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Abstract: A continuous order-level inventory model is developed for 

deteriorating items with a ramp type demand function of time. A two parameter 

Weibull distribution is taken to represent the time to deterioration. The model is 

solved analytically by enumerating two possible shortage models to obtain the 

optimal solution of the problem. The method is illustrated by two numerical 

examples and sensitivity analysis of the optimal solutions with respect to the 

parameters of the system is carried out. 
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1. Introduction 
 

In formulating inventory models, two facts of the problem have been of growing interest, one 

being the deterioration of items, the other being the variation in the demand rate. Time-varying 

demand patterns are usually used to reflect sales in different phases of the product life cycle in 

the market. For example, the demand for inventory items increases over time in the growth phase 

and decreases in the decline phase. An inventory model with a linear trend in demand was 

initially developed by [11]. After that, many researchers (see for example, [10], [21],[19], [28], 

[15], [3], [2], [14], [33], [8], [18], [20], [16], [17], [4], [7], [31], [27], [6] and [29]) have 

incorporated a time varying demand rate into their models for deteriorating items with or without 

shortages under a variety of circumstances. 

The effect of deterioration of physical goods cannot be disregarded in many inventory systems. 

Deterioration is defined as decay, damage and spoilage. Food items, photographic films, drugs, 

pharmaceuticals, chemicals, electronic components and radioactive substances are some 
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examples in which sufficient deterioration may occur during the normal storage period of the 

items and consequently this loss must be taken into account while analyzing the inventory 

system. One of the earliest research works on a continuously decaying inventory for a constant 

demand was analyzed in [12]. An order-level inventory model for deteriorating items with a 

constant rate of deterioration was considered in [30]. An order-level inventory model was 

developed in [1] by correcting and modifying the errors in the analysis of [30]. An inventory 

model with the assumptions of variable deterioration rate of two-parameter Weibull distribution, 

constant demand rate and no shortages was formulated in [9]. A more general model was 

developed in [14] by taking a time-proportional deterioration rate, finite production rate 

proportional to the demand rate, time-dependent demand rate and shortages. An extensive survey 

of literature concerning inventory models for deteriorating items was discussed in [24] and [26]. 

It was observed in [5] while studying the difficulties of fitting empirical data to mathematical 

distributions, that both leakage failure of dry batteries and life expectancy of ethical drugs could 

be expressed in terms of Weibull distribution.  

In these cases the rate of deterioration increased with age or longer the items remain unused, 

higher the rate at which they failed. The work [5] prompted [9] to develop an inventory model 

for deteriorating items with variable rate of deterioration. They used the two parameter Weibull 

distribution to represent the distribution of the time to deterioration. The instantaneous rate 

function Z(t) for a two parameter Weibull distribution is given by: 

 

Z( t )  =  α  β  t
( β - 1 )

 

 

where α is the scale parameter,  α > 0;  β is the shape parameter,  β > 0; t is  the time of 

deterioration, t > 0. This model was further generalized in [25] by taking a three-parameter 

Weibull distribution deterioration rate. An inventory model with a finite rate of replenishment 

and a two parameter Weibull distribution deterioration rate was developed in [23]. The models 

developed by [9], [23] and [25] did not allow shortages in inventory and used a constant demand 

rate. Recently an inventory model with a time-quadratic demand rate and shortages was 

developed in [13]. They also used a two parameter Weibull distribution to represent the 

distribution of the time to deterioration. 

An order-level inventory model for deteriorating items, where the demand rate is a ramp type 

function of time was discussed in [22]. This type of demand rate is generally seen in the case of 

any new brand of consumer goods coming to the market. The demand rate for such items 

increases with time up to a certain time and then ultimately stabilizes and becomes constant. It is 

believed that this type of demand rate is quiet realistic. An order level inventory system for 

deteriorating items with a ramp type demand function of time and two possible types of 

shortages was developed in [32]. 

In the present paper, we have developed three continuous order-level inventory models for 

deteriorating items with shortages. In all these models, the demand rate is taken as a ramp type 

function of time and deterioration rate is assumed to follow a two-parameter Weibull 

distribution. Analytical solutions of the models are discussed and are illustrated with the help of 

numerical examples. Sensitivity of the optimal solutions with respect to changes in different 

parameter values is also examined. 
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2. Notations and Modeling Assumptions 
 

The mathematical models of the deterministic inventory replenishment problems are developed 

with the following notations and assumptions: 

 

i. The demand rate R(t) is assumed to be a ramp type function of time : 

R(t) = D0[ t – (t – μ) H( t – μ) ], D0 > 0 

Where H(t – μ) is the well known Heaviside’s function defined as follows: 

H(t – μ) = 1, t ≥  μ 

= 0, t < μ 

ii. Ch is the inventory holding cost per unit per unit of time. 

iii. A is the replenishment cost per cycle. 

iv. Cs is the shortage cost per unit per unit of time. 

v. Cd is the unit deterioration cost. 

vi. Replenishment is instantaneous and lead time is zero. 

vii. T is the fixed length of each ordering cycle. 

viii. S is the maximum inventory level of each ordering cycle. 

ix. I(t) is the on-hand inventory at time t  over [0 , T]. 

x. Shortages are allowed and are fully backlogged. 

xi. The distribution of the time to deterioration follows a two parameter 

Weibull distribution: 

Z(t) = α β t
(β-1)

 

where α is the scale parameter, α > 0; β is the shape parameter, β > 0;  

t is the time of deterioration, t > 0. 

 

 

3. Mathematical Models and its analysis 
 

The objective of the inventory problem here is to determine the optimal order quantity so as to 

keep the total relevant cost minimum. Based on whether the inventory starts with shortages or 

not, there are three possible models under the assumptions described above. 

 

3.1 Model I: The Inventory model starts without shortages 

In this subsection, we will analyze the deterministic inventory model for deteriorating items 

where the inventory starts without shortages. Replenishment is made at time t= 0 when the 

inventory level is at its maximum, S. From t= 0 to t= t1 time units, the inventory level decreases 

due to demand and deterioration. At time t1, the inventory level reaches zero, thereafter, 

shortages are allowed to occur during the time interval (t1, T) and all of the demand during this 

period is backlogged. The total number of backlogged items is replaced by the next 

replenishment.  

The inventory level of the system at any time t over [0, T] can be described by the following 

equations: 

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - R(t) ,   I(0) = S , I( t1) = 0,   0 ≤ t ≤ t 1 
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dt

tdI )(
 = - R(t) ,  I( t1) = 0,  t1 ≤ t < T  

 

Let us assume that 0 < μ < t1; 

Therefore, the above governing equations become: 

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - Do t ,   I(0) = S,   0 ≤ t ≤ μ     (1) 

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - Do μ,   I( t1) = 0,   μ ≤ t ≤ t1     (2) 

 

dt

tdI )(
  = - Do μ,   t 1 ≤ t < T         (3) 

 

From differential equation (1), we have: 

 

I (t) e

 t
= - D0 dtt

t
t


0

e
  + S 

                 = - D0 dt
t

tt

t

 

0

22

)
2

1(


 
  + S 

 

neglecting α
3
 and higher powers of α (since 0 < α << 1 ). 

 

I(t) = S -  
2

2
0tD

- α S t
β
 + 

( 2) 2 (2 2)2 2

0 0( )

2( 2) 2 4( 1)( 2)

D t D tS t
    

  

 

  
  

, 0 ≤ t ≤ μ     (4) 

 

From differential equation (2), we have: 

 

I (t) e

 t
= - D0 µ dtt

t
t




 

e  + C1 

                = - D0 µ dt
t

t

t

 




 

 )
2

1(
22

 + C1 

 

neglecting α
3
 and higher powers of α ( since  0 < α << 1 ). 

 

Now I(t1) = 0 gives: 
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C1 =  D0 µ dt
t

t

t

 
1

)
2

1(
22




 



 
 

I (t ) = D0 µ  [ A1 – t - 



















)1(
 

)1(
1

2

1






t

t t 
β
 + 

+ 
)12)(1(

)(

2)1(

)12(22
1

2)1(

















tttt
]      (5) 

 

where A1 = t1 + 
)12(2)1(

)12(
1

2)1(
1

















tt
 , μ ≤ t ≤ t1 

 

From differential equation (3), we have: 

 

I(t) = - D0 µ ( t – t1 ), t 1 ≤ t < T        (6) 

 

Now the differential equations (1) and (2) should give the same values of I(t) at t = µ. So after 

simplification we have: 

 

S =  D0 µ  [ A1 – 
2


 -  

)22)(12(2)2)(1(

)12(2)1(

















] 

 

The total number of items deteriorated during [0, t1] is: 

 

DT = Initial inventory – Total demand during [0, t1] 

      = S – [ dttD


0

0  + dtD

t


1

0



  ] 

      = S - D0 µ ( t1 - 
2


)         (7) 

 

The inventory accumulated over the period [0, t1] is: 

 

HT =  dttI

t


1

0

)(  = dttI


0

)(  + dttI

t


1

)(



 = I1 + I2      (8) 

 

Using equations (4) and (5) and evaluating the integrals, we get: 

 

I1 =  S µ - 
6

3
0D

- α S 
)1(

1







 

 + 
)32)(2)(1(4

)(

)12(2)3)(2(2

)32(
0

2122)3(
0





















 
DSD

, 
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I2 =  D0 µ [ A1  (t  - µ)  –
2

)( 22
1 t

-



















)1(
 

)1(
1

2

1






t

t
)1(

)( 11
1



 



 
t

  

+ 
)22)(12)(1(

)()(

)12(2

)(

)2)(1(

)( 2222
1

21212
11

222
1













 











 
tttt

] 

 

Using equation (6), the shortage accumulated during the period [t1, T) is: 

 

BT = - 
T

t

dttI

1

)(  =  
2

)( 2
10 tTD 

,        (9) 

 

Using equations (4) to (9), we can get the total relevant cost of the system during the time 

interval [0, T) which is: 

 

X = A + Cd DT +Ch HT + Cs BT  

 

Therefore average total cost of the system per unit time is: 

 

C1(t1, T) = 
T

X
           (10) 

 

To minimize C1 the optimal value of t1 and T (denoted by t1* and T*) can be obtained by solving 

the equations: 

 

1

1

t

C




 = 0, 

T

C



 1 = 0, 

 

provided t1* and T* satisfy the following convexity condition: 

 





































2

1

2

1

1

2

1

1

2

2

1

1

2

T

C

tT

C

Tt

C

t

C

 is positive definite. 

 

The total backorder amount at the end of the cycle from equation (8) is D0µ(T* – t1*). Therefore 

the optimal order quantity, Q* is: 

 

Q* = S* + D0 µ (T* – t1*) 
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3.1 Model II: The Inventory model starts with shortages 

 

Here we have considered the continuous deterministic inventory model for deteriorating items, 

where the inventory is allowed to start with shortages. Depending on the procurement time t1, 

two different circumstances may arise: (i) μ < t1 and (ii) μ > t1. The inventory system starts with 

zero inventory level at t = 0 and shortages are permitted to accumulate up to t1. Replenishment is 

done at time t1. The quantity received at t1 is used partly to make up for the shortages 

accumulated in the previous cycle from time 0 to t1. The rest of the procurement accounts for the 

demand and deterioration in [t1, T]. The inventory level gradually falls down to zero at time T. 

The inventory level of the system at time t over the period [0, T] can be modeled by the 

following equations: 

 

dt

tdI )(
 = - R(t) , 0 ≤ t < t1  

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - R(t) , t1 ≤ t ≤ T 

 

Situation I: (µ < t1) 

 

In this situation, the above equations become: 

 

dt

tdI )(
 =- Do t,   I (0 )  =0 ,  0 ≤ t ≤ μ        (11) 

 

dt

tdI )(
  = - Do μ,    μ ≤ t < t1         (12) 

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - Do μ,   I (T )  =  0 ,   t1 ≤ t ≤ T     (13) 

 

The solutions of the differential equations (11) – (13) are: 

 

I(t) = - 
2

2
0tD

, 0 ≤ t ≤ μ         (14) 

 

= D0 µ ( 
2


- t ), μ ≤ t < t1         (15) 

= D0 µ [ A2 – t - 



















)1(
 

)1(2






T
T t 

β
 + 

)12)(1(

)(

2)1(

)12(222)1(

















ttTt
] 

 



Samanta, G.P., Bhowmick, J., Electron. J. App. Stat. Anal., Vol 3, Issue 2 (2010), 92 – 114. 

99 

A2 = T + 
)12(2)1(

)12(2)1(














  TT
, t1 ≤ t ≤ T       (16) 

 

Since I(t1) =S, 

 

S =  D0 µ [ A2 – t1 - 


















)1(
 

)1(2






T
T t1 

β
 + 

)12)(1(

)(

2)1(

)12(
1

22
1

2)1(
1

















ttTt
] 

 

As discussed in the previous Situation I, using equations (14) – (16) we have 

 

DT= S - D0 µ (T - t1)          (17) 

 

HT  = D0 µ [ A2 (T – t1 )  –
2

)(
2

1
2 tT 

-



















)1(
 

)1(2






T
T

)1(

)(
1

1
1








 tT
 

+ 
)22)(12)(1(

)()(

)12(2

)(

)2)(1(

)(
22

1
22212

1
1222

1
2



























 tTtTTtT

]   (18) 

 

BT = 
6

0D
{ µ

2
 + 3 t1 ( t1 -µ ) }        (19) 

 

Using equations (17) – (19) the average total cost of the system per unit time is: 

 

C2( t1, T )=
 

T

BCHCDCA TsThTd 
       (20) 

 

To minimize C2 the optimal value of t1 and T can be obtained by solving the equations: 

 

1

2

t

C




 = 0,  

T

C



 2  = 0 

 

provided t1* and T* satisfy the following convexity condition: 

 





































2

2

2

1

2

2

1

2

2

2

1

2

2

T

C

tT

C

Tt

C

t

C

 is positive definite. 

 

The total backorder amount for the entire cycle from equations (14) and (15) is: 
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2

2
0D

+ D0 µ ( t1* -  µ ). 

 

Therefore the optimal order quantity, Q* is: 

 

Q* = S* + 
2

2
0D

+ D0 µ ( t1* -  µ ) 

      = S* + D0 µ ( t1* - 
2


) 

 

Situation II: (µ > t1) 

 

In this situation, the above equations become: 

 

dt

tdI )(
 = - Do t,      0 ≤ t < t1         (21) 

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - Do t, t1 ≤ t ≤ μ       (22) 

 

dt

tdI )(
 + α β t 

(β-1)
  I(t) = - Do μ, μ ≤ t ≤ T       (23) 

 

The solutions of the differential equations (21) – (23) with the boundary conditions I(0) = I(T) = 

0 are: 

 

I(t) = - 
2

2
0tD

, 0 ≤ t < t1         (24) 

      = D0 [ µ A2 - A3 –
2

2t
+  αµ 




































)2(
 

)1(2

)1(
1







 


TT t 
β
  

      + 
)2)(1(4

)(

4

)2(

)2(2

)22(222)2(




















ttTt
], t1 ≤ t ≤ μ   (25) 

 

       = D0 µ  [ A2 – t - 



















)1(
 

)1(2






T
T t 

β
 + 

)12)(1(

)(

2)1(

)12(222)1(

















ttTt
] 

 

μ ≤ t ≤ T           (26) 

 

where A2 = T + 
)12(2)1(

)12(2)1(














  TT
 and  A3 =  

)22)(12(2)2)(1(2

)22(2)2(2















 
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Since I(t1) =S, from equation (25): 

 

S = D0 [ µ A2 - A3 –
2

2
1t + α µ 




































)2(
 

)1(2

)1(
1







 


TT t1 
β
 

 

+ 
)2)(1(4

)(

4

)2(

)2(2

)22(
1

22
1

2)2(
1





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Proceeding as in the earlier case, using equations (24) – (26) we get: 

 

DT = S + 
2

0D
 ( µ

2
 +  t1 

2
  -2 µT)        (27) 

 

HT = dttI

t




1

)(  + dttI

T




)(          (28) 

 

BT = 
6

3
10 tD

           (29) 

 

Therefore average total cost of the system per unit time is: 

 

C3 (t1, T) =  
 

T

BCHCDCA TsThTd 
       (30) 

 

To minimize C3 the optimal value of t1 and T can be obtained by solving the equations: 

 

1

3

t

C




 = 0, 

T

C



 3 = 0 

 

provided t1* and T* satisfy the convexity condition. The total backorder amount for the cycle 

from equation (24) is: 

 

2

*2
10 tD

. 

 

Therefore the optimal order quantity, Q* is: 

 

Q* = S* + 
2

*2
10 tD
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4. Numerical Examples 
 

Example 1: To illustrate the theory developed above, the following numerical example has been 

considered. Let the input parameters are as follows: 

 

A= 1500, Ch= 3, Cs= 15, Cd= 5, D0= 100, α= .001, β= 2, μ= 0.8 

 

For α = .001, β = 2 > 1 the deterioration rate of the items on stock gradually increases with time. 

Here Model I describes an inventory model which starts without shortages and Model II 

describes an inventory model which starts with shortages. 

In Model I, t1* represents the optimal point of time when stock vanishes due to continuous 

depletion as a result of demand and deterioration while shortages start occurring. However, in 

Model II, the inventory starts with shortages and t1* represents the optimal point of time when 

replenishment takes place. Then the shortage amount is met from the replenished items. 

Applying the procedure developed in the previous section, the optimal solutions for Model I and 

Model II are those given in Table1. It is numerically verified that these solutions satisfy the 

convexity condition. 

 
Table 1. Comparison of optimal solutions of the inventory systems of Example 1(μ = 0.8) 

Optimal Model I Model II 

solution Situation I:  μ < t1      Situation II:  μ > t1 

t1* 3.170827 0.98707          ............. 

T* 3.812628 3.896163          ............. 

S* 222.516 234.058          ............. 

Q* 273.86 281.024           ............ 

C* 770.162 (C1*) 709.88(C2*)           ............ 

 

From Table1 we observe that the ordering strategy for Model II (Situation I: μ < t1) is more 

economical than that for Model I. Though the optimal order quantity Q*, the maximum 

inventory level S* and the optimal cycle length T* are greater in case of Model II, the average 

total cost of the system C2* of Model II is 
770.162 709.88

100
770.162

 
 

 
 ≈ 7.83 % less than the 

average total cost of the system C1* of Model I.  

Therefore the percent benefit of Model II over Model I is 7.83 % when μ < t1. Hence, Model II is 

a better optimal policy. The graphs showing variation of the inventory levels for Model I, Model 

II with time as obtained in Table1 are shown below by using MATLAB. 
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Figure 1. Model I (μ < t1) Inventory starts without shortages. 

 

Figure1 shows that the inventory starts without shortages. Replenishment is done at time t = 0 

and the optimal order quantity Q* for each ordering cycle is 273.86 units. The maximum 

inventory level after replenishment and clearing all the backlogs is S* = 222.516 units. During 

the period [0, μ) the demand rate of the items is D0t and the items follow Weibull distribution 

deterioration. After t= μ= 0.8 the demand rate becomes constant and equal to D0μ. The stock 

vanishes at t1*= 3.170827 units and then shortages start. The optimal cycle length of the model is 

T*= 3.812628 units. The minimum average total cost of the inventory model per unit time is 

C1*= 770.162 units. 

 
 

 
Figure 2. Model II (μ < t1) Inventory starts with shortages. 
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From Figure 2 we see that the inventory starts with shortages. During the period [0, μ) the 

demand rate of the items is D0t. After t= μ= 0.8 the demand rate becomes constant and equal to 

D0μ. The replenishment is done at time t1* = 0.98707 units and the optimal order quantity Q* for 

each ordering cycle is 281.024 units. The shortage amount is met from the replenished stock and 

the maximum inventory level S* after replenishment is 234.058 units. During the period [t1, T) 

the stock decreases due to constant demand rate and Weibull distribution deterioration of the 

items. At t= T*= 3.896163 units the inventory becomes zero. The minimum average total cost 

per unit time of the model is C2*= 709.88 units. 

We now study the sensitivity of the optimal solution to changes in the values of the different 

parameters of Model I and Model II when μ< t1. The sensitivity analysis is performed by 

changing the value of each of the parameters by -50 %, -25 %, 25 %, 50 %, taking one parameter 

at a time and keeping the remaining parameters unchanged. Here we have assumed that 

insensitive, moderately sensitive, and highly sensitive imply % changes are – 3 to + 3, - 20 to 

+20 and more respectively. 

 
Table 2 (a). Sensitivity Analysis of Model I (μ = 0.8) 

Parameters % change % change in 

S* Q* C1* t1* T* 

 50 25.858 25.314 22.956 22.402 22.495 

A 25 13.604 13.314 12.056 11.8 11.843 

 -25 -15.513 -15.173 -13.696 -13.489 -13.524 

 -50 -34.039 -33.279 -29.987 -29.64 -29.698 

 50 -24.826 -16.985 16.997 -21.603 -15.106 

Ch 25 -14.211 -9.819 9.214 -12.356 -8.725 

 -25 20.463 14.526 -11.204 17.737 12.865 

 -50 53.825 38.963 -25.444 46.49 34.381 

 50 3.311 -3.193 2.93 2.874 -2.892 

 25 1.952 -1.905 1.727 1.695 -1.724 

Cs -25 -3.045 3.102 -2.692 -2.645 2.807 

 -50 -8.465 9.065 -7.48 -7.357 8.197 

 50 -0.214 -0.16 0.072 -0.185 -0.142 

Cd 25 -0.107 -0.08 0.036 -0.093 -0.071 

 -25 0.108 0.081 -0.036 0.094 0.072 

 -50 0.216 0.162 -0.072 0.187 0.144 

 50 18.095 18.798 21.85 -18.504 -18.548 

D0 25 9.728 10.062 11.511 -10.621 -10.649 

 -25 -11.635 -11.919 -13.149 15.45 15.509 

 -50 -26.24 -26.728 -28.84 41.074 41.284 
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Table 2 (b). Sensitivity Analysis of Model I (μ = 0.8) 

Parameters % change % change in 

S* Q* C1* t1* T* 

 50 4.999 7.778 19.823 -19.842 -19.889 

µ 25 4.451 5.645 10.822 -11.165 -11.195 

 -25 -8.66 -9.455 -12.901 15.771 15.832 

 -50 -22.386 -23.553 -28.609 41.517 41.73 

 50 -0.32 -0.234 0.141 -0.443 -0.344 

α 25 -0.161 -0.118 0.071 -0.222 -0.173 

 -25 0.163 0.119 -0.071 0.225 0.175 

 -50 0.327 0.239 -0.142 0.452 0.352 

 50 -2.009 -1.55 0.439 -2.163 -1.725 

β 25 -0.731 -0.562 0.171 -0.806 -0.641 

 -25 0.393 0.299 -0.107 0.453 0.358 

 -50 0.594 0.45 -0.174 0.699 0.552 

 

A careful study of Table2 reveals the following points: 

i. It is seen that the maximum inventory level S*, the optimal order quantity Q*, the optimal 

total cost C1* and optimal time periods t1* and T* are insensitive to changes in the values of 

the parameters Cd, α, β. These are moderately sensitive to change in the value of the 

parameter Cs and highly sensitive to changes in the values of the parameters A, Ch, D0 and μ. 

 
Table 3 (a). Sensitivity Analysis of Model II (μ= 0.8 and μ < t1 ) 

Parameters % change % change in 

S* Q* C2* t1* T* 

 50 24.106 24.116 24.491 14.372 21.39 

A 25 12.656 12.661 12.836 7.544 11.247 

 -25 -14.337 -14.341 -14.483 -8.541 -12.781 

 -50 -31.257 -31.264 -31.503 -18.615 -27.913 

 50 -22.746 -16.308 15.378 9.384 -14.515 

Ch 25 -13.07 -9.448 8.373 5.118 -8.402 

 -25 18.999 14.04 -10.324 -6.35 12.445 

 -50 50.282 37.753 -23.704 -14.682 33.341 

 50 3.213 -2.544 3.186 -18.576 -2.286 

 25 1.841 -1.568 1.824 -11.037 -1.409 

Cs -25 -2.711 2.721 -2.682 17.72 2.446 

 -50 -7.335 8.203 -7.251 50.935 7.376 
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Table 3 (b). Sensitivity Analysis of Model II (μ= 0.8 and μ < t1 ) 

Parameters % change % change in 

S* Q* C2* t1* T* 

 50 -0.278 -0.251 0.12 -0.068 -0.223 

Cd 25 -0.139 -0.126 0.06 -0.034 -0.112 

 -25 0.14 0.126 -0.06 0.035 0.112 

 -50 0.281 0.254 -0.12 0.07 0.226 

 50 20.564 20.557 20.287 -11.69 -17.504 

D0 25 10.873 10.869 10.723 -6.733 -10.072 

 -25 -12.557 -12.553 -12.373 9.89 14.735 

 -50 -27.784 -27.774 -27.354 26.501 39.311 

 50 ............. ............. ............. ............. ............. 

µ 25 8.664 8.666 8.531 2.363 -9.094 

 -25 -10.924 -10.924 -10.74 1.034 14.123 

 -50 -25.42 -25.417 -24.972 9.002 38.41 

 50 -0.325 -0.298 0.207 -0.096 -0.473 

α 25 -0.163 -0.15 0.104 -0.049 -0.238 

 -25 0.165 0.151 -0.104 0.049 0.241 

 -50 0.332 0.305 -0.209 0.1 0.485 

 50 -2.777 -2.753 1.006 -1.569 -3.296 

β 25 -0.943 -0.93 0.369 -0.516 -1.162 

 -25 0.43 0.416 -0.207 0.208 0.574 

 -50 0.604 0.577 -0.322 0.263 0.836 

 

A careful study of Table 3 reveals the following points: 

 

i. It is seen that the maximum inventory level S*, the optimal order quantity Q*, the optimal 

total cost C2* and optimal time period T* are insensitive to changes in the values of the 

parameters Cd, α, β. These are moderately sensitive to change in the value of the parameter 

Cs and highly sensitive to changes in the values of the parameters A, Ch, D0 and μ.  

ii. It is observed that t1* is insensitive to changes in the values of the parameters Cd, α, β. It is 

moderately sensitive to changes in the values of the parameters A, Ch, and μ and highly 

sensitive to changes in the values of parameters Cs and D0. 

 

We now further investigate the effects of the following key parameters of Model I and Model II 

with respect to whom Q*, S*, C1*, C2*, T* and t1* are highly or moderately sensitive as 

observed from the results of the sensitivity analysis. 

 

(1) The ordering cost per order A. 

(2) The unit inventory carrying cost per unit of time Ch. 

(3) The demand parameter D0. 
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(4) The unit shortage cost per unit time Cs. 

(5) The parameter μ (the point of time when demand rate becomes constant). 

 

Effect of ordering cost per order A: 

The Table 2 shows that as A increases, Q* increases. Thus on the occasion of higher ordering 

cost the purchaser would go for placing higher order  as it would be more economical. Hence as 

A increases then S*, t1*, T* and C1* would increase. 

The Table 3 shows similar behavior of Q*, S*, T* and C2* like that of Table2 although, t1* is 

comparatively less sensitive to A than in Model I shown in Table 2. 

 

Effect of the unit inventory carrying cost per unit of time Ch: 

From Table 2 we find that as Ch increases, Q* decreases so that the total inventory carrying cost 

of Model I is reduced. As Q* decreases, we notice that S*, t1* and T* decrease. However, as Ch 

increases, the average total cost C1* increases since the inventory carrying cost forms an 

important component of the cost function. 

The Table3 shows that as Ch increases Q*, S*, T* and C2* decrease but t1* increases. This is 

expected, because high carrying cost causes the shortage period to increase so that the total cost 

of the system is minimized.  

 

Effect of the demand parameter D0: 

The Table 2 shows that as D0 increases, the demand rate: 

 

R ( t )  =  D 0 [ t - ( t -μ ) H ( t -μ ) ]  

 

increases which leads to larger order quantity Q*, higher maximum level of inventory S* and 

higher cost C1*. Moreover, as D0 increases, T* and t1* decrease since high demand rate depletes 

the on-hand inventory faster than before.  

The Table 3 depicts the similar results. However, t1* decreases as D0 increases since the 

shortages build up quickly due to high demand rate. 

 

Effect of the unit shortage cost per unit time Cs: 

From Table 2 we see that as Cs increases, t1* increases but Q* and T* decrease. This is justified, 

because the shortage period (T*- t1*) in Model I plays an important role in the cost function C1* 

and should decrease as Cs increases. Hence S* and C1* increase as Cs increases.  

The Table 3 reveals that t1* is highly sensitive to Cs. When Cs increases, t1* decreases 

significantly to reduce the total cost. Also T* and Q* decrease as Cs increases. We note that S* 

and C2* increase with Cs which is expected. 

 

Effect of the parameter μ: 

From Table 2, Q* and S* increase as μ increases. The demand rate D0t continuously increases 

and acquires the constant value D0μ at t = μ for some larger value of μ. As a result t1* and T* 

decrease as μ increases. Total cost of the system C1* increases as μ increases which is expected. 

From Table 3 we see that when μ increases +50%, an infeasible solution is obtained. We observe 

that Q*, S* and C2* increase with μ. But T* decreases with μ, since the after replenishment stock 

exhausts quickly due to increased demand rate. Also it is found that t1* increases as μ changes in 

any direction.  
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Example 2: The parameters are similar to those as given in Example 1, except that μ is changed 

to 1.5. Table 4 shows the corresponding results. It is numerically verified that these solutions 

satisfy the convexity condition. 

 
Table 4. Comparison of optimal solutions of the inventory systems of Example 2 (μ= 1.5) 

Optimal 

solution 

Model I Model II 

Situation I: μ < t1      Situation II:  μ > t1 

t1* 2.20868 .............. 1.064556 

T* 2.653486 ............. 3.003456 

S* 219.299 ............ 282.318 

Q* 286.02 ............ 338.983 

C* 1000.81 (C1*) ............ 882.443 (C3*) 

 

From Table 4 we observe that the ordering strategy is more economical in case of Model II 

(Situation II: μ > t1) than that for Model I. Though the optimal order quantity Q*, the maximum 

inventory level S* and the optimal cycle length T* are greater in case of Model II, the average 

total cost of the system C3* of Model II is 
1000.81 882.443

100
1000.81

 
 

 
 ≈ 11.83 % less than the 

average total cost of the system C1* of Model I. Therefore, the percent benefit of Model II over 

Model I is 11.83 % when μ> t1. So Model II is a better optimal ordering strategy compared to 

Model I. The graph showing variations of the inventory level of Model II (μ> t1) with time is 

shown below by using MATLAB. 

 
 

 
Figure 3. Model II (μ> t1) Inventory starts with shortages. 
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From Figure 3 we note that the inventory starts with shortages at t= 0. At t= t1*= 1.064556 time 

units replenishment is done and the optimal order quantity Q* is 338.983 units. After 

replenishment the backorders are cleared and the maximum inventory level S* at t1* becomes 

282.318 units. The demand rate of the items varies with time up to t= μ= 1.5 time units. After 

that, the demand rate becomes constant and equal to D0μ. The minimum average total cost per 

unit time of the model is C3*= 882.443 units. At t= T*= 3.003456 time units the stock becomes 

zero. 

We are now studying the sensitivity of the optimal solution to changes in the values of the 

different parameters for Model I and Model II. The sensitivity analyses are performed by 

changing the value of each of the parameters by -50 %, -25 %, 25 %, 50 %, taking one parameter 

at a time, and keeping the remaining parameters unchanged. 

Here we have assumed that insensitive, moderately sensitive, and highly sensitive imply % 

changes are –3 to +3, -20 to +20 and more respectively. 

 
Table 5 (a). Sensitivity Analysis of Model I (μ= 1.5) 

Parameters % change % change in 

S* Q* C1* t1* T* 

 50 37.668 34.74 25.12 24.78 24.836 

A 25 19.892 18.343 13.251 13.094 13.121 

 -25 -22.991 -21.192 -15.28 -15.155 -15.176 

 -50 -51.203 -47.185 -33.98 -33.777 -33.811 

 50 -36.253 -24.582 13.78 -23.906 -17.589 

Ch 25 -20.698 -14.065 7.736 -13.642 -10.059 

 -25 29.639 20.38 -10.052 19.504 14.549 

 -50 77.774 54.13 -23.582 51.081 38.565 

 50 4.383 -3.962 2.918 2.887 -2.859 

 25 2.584 -2.363 1.72 1.702 -1.705 

Cs -25 -4.031 3.851 -2.681 -2.655 2.778 
 -50 -11.209 11.255 -7.454 -7.386 8.116 

 50 -0.204 -0.146 0.047 -0.134 -0.104 

Cd 25 -0.102 -0.073 0.024 -0.067 -0.052 

 -25 0.103 0.073 -0.023 0.067 0.052 

 -50 0.206 0.147 -0.047 0.135 0.105 

 50 2.53 6.248 18.467 -20.866 -20.892 

D0 25 2.441 4.178 9.984 -11.91 -11.928 

 -25 -5.486 -7.004 -11.995 17.124 17.16 

 -50 -15.562 -18.228 -26.99 45.254 20.905 
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Table 5 (b). Sensitivity Analysis of Model I (μ= 1.5) 

Parameters % change % change in 

S* Q* C1* t1* T* 

 50 -60.496 -45.861 2.242 -31.641 -31.674 

µ 25 -21.89 -15.666 4.792 -16.258 -16.28 

 -25 6.788 2.857 -10.061 19.142 19.183 

 -50 -0.309 -6.154 -25.365 48.424 48.566 

 50 -0.285 -0.201 0.079 -0.262 -0.205 

α 25 -0.143 -0.1 0.04 -0.132 -0.103 

 -25 0.144 0.101 -0.039 0.132 0.103 

 -50 0.289 0.203 -0.079 0.266 0.208 

 50 -0.994 -0.732 0.132 -0.759 -0.609 

β 25 -0.399 -0.293 0.056 -0.307 -0.247 

 -25 0.263 0.192 -0.041 0.206 0.165 

 -50 0.435 0.316 -0.072 0.344 0.274 

 

A careful study of Table 5 reveals the following: 

i. It is seen that the maximum inventory level S* and the optimal order quantity Q* are 

insensitive to changes in the values of the parameters Cd, α, β. These are moderately sensitive 

to change in the values of parameters Cs and D0 and highly sensitive to changes in the values 

of parameters A, Ch and μ. 

ii. The optimal total cost C1* and optimal time periods t1* and T* are insensitive to changes in 

values of parameters Cd, α, β. These are moderately sensitive to changes in value of 

parameter Cs and highly sensitive to changes in the values of parameters A, Ch, D0 and μ. 

 
Table 6 (a). Sensitivity Analysis of Model II (μ= 1.5 and μ> t1) 

Parameters % change % change in 

S* Q* C3* t1* T* 

 50 28.021 28.031 25.602 13.173 20.909 

A 25 14.808 14.813 13.404 7.162 11.059 

 -25 -17.162 -17.166 -15.113 -8.999 -12.839 

 -50 -38.354 -38.361 -32.955 -21.515 -28.72 

 50 -24.344 -18.04 12.893 6.474 -13.476 

Ch 25 -14.049 -10.468 7.114 3.621 -7.816 

 -25 20.662 15.634 -9.083 -4.825 11.165 

 -50 55.165 42.231 -21.37 -11.8 31.404 

 50 0.856 -4.771 4.285 -18.028 -3.585 

 25 0.643 -2.726 2.44 -10.286 -2.049 

Cs -25 -1.613 3.88 -3.433 14.564 2.918 

 -50 -5.794 9.995 -8.757 37.354 7.52 
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Table 6 (b). Sensitivity Analysis of Model II (μ= 1.5 and μ> t1) 

Parameters % change % change in 

S* Q* C3* t1* T* 

 50 -0.258 -0.228 0.091 -0.041 -0.17 

Cd 25 -0.129 -0.114 0.045 -0.02 -0.086 

 -25 0.13 0.115 -0.045 0.021 0.086 

 -50 0.26 0.231 -0.091 0.042 0.172 

 50 14.537 14.528 18.981 -12.636 -17.692 

D0 25 8.146 8.141 10.103 -6.997 -10.085 

 -25 -10.476 -10.472 -11.809 9.272 14.458 

 -50 -24.406 -24.396 -26.278 23.008 38.135 

 50 -15.339 -15.343 9.415 -8.002 -20.162 

µ 25 -2.082 -2.083 6.359 -1.048 -10.06 

 -25 -6.086 -6.088 -8.87 -3.096 12.279 

 -50 ........... ............. ........... .............. ............. 

 50 -0.279 -0.25 0.133 -0.052 -0.292 

α 25 -0.14 -0.125 0.066 -0.026 -0.146 

 -25 0.141 0.126 -0.067 0.026 0.148 

 -50 0.283 0.253 -0.134 0.053 0.297 

 50 -1.733 -1.7 0.489 -0.77 -1.618 

β 25 -0.621 -0.604 0.19 -0.261 -0.592 

 -25 0.324 0.308 -0.119 0.113 0.323 

 -50 0.481 0.449 -0.194 0.146 0.488 

 

A careful study of Table6 reveals the following: 

i. It is seen that the maximum inventory level S*, the optimal order quantity Q* and the optimal 

total cost C3* are insensitive to changes in the values of the parameters Cd, α, β. These are 

moderately sensitive to changes in the values of parameters Cs and μ and highly sensitive to 

changes in the values of parameters A, Ch and D0. 

ii. T* is insensitive to changes in the values of parameters Cd, α, β. It is moderately sensitive to 

changes in value of parameter Cs and highly sensitive to changes in the values of parameters 

A, Ch, D0 and μ. 

iii. t1* is insensitive to changes in the values of parameters Cd, α and β. It is moderately sensitive 

to changes in the values of parameters Ch and μ and highly sensitive to changes in the values 

of parameters A, Cs and D0. 

 

Effect of μ: 

The results of Table 5 show that in Model I, during the shortage period (T*-t1*) as μ increases, 

the demand rate R(t) given by 

 

R ( t ) =  D 0 [ t -  ( t - μ ) H( t - μ ) ]  
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increases, which leads to accumulation of larger shortage quantity. Hence S* decreases and C1* 

increases as μ increases. Consequently, Q*, t1*, and T* decrease as μ increases. 

Table 6 depicts similar results for Model II. However, in this case T* and t1* decrease as μ 

increases because of increased demand rate. 

We observe that the effect of the other key parameters on Model I, and Model II as shown in 

Tables 5 and 6 are more or less similar to Tables 2 and 3 except that the decision variables are 

slightly more sensitive towards the key parameters. 

Finally, from Tables 1 and 4 and the sensitivity analysis Tables 2, 3, 5 and 6 we observe that the 

minimum average total cost per unit of time C* is smaller in case of Model II when the inventory 

starts with shortages. Therefore, we conclude that the proposed inventory Model II is more 

economical and preferable for items with Weibull distribution deterioration and ramp type 

demand rate. In case of Ramp type demand rate, the demand of an item starts with a nonnegative 

value and then gradually increases and after some point of time (μ), the demand stabilizes and 

becomes constant. It explains and justifies the results obtained and the conclusion reached by us. 

 

 

5. Conclusions 
 

Many supermarket managers have observed that the time-varying demand patterns are usually 

used to reflect sales in different phases of the product life cycle in the market. For example, the 

demand for inventory items increases over time in the growth phase and decreases in the decline 

phase. Here we have analyzed three continuous order-level inventory models for deteriorating 

items with shortages. In all these models, the demand rate is taken as a ramp type function of 

time and deterioration rate is assumed to follow a two-parameter Weibull distribution. Analytical 

solutions of the model are discussed and are illustrated with the help of numerical examples. 

Sensitivity of the optimal solutions with respect to changes in different parameter values is also 

examined. 

However, success depends on the correctness of the estimation of the input parameters. In 

reality, however, management is most likely to be uncertain of the true values of these 

parameters. Moreover, their values may be changed over time due to their complex structures. 

Therefore, it is more reasonable to assume that these parameters are known only within some 

given ranges. A direction for future research may be to consider stochastic demand rate in the 

problem. 
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