A Novel Optimization Procedure in WRBNN for Time Series Forecasting
Abstract
References
Aldrich, E. (2013). wavelets: A package of funtions for computing wavelet
lters, wavelet transforms and multiresolution analyses. http://CRAN.Rproject.
org/package=wavelets. R package version 0.3-0.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J.
of Econometrics, 31:307{327.
Electronic Journal of Applied Statistical Analysis 15
Box, G. E. P. and Jenkins, G. M. (1976). Time series analysis: forecasting and
control. Holden-Day, San Francisco.
Engel, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates
of the variance of united kingdom in
ation. J. Econometrica, 50:987{1008.
Hansen (1999). Testing for linearity. J. of Economic Survey, 13(5):551{576.
Haykin, S. (1999). Neural networks: a comprehensive foundation. Prentice Hall.
Lee, T. H., White, H., and Granger, C. W. J. (1993). Testing for neglected nonlinearity
in time series models: a comparison of neural network methods and
alternative tests. J. of Econometrics, 56:269{290.
Murtagh, F., Starck, J. L., and Renaud, O. (2004). on neuro wavelet modeling.
Decision Support System, 37:475{490.
Narzo, A. F. D., Aznarte, J. L., and Stigler, M. (2009). tsDyn: Time se-
ries analysis based on dynamical systems theory. R package version 0.7,
http://stat.ethz.ch/CRAN/web/packages/tsDyn/ vignettes/tsDyn.pdf.
Ogden, R. T. (1997). Essential wavelets for statistical applications and data anal-
ysis. Birkhauser, Berlin.
Orr, M. J. L. (1996). Introduction to Radial Basis Function Networks. Centre for
Cognitive Science, University of Edinburgh.
Orr, M. J. L. (1999). Recent Advances in Radial Basis Function Networks. Centre
for Cognitive Science, University of Edinburgh.
Percival, D. B. andWalden, A. T. (2000). Wavelet methods for time series analysis.
CU Press, Cambridge.
Popoola, A. O. (2007). Fuzzy-wavelet method for time series analysis. PhD thesis.
Disertasi submitted for the degree of doctor of philosophy in Surey University.
R core team (2014). R: A Language and environment for statistical computing.
R Foundation for Statistical Computing, http://www.R-project.org/, Vienna,
Austria.
Renaud, O., Starck, J. L., and Murtagh, F. (2003). Prediction based on a multiscale
decomposition. Int. J. of Wavelets Multiresolution and Information Processing,
(2):217{232.
Rukun, S., Subanar, Rosadi, D., and Suhartono (2003). The adequateness of
wavelet based model for time series. J. Phys.: Conf. Ser., 423:doi:10.1088/1742{
/423/1/012010.
Samarasinghe, S. (2006). Neural network for applied science and engineering.
Auerbach Pub., New York.
Rukun et al.
Serroukh, A. (2012). Wavelet coecients cross-correlation analysis of time series.
Electronic Journal of Applied Statistical Analysis, 5(2):289{296.
Stigler, M. (2010). Threshold cointegration: overview and implementation in R. R
package version 0.7-2, http://stat.ethz.ch/CRAN/web/packages/tsDyn/
vignettes/ThCointOverview.pdf.
Terasvirta, T., Lin, C. F., and Granger, C. W. J. (1993). Power of the neural
network linearity test. J. of Time Series Analysis, 14(2):209{220.
Tong, H. (1990). Nonlinear Time Series: A Dynamic System Approach. Clarendon
Press, Oxford
Full Text: pdf