ClustOfVar-based approach for unsupervised learning: Reading of synthetic variables with sociological data
Abstract
References
Abdallah, H. and Saporta, G. (1998). Classification d’un ensemble de variables qualitatives. Revue de Statistique Appliquée, 46(4):5–26.
Arabie, P. and Hubert, L. (1994). Cluster analysis in marketing research. In Bagozzi, R. P., editor, Advanced methods of marketing research, pages 160–189. Blackwell, Cambridge, MA.
Burton, R. J. F. (2014). The influence of farmer demographic characteristics on environmental behaviour: A review. Journal of Environmental Management, 135:19–26.
Candau, J., Deuffic, P., Ginelli, L., Lewis, N., and Lyser, S. (2005). La prise en compte de l’environnement par les agriculteurs. Résultats d’enquête. Rapport d’étude, Cemagref.
Charrad, M. and Ben Ahmed, M. (2011). Simultaneous Clustering: A Survey. In Pattern Recognition and Machine Intelligence. Springer Berlin / Heidelberg.
Chavent, M., Kuentz, V., Liquet, B., and Saracco, J. (2011). ClustOfVar: An R Package for the Clustering of Variables. In The R User Conference.
Chavent, M., Kuentz-Simonet, V., Liquet, B., and Saracco, J. (2012a). ClustOfVar: An R Package for the Clustering of Variables. Journal of Statistical Software, 50(13):1–16.
Chavent, M., Kuentz-Simonet, V., and Saracco, J. (2012b). Orthogonal rotation in PCAMIX. Advances in Data Analysis and Classification.
Dhillon, I., Marcotte, E., and Roshan, U. (2003). Diametrical Clustering for Identifying Anticorrelated Gene Clusters. Bioinformatics, 19(13):1612–1619.
Kiers, H. (1991). Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. Psychometrika, 56(2):197–212.
Lerman, I. (1990). Foundations of the likelihood linkage analysis classification method. Applied Stochastics Models and Data Analysis, 7(1):63–76.
Lerman, I. (1993). Likelihood linkage analysis classification method : An example treated by hand. Biochimie, 75(5):379–397.
SAS Institute Inc. (2013). The varclus procedure. In SAS/STAT R 13.1 User’s Guide. SAS Institute Inc., Cary, NC.
Vichi, M. and Kiers, H. A. L. (2001). Factorial k-means analysis for two-way data. Computational Statistics & Data Analysis, 37(1):49–64.
Vichi, M. and Saporta, G. (2009). Clustering and Disjoint Principal Component Analysis. Computational Statistics & Data Analysis, 53(8):3194–3208.
Vigneau, E. and Chen, M. (2015). ClustVarLV: Clustering of Variables Around Latent Variables. R package version 1.3.2.
Vigneau, E. and Qannari, E. (2003). Clustering of variables around latent components. Communications in statistics Simulation and Computation, 32(4):1131–1150.
Full Text: pdf