Testing the Equality of Two Parametric Quantile Regression Curves : The Application for Comparing Two Data Sets


Abstract


This study aims to  compare the different between two data sets that having the relationship between the dependent and independent variables at each quantile using  testing the equality of  two parametric quantile regression functions, the conditional quantile regression and the conditional mean regression function are considered. The influence of outliers and the distribution of errors is also examined through a test statistic that is in the form of the empirical distribution function, applying the bootstrapping principle in the estimation of the critical value of the test statistic. The results show that the power of the test becomes greater as the sample size increases. However, with variables such as heavy-tailed distribution of errors or outliers, the conditional median regression function is more robust. An analysis of the actual data indicates consistent findings.

DOI Code: 10.1285/i20705948v9n1p17

References


Akritas, M. G., & Van Keilegom, I. (2001). Non‐parametric Estimation of the Residual

Distribution. Scandinavian Journal of Statistics, 28(3), 549-567.

Bera, A. K., Galvao, A. F., & Wang, L. (2014). On Testing the Equality of Mean and Quantile

Effects. Journal of Econometric Methods, 3(1), 47-62.

Chen, C. (2005). An introduction to quantile regression and the QUANTREG procedure.

In Proceedings of the Thirtieth Annual SAS Users Group International Conference. SAS

Institute Inc..

Freedman, D. A. (1981). Bootstrapping regression models. The Annals of Statistics, 9(6), 1218-1228.

King, E., Hart, J. D., & Wehrly, T. E. (1991). Testing the equality of two regression curves using linear

smoothers. Statistics & Probability Letters,12(3), 239-247.

Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric

Society, 33-50.

Koenker, R., & Hallock, K. (2001). Quantile regression: An introduction. Journal of Economic

Perspectives, 15(4), 43-56.

Kulasekera, K. B. (1995). Comparison of regression curves using quasi-residuals. Journal of the

American Statistical Association, 90(431), 1085-1093.

Kuruwita, C., Gallagher, C., & Kulasekera, K. (2014). Testing Equality of Nonparametric Quantile

Regression Functions. International Journal of Statistics and Probability, 3(1), p55.

Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models.

National Statistical Officer Thailand. (2002). Ministry ofInformation and Communication Technology,

The Analytical report of income distribution in theprovince level. Available online at:

http://service.nso.go.th/nso/nso_center/project/search_center/23project-th.htm

National Statistical Officer Thailand. (2004). Ministry ofInformation and Communication Technology,

The Analytical report of income distribution in theprovince level. Available online at:

http://service.nso.go.th/nso/nso_center/project/search_center/23project-th.htm.

National Statistical Officer Thailand. (2011). Statistical Forecasting Bureau, National Statistical.

Available online at: http://service.nso.go.th/nso/web/statseries/statseries01.html.

Pardo-Fernández, J. C., Van Keilegom, I., & González-Manteiga, W. (2007). Testing for the equality

of k regression curves. Statistica Sinica, 17(3), 1115.

Silverman, B. W., & Young, G. A. (1987). The bootstrap: To smooth or not to

smooth?. Biometrika, 74(3), 469-479.

Sun, Y. (2006). A consistent nonparametric equality test of conditional quantile functions. Econometric

Theory, 22(04), 614-632.


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.