive LASSO in High-dimensional Poisson Regression Model. Modern Applied Science, 9(4), 170-177. doi: 10.5539/mas.v9n4p170

Anbari, M., & Mkhadri, A. (2014). Penalized regression combining the L 1 norm and a correlation based penalty. Sankhya B, 76(1), 82-102. doi: 10.1007/s13571-013-0065-4

Bondell, H. D., & Reich, B. J. (2008). Simultaneous regression shrinkage, variable Selection, and supervised clustering of predictors with OSCAR. Biometrics, 64(1), 115-123. doi: 10.1111/j.1541-0420.2007.00843.x

Bühlmann, P., Rütimann, P., van de Geer, S., & Zhang, C.-H. (2013). Correlated variables in regression: Clustering and sparse estimation. Journal of Statistical Planning and Inference, 143(11), 1835-1858. doi: http://dx.doi.org/10.1016/j.jspi.2013.05.019

El Anbari, M., & Mkhadri, A. (2014). Penalized regression combining the L1 norm and a correlation based penalty. Sankhya B, 76(1), 82-102. doi: 10.1007/s13571-013-0065-4

Fan, Y., & Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3), 531-552. doi: 10.1111/rssb.12001

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1-22.

Ghosh, S. (2011). On the grouped selection and model complexity of the adaptive elastic net. Statistics and Computing, 21(3), 451-462. doi: 10.1007/s11222-010-9181-4

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.

Hossain, S., & Ahmed, E. (2012). Shrinkage and penalty estimators of a Poisson regression model. Australian & New Zealand Journal of Statistics, 54(3), 359-373. doi: 10.1111/j.1467-842X.2012.00679.x

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.

Jianqing, F., & Jinchi, L. (2011). Nonconcave penalized likelihood with NP-dimensionality. Information Theory, IEEE Transactions on, 57(8), 5467-5484. doi: 10.1109/TIT.2011.2158486

Park, M. Y., & Hastie, T. (2007). L1-regularization path algorithm for generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 659-677. doi: 10.1111/j.1467-9868.2007.00607.x

Pourahmadi, M. (2013). High-dimensional covariance estimation: with high-dimensional data. Hoboken, New Jersey: John Wiley & Sons.

Sepkoski, J. J., & Rex, M. A. (1974). Distribution of freshwater mussels: coastal rivers as biogeographic islands. Systematic Biology, 23(2), 165-188.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267-288.

Tutz, G., & Ulbricht, J. (2009). Penalized regression with correlation-based penalty. Statistics and Computing, 19(3), 239-253.

Wang, Z., Ma, S., Zappitelli, M., Parikh, C., Wang, C.-Y., & Devarajan, P. (2014). Penalized count data regression with application to hospital stay after pediatric cardiac surgery. Statistical Methods in Medical Research. doi: 10.1177/0962280214530608

Zeng, L., & Xie, J. (2011). Group variable selection for data with dependent structures. Journal of Statistical Computation and Simulation, 82(1), 95-106. doi: 10.1080/00949655.2010.529812

Zhou, D. X. (2013). On grouping effect of elastic net. Statistics & Probability Letters, 83(9), 2108-2112.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B-Statistical Methodology, 67, 301-320.

Zou, H., & Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 37(4), 1733-1751. doi: 10.1214/08-AOS625


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.